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Publication of RL on ARMAR: Report supplemented by one or two 
publications on RL for glass‐filling and on the results of applying 

RL to high‐dimensional action spaces. 
 

Wörgötter F. and Ales Ude. 

Executive Summary 

This  deliverable  consists  of  two  papers  (Nemec  et  al.,  2009  and  Tamosiunaite  et  al,  2011), 
which address  the problem of  learning  to pour  liquid  from one  container  into another by a 
robot with many DOF. 
 
Background:  When  describing  robot  motion  with  dynamic  motion  primitives  (DMPs)  one 
employs two types of parameters: "goal" position, towards which the movement is attracted; 
and  parameters  for  the  non‐linear  part  of  the  DMP‐equations  (called  "weights"),  which 
determine  the  shape of  the  generated  trajectory. When  considering  reinforcement  learning 
(RL) with DMPs, usually  goals  are pre‐defined  and only  the weights  for  shaping  a DMP  are 
subject  to  learning. Many  tasks, however, exist where  the best  goal position  is not  a priori 
known,  requiring  to  learn  it.  Here we  chose  the  task  of  learning  to  pour  liquid  from  one 
container into another. Due to the turbulent motion of the liquid, it is very difficult to "guess", 
which goal position should be used allowing  for appropriate  trajectory shape  learning. Thus, 
using  this  task as an example we specifically address  the question of how  to simultaneously 
combine of goal and shape parameter learning. As such this is a difficult problem because goal 
and shape parameters could easily interfere in a destructive way jeopardizing convergence of 
learning. The pouring task was chosen as it represents an example of a generic set of learning 
tasks which  often  occur  especially  in  service  robotics  like  those  addressed  by  PACO‐PLUS. 
There one often finds "fuzzy" tasks of a kind where many successful solutions exist and where 
highest accuracy (such as that needed for industrial robots) is not required. 
 
To  shape  robot movements,  efficient  implementations  of  the  policy  gradient  approach  to 
reinforcement learning have been proposed recently and drew much attention in the robotics 
community  (NAC, Peters and Schaal, 2008; PI^2, Theodorou et al., 2010, PoWER, Kober and 
Peters,  2009,  Policy  search  via  signed  derivative,  Kolter  and Ng,  2009).  The NAC,  PI^2  and 
PoWER methods were  used  for  learning  of DMP  shape  parameters. We  use  PI^2  and NAC 
methods for DMP shaping and augment the shape  learning procedures by  in parallel  learning 
goal parameters of the DMP which has not been done before. 
 
Results: The investigation had started a year earlier with the Natural Actor Critic (NAC) Method 
(Peters and Schaal 2008), employing  it on the tasks of “learning to pour”. This, however, had 
led  to  substantial  frustration  as  this  method  is  brittle  and  contains  too  many  mutually 
interfering parameters. A paper was published about this in a cooperation of BCCN with JSI on 
the Humanoids conference in Paris (Nemec et al., 2009, see Appendix to this deliverable). As a 
consequence of the existing problems we had switched to a very novel method called “Policy 
Improvement with Path Integrals” (PI^2, Theodorou et al., 2010). We found that this method 
works  very well  also  for  high  dimensional  problems  and,  thus,  holds  high  promise  in  robot 
learning. A paper  (by BCCN and JSI)  is submitted  (Tamosiunaite et al., 2011, see Appendix to 
this deliverable), where we compare NAC with PI^2 in simulation and also on a real robot. This 
is  the  only  paper  so  far written  by  an  “independent  group”  (hence,  not  by  the  inventors 
themselves) explaining and  comparing  these very  complex methods.  Integration with PACO‐
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PLUS has been performed by using these methods on the PA10 robot of JSI but – due to having 
been  forced  to  switch  learning  methods  from  NAC  to  PI^2  –  we  have  refrained  from 
attempting integration on ARMAR III.  
 
Novel Contribution: The scientific novelty of this contribution lies in the fact that we are here 
combining value function approximation RL (our older method, Tamosiunaite et al., 2009) with 
policy gradient RL methods (PI^2) performing simultaneous update. This is entirely novel and is 
described in Tamosiunaite et al., (2011).   
 
Deviation from the Planned Work: This deliverable is delayed by about 4 months. This is due to 
the fact that the results from the NAC learning were negative. First we thought this is our fault 
and  spent  quite  some  time  trying  to  optimize  the  approach,  but  without  success.  As  a 
consequence we had to switch to a different method (PI^2), which works far better. All these 
methods are mathematically very demanding, hence analysis of the problems with the NAC as 
well  as understanding  and  implementing  PI^2  took quite  some  time. As  a  consequence we 
encountered a delay, additionally, we did not anymore attempt to implement PI^2 on ARMAR. 
The  now  submitted  paper  on  the  comparison  of NAC  and  PI^2  (Tamosiunaite  et  al.  2011) 
should, however, be  very helpful  for  the  community  to  see where  the problems  lie  and  to 
avoid similar delays. The use of NAC for high dimensional trajectory learning is discouraged as 
compared to PI^2!  
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Task adaptation through exploration and action sequencing

Bojan Nemec Minija Tamošiūnaitė Florentin Wörgötter Aleš Ude

Abstract— General-purpose autonomous robots need to have
the ability to sequence and adapt the available sensorimotor
knowledge, which is often given in the form of movement
primitives. In order to solve a given task in situations that
were not considered during the initial learning, it is necessary to
adapt trajectories contained in the library of primitive motions
to new situations. In this paper we explore how to apply
reinforcement learning to modify the subgoals of primitive
movements involved in the given task. As the underlying senso-
rimotor representation we selected nonlinear dynamic systems,
which provide a powerful machinery for the modification of
motion trajectories. We propose a new formulation for dynamic
systems, which ensures that consecutive primitive movements
can be splined together in a continuous way (up to second order
derivatives).

I. INTRODUCTION

Action generation and trajectory modulation are among
the most important issues in humanoid robot motor control.
An often used paradigm is learning from demonstration or
imitation learning [10], where the demonstrated action is
used to seed the learning process. Due to different kinematic
and dynamic capabilities of the human demonstrator and
the target humanoid robot, demonstrated trajectories cannot
be simply copied as sequences of joint angles [15], but
need to be adapted to the capabilities of the robot. Such
problems can be avoided by kinesthetic guiding [3], where
the robot arm is led through the action by a human teacher,
but this method is not applicable to every robot. Even
after the observed trajectories have been made feasible with
respect to the robot’s kinematics and dynamics, they still
need to be modified when the configuration of the external
world changes compared to the initial demonstration. Thus a
suitable, higher-level adaptation process is needed to change
the learned trajectories.

The adaptation can take place in the form of an au-
tonomous exploration, where the robot modifies the available
movements by exploring its action space in the neighborhood
of the previously acquired movements, thus continuously
expanding the available knowledge until optimal (or satisfac-
tory) solution is found. This process is often realized using
reinforcement learning techniques. Since we are interested
in the development of intelligent robots in household envi-
ronments, we took the pouring of a liquid into a glass as a
representative example in our evaluation experiments. Cup
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filling is an appropriate task for learning because in general
liquid streams are hard to model if one considers arbitrary
vessels and liquids. Even if the appropriate robot movements
that solve the task for some glasses and liquids are available,
these movements require further adaptation procedures if the
relative position of the glass with respect to the robot changes
or if one of the vessels changes.

When considering reinforcement learning (RL) for at-
taining a delayed reward, learning at different levels of
abstraction is possible. One possibility is to parametrize the
shape of the selected trajectory and perform learning by
adapting these parameters, so that the overall movement is
changed towards better performance. Examples of adaptation
of this type are provided in [7], [8], using specific policy
gradient technique called natural actor-critic. Another pos-
sibility is to leave the parameters specifying the shape of
the trajectory as they are. Instead, higher-level parameters
specifying the relationship between the movement and the
task space can be adapted, e. g. by shifting the trajectory to
a new location in 3-D space, this way reducing the problem
to an easier reinforcement learning problem with a smaller
number of parameters. This second approach was chosen
in our research. We applied reinforcement learning with
function approximation and continuous actions.

To generate subgoals suitable for this kind of reinforce-
ment learning, it is often useful to segment the overall
movement into primitive movements that are related to the
subgoals of the task. Such methodology was also used in [2]
in the context of learning from demonstration and practicing.
In this paper we employ dynamic movement primitives
(DMPs) [4], [11], which are essentially parametrized trajec-
tories encoded by dynamic systems, as a basic movement
representation. DMPs explicitly contain the final goal po-
sition of the primitive motion among the parameters and
thus provide suitable higher-level parameters for reinforce-
ment learning. Since a smooth transition between primitive
movements without coming to a full stop is often needed
to effectively sequence the primitives, we propose a new
formulation of dynamic systems that ensures smoothness (up
to derivatives of second order) of the transition between two
consecutive primitive movements.

In the following we first study movement sequencing with
DMPs. In the second part we investigate an application of
reinforcement learning to the adaptation of the available
motor primitives in the context of cup filling.

II. SEQUENCING OF MOTION PRIMITIVES

Lets briefly consider the task of pouring a liquid into a
glass. It depends on many factors including the position of
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the glass with respect to the body, the shape of the vessel
containing the liquid and the shape of the glass to be filled.
A general strategy for pouring is 1) approach the glass to
be filled with a suitable approach trajectory and 2) start the
pouring motion towards the end of the approach trajectory
and execute the pouring motion while controlling the liquid
flow until the glass is filled to the desired level. These two
phases define two separate movement primitives. Note that
there is a smooth transition between the two phases, i. e. the
hand motion does not come to a full stop while transitioning
from the approach phase to the pouring phase.

To successfully fill the glass placed at different locations
on the table, the actual pouring motion does not need to
be changed. Successful pouring can be achieved solely by
selecting the appropriate goal position for the approach
trajectory, which is automatically taken into consideration by
the underlying dynamic system, followed by the previously
learned and constant pouring movement. The goal position
of the approach trajectory provides the parameters that can
be learned by reinforcement learning. For this approach to
work, we need to be able to smoothly sequence the available
primitives. In this section we propose a dynamic systems
formulation that allows smooth sequencing of DMPs without
coming to a full stop at the end of each movement, as it is
necessary in the case of pouring movements. While some
of these parameters could be inferred analytically, this is at
least a non-trivial task because many parameters need to be
considered (shape of the glass, properties of liquid flow for
different liquids, capabilities of the robotic arm, ...).

In the standard DMP formulation for discrete movements,
motion in each task coordinate is represented as a damped
mass-spring system perturbed by an external force. Such a
system can be modeled with a set of differential equations
[11]1

v̇ =
1
τ

(K(g − y)−Dv + f(x)) , (1)

ẏ =
v

τ

where v and y are the velocity and position of the system, x
is the phase variable, which defines the time evolution of the
trajectory, τ is the temporal scaling factor, K is the spring
constant, and D is the damping. The phase variable x is
defined by

ẋ = −αx
τ
. (2)

For trajectory generation it is necessary that the dynamic
system is critically damped and thus reaches the goal position
without overshoots. A suitable choice is D = 2

√
K, where

K is chosen to meet the desired velocity response of the
system. Function f(x) is a nonlinear function which is used
to adapt the response of the dynamic system to an arbitrary
complex movement. A suitable choice for f(x) was proposed
by Ijspeert et al. [4] in the form of a linear combination of

1While constants are denoted differently in this paper, the two formula-
tions are equivalent.

M radial basis functions

f(x) =

∑M
j=1 wjψj(x)∑M
j=1 ψj(x)

x, (3)

where ψj are Gaussian functions defined as ψj(x) =
exp(− 1

2σ2
j
(x− cj)2). Parameters cj and σj define the center

and the width of the j-th basis function, while wj are the
adjustable weights used to obtain the desired shape of the
trajectory.

Fig. 1. Filtered output of the DMP

In the original DMP formulation [4], the system has an
initial state (x, y, v) = (1, y0, 0) and a final state (x, y, v) =
(0, g, 0), which means that the previous motion has to com-
pletely stop before the next motion is generated. Pastor et al.
[6] noted that by appropriately defining the initial conditions
for the second movement, two consecutive movements can be
joined together with continuous velocities. The acceleration,
however, remains discontinuous even after this modification.
Here we eliminate this restriction by replacing the second
order system (1) with a third order system.

In order to overcome the jumps in velocities and acceler-
ations when joining two trajectories, we propose to apply a
first order low-pass filter at the output of the DMP generator,
as shown in Fig. 1. The second order system (1) now turns
into a third order system, which is defined by equations

v̇ =
1
τ

(K(g − y)−Dv + f(x)) ,

ẏ =
v

τ
, (4)

q̇ =
H

τ
(y − q).

Here H is an appropriately chosen filter constant and q is
the new output of the modified DMP. The phase variable x
remains defined by Eq. (2). Like in the original formulation
(1), the third order system is stable if the constants K, D, H ,
and τ are appropriately selected. The proof is as follows. It
is easy to see that if we omit the nonlinear term f from Eq.
(4), a general solution for the remaining linear differential
equations system is given by

 v
y
q

 =

 0
g
g

+exp (tA) c, A =


−D
τ
−K
τ

0

1
τ

0 0

0
H

τ
−H
τ

 ,
(5)

where c ∈ R3 is an arbitrary constant, which is determined
from the initial conditions. The system is guaranteed to
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Fig. 2. Sequencing of dynamic movement primitives: the output of the
second and third order DMP

converge to the attractor point [0, g, g] if the eigenvalues of
A are negative. The eigenvalues of A are given as solutions
to the equation

det(A−λI)=−
(
λ2 + λD/τ +K/τ2

)
(H/τ + λ)=0, (6)

thus A has negative eigenvalues −
√
K/τ and −H/τ if D =

2
√
K, H,K, τ > 0. Since the phase x and consequently the

nonlinear term f(x) tend to zero, the nonlinear system (4)
is also guaranteed to converge to the attractor point [0, g, g].

In simulation we have tested the sequencing of linear
movements encoded by DMPs. Figure 2 shows the response
of two consecutive second and third order DMPs and the
corresponding velocities and accelerations. As we can see,
the modified DMP formulation ensures continuous acceler-
ations, whereas the accelerations in the original formulation
are discontinuous.

A. Motion Acquisition

The trajectory represented by a third order dynamic
system is parameterized with the initial acceleration, ve-
locity, and position, the final goal position, and a set of
weights wj associated with radial basis functions. In this
section we present the procedure for the calculation of
weights wj . We assume that from human demonstration
or kinesthetic guiding we obtain trajectory data points
{qd(ti), q̇d(ti), q̈d(ti),

...
q d(ti)}i, ti ∈ [0, T ]. Note that unlike

in the original DMP formulation, this formulation requires

Fig. 3. Two frames from the pouring demonstration. The motion was
captured by attaching markers to the container.

also to estimate the jerk. We define function f∗ as follows

f∗(t) =
τ3

H

...
q +τ2

(
1 +

D

H

)
q̈+τ

(
K

H
+D

)
q̇+K(q−g),

(7)
where q = q(t). This function is obtained by replacing the
system of three first order equations (4) with one equation
of the third order, where the nonlinear term f(x) has been
omitted. Our task is to find a set of weights {wj} that
minimize the quadratic cost function

J =
N∑
i=0

(f∗(ti)− f(x(ti)))2. (8)

We use global regression methods to find the optimal weights
wj . Other authors [4], [6] applied locally weighted regres-
sion, which instead minimizes M separate cost functions

Jj =
N∑
i=0

ψj(x(ti))(f∗(ti)− wjx(ti))2, (9)

j = 1, . . . ,M . Locally weighted regression [1] was proposed
as a method that prevents negative interference between task
models. Local models are used to generalize in the neigh-
borhood of the given data point. However, in the context of
trajectory generation from human demonstration, a complete
trajectory is observed over the entire time interval, therefore
locally weighted regression has no advantages over the global
regression except for the lower computational burden. On the
other hand, when using global regression, significantly less
kernel functions are necessary to encode the trajectory within
the required precision and consequently less computation is
required to track the previously calculated trajectory. Global
regression results in the following linear system of equations

Aw = f∗, (10)

w =

 w1

...
wM

 , f∗ =

 f∗(t0)
...

f∗(tN )

 ,

A =


ψ1(x(t0))x(t0)PM

j=1 ψj(x(t0))
· · · ψM (x(t0))x(t0)PM

j=1 ψj(x(t0))

...
...

...
ψ1(x(tN ))x(tN )PM

j=1 ψj(x(tN ))
· · · ψM (x(tN ))x(tN )PM

j=1 ψj(x(tN ))

 .
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Similarly as in the case of locally weighted regression, it
is possible to compute a solution to (10) recursively by
incrementally updating the following quantities

Pi = Pi−1 −
Pi−1aiaTi Pi−1

1 + aTi Pi−1ai
, (11)

wi = wi−1 + (f∗(ti)− aTi wi−1)Piai, (12)

where ai is the M dimensional column vector associated
with the corresponding row of the matrix A and the optimal
weights are w = wN .

Using the proposed estimation method, we captured and
successfully reconstructed the approach and the pouring
movements (see Fig. 3). An optical tracking system with
passive markers attached to the container was utilized to
capture the motion of the container. The motion of the
container was then mapped to the 3-D space motion of the
robotic hand.

III. GOAL CONFIGURATION ADAPTATION USING
REINFORCEMENT LEARNING

Now we turn our attention towards the adaptation of
the available action knowledge through exploration. In the
interest of better understanding of the learning process,
we fist describe our experimental setup. The implemented
learning process is, however, more general and is not limited
to this experiment.

A. Experimental setting

The evaluation experiments were performed using two
robots; a humanoid robot HOAP-3 and a seven degrees of
freedom (DOFs) robotic arm PA-10. HOAP-3 is a small
humanoid robot, whose arm has a limited workspace (5
DOFs), while the seven degress of freedom available to PA-
10 allow the arm to reach any desired position and orientation
of the wrist within the robot workspace.

The execution of the pouring action consists of two phases;
the approach movement and the actual pouring movement.
The pouring movement of HOAP-3 was fixed and was not
changed during the exploration process. What the robot
needed to learn was the optimal position and orientation of
the robot’s hand from where to start the pouring movement

Fig. 4. Experimental setup with HOAP-3 humanoid robot

(with respect to the location of the glass to be filled).
This parameter is given as a final position on the approach
trajectory and is explicitly encoded within a DMP. Obviously,
the optimal starting position for pouring changes when the
glass is moved to a new location. However, because the arm
has only 5 degrees of freedom and because of nonlinearity
of the robot’s kinematics, the new optimal position is not a
linear function of the glass location. The task space to be
explored was further limited by specifying the height from
which to start pouring, which was defined as a function of the
distance of the glass from the robot body using the formula

z = 0.5((x− 0.1) + (−0.14− y)) + 0.01, (13)

where (x, y, z) are the robot-centered coordinates with the
following directions (x - forward, y - to the side, z - up).
Thus the wrist was kept lower when being close to the body,
and higher going away from the body. This was important to
move the arm at sensible orientations because the 5 degrees
of freedom arm of HOAP-3 cannot reach every desired
configuration in the 6-D task space. The 3-D wrist orientation
was defined so that the glass was not tilted at the beginning
of the pouring movement, which fixed the remaining two
degrees of freedom.

The reinforcement learning process described in the next
sections explored the so defined planar surface to find the
optimal position for pouring with respect to the given glass
location. The outcome of pouring, which provided the reward
for reinforcement learning, was measured using a scale that
weighted the amount of liquid that remained in the glass to
be filled (see Fig. 4). The scale could be replaced by a vision
system measuring the level of liquid in the glass, but this was
not the focus of our investigation.

We also evaluated our algorithms with a PA-10 robot
arm. Since the problem to keep the wrist at a specific angle
does not arise when using a 7 degrees of freedom arm, we
now allowed variable height in addition to the y coordinate
(direction to the side of the robot), but x coordinate (forward)
was kept fixed. This coordinate can be estimated by vision.
The 3-D wrist orientation was defined so that the glass was
not tilted at the beginning of the pouring motion and the wrist
axis orientation was parallel to the robot’s sagittal plane.

B. Exploration

We implemented a reinforcement learning method with
function approximation. We define the value function V (s)
as follows

V (s) =
N∑
k=1

θkΦk(s)/
N∑
k=1

Φk(s) (14)

where Φk(s) is the activation function of the k-th kernel in
state s, θk are the weights associated with the k-th kernel
function, and N is the overall number of kernels in the
system. In the context of the our experiment, state s is
defined as a pair of Cartesian coordinates at which the robot
starts pouring the liquid ([x, y]T and [y, z]T for HOAP-3 and
PA-10, respectively). Weights θ are adapted through learning
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as described in the next section. We used spherical Gaussian
kernels, uniformly distributed over the analyzed area with
σ = 0.5 cm for the HOAP-3 setup and σ = 2.1 cm
for the PA-10 setup. N = 2000 was used in both cases
to thoroughly exclude effects from insufficient coverage of
the state space, although according to our experience with
function approximation methods of similar complexity [13],
ten times smaller amount of kernels would often suffice to
adequately represent the investigated space.

To define a new exploratory action, gradient of the cur-
rent estimate of the value function was calculated ∆ =
gradV (s), and an action was performed taking the direction
of the gradient into account. Instead of using pure gradient
ascent, the update for the next state was calculated as a
combination of the current gradient and the previous action
Aprevious:

∆current = (∆x,∆y)current, (15)
Aprevious = (Ax,Ay)previous, (16)

which resulted in

Afinal = c∆current + (1− c)Aprevious, (17)

where at the beginning of learning c = 1.5 was used,
while in later trials c was reduced by 0.1 trial by trial.
The proposed smoothing procedure helps to avoid jerky
exploratory movements in the beginning of the learning
process and also to some degree influences the process of
refinement in RL with function approximation. Traditional
proofs of convergence for RL are no longer valid when using
action smoothing, but in practice learning converged reliably.

In the beginning of learning, the probability of random
exploration was set to 0.5 due to the fact that the chosen
method for performing continuous actions in the value func-
tion approximation scheme was sometimes attracted towards
local minima. The exploration was diminished by 0.05 in
each trial to adhere to the learned components better.

C. Learning method

In the proposed learning framework, the change in the
value of θk follows the mean across all activated kernels of
the next state s′

θk = θk + µ[r + γV (s′)− θk]ΦkN (s), (18)

where k is the number of the kernel to which the weight is
associated, r is the reward, µ < 1 the learning rate, γ < 1
the discount factor, V (s′) is the value of the next state, and
ΦkN (s) is the normalized activity function for kernel k in
state s

ΦkN (s) = Φk(s)/
N∑
k=1

Φk(s). (19)

The rule (18) is called averaging function approximation
rule and is considered to perform more stably [9] in function
approximation schemes as compared to standard methods
(e. g. see [12]).

Fig. 5. Learning trajectories, vector field obtained in the process of learning
(marked with pointers), and the contour plot of the reward (succesful pouring
amounts) obtained through sampling (A); amount of reward accumulated in
successive trials (B). Real HOAP-3 robot was used in this case.

D. Results

In experiments with HOAP-3, ten trials with eight pouring
attempts each were performed. Exploratory paths together
with the resultant vector field are shown in Fig. 5.A. All
trials started at the same initial hand position and orientation.
One can see that the learning was successful and the rewards
starting with the 3rd trial were always high (see Fig. 5.B).
Some oscilations in the reward profile are due to the random
exploration component.

Several improvements were introduced to make learning
quicker: 1) restarting the next trial from the best point of the
previous trial; 2) shortening the step size with the number
of trials; and 3) reducing the amount of smoothing of the
trajectory with the number of trials. This led to a more
reliable learning both in simulation and on the robot. The
exploratory paths at the end of learning together with the
obtained vector field are shown in Fig. 6.A. Statistics plots
are shown in Fig. 6.B.

A similar experiment was performed using the PA-10 robot
arm. Examples of the exploratory paths are shown in Fig. 7.
In Fig. 7.A, a few initial paths are shown, while in Fig. 7.B,
exploratory paths at the end of learning and the obtained vec-
tor field, are shown. The inset of Fig. 7.A shows the reward
contours obtained through sampling. One can see from the
inset that the same reward is obtained independently of the
wrist height (z coordinate). Learning chooses an arbitrary
height but prefers the appropriate y coordinate. Vector field
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Fig. 6. Exploratory paths of the hand traversed during learning and the
vector field obtained at the end of learning when using the strategy of
jumping directly to the best point of the previous trial (A); sequences of
accumulated reward for 20 learning experiments obtained using HOAP-3
simulator (B).

is also stronger along the y coordinate as compared to the
height coordinate.

In PA-10 experiments, good performance was obtained
after 6-8 trials. In Fig. 8.A accumulated rewards over se-
quential trials from 10 experiments are shown. The average
over those experiments is given in Fig. 8.B. In the current
setup with PA-10, learning effects were achieved several
trials later as compared to the analyzed HOAP-3 setup, which
is probably due to the bigger area that needs to be explored.

IV. SUMMARY AND CONCLUSION

A reinforcement learning procedure with function ap-
proximation and continuous actions, which are encoded
by dynamic systems, was developed. To support action
sequencing, a new formulation for dynamic systems was
proposed. This methodology was successfully applied to
learn appropriate robot movements for liquid pouring. We
have shown that good performance can be achieved within
3-8 trials (exploratory paths, or 20 to 60 attempts to pour), on
two different robot arms. The number of trials is acceptable
for a robotic application, where procedures with thousands
of learning trials are often not feasible.

There are alternative ways to refine robot movements
using reinforcement learning. In [8], a novel policy gradient
method called natural actor-critic was used to solve the prob-
lem of throwing a ball into a cup with a 7 degrees of freedom
robot arm. The method exhibits excellent performance when

Fig. 7. Exploratory paths obtained at the beginning of learning in the
experiment with PA-10 (A). The inset shows contours of the reward area
obtained using sampling. Exploratory paths and vector field obtained at the
end of learning are shown in (B).

applied to problems involving multiple dimensions. One
problem we had with the natural actor-critic technique –
at least in our experiments – was that the initial trajectory
had to be relatively close to the desired trajectory if one
wants to achieve efficient convergence [14]. In comparison,
approaches like ours need to explore a smaller task space to
find a satisfactory solution and are therefore less susceptible
to a bad initial approximation. Also, value function based
reinforcement learning methods deal with delayed rewards
in a systematic way, whereas gradient based methods like
the natural actor-critic would fail because of the flat reward
surface. This is another reason for why our method can
correct larger inaccuracies in the demonstration as compared
to the natural actor-critic. Hence although with methods like
natural actor-critic, reinforcement learning can be applied
to large state spaces, an alternative to divide the task into
several smaller problems and solve one or several of the
smaller tasks with reinforcement learning may provide more
stable results. While other systems in which the task has been
subdivided into smaller tasks by defining suitable subgoals
were developed in the past [5], our approach shows how to
refine the available movement primitives by encoding them
as dynamic systems. We demonstrated that dynamic systems
provide a suitable framework for task decomposition and
proposed a formulation that allows smooth sequencing of
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Fig. 8. Ten sequences of accumulated reward in PA-10 experiments (A);
average value of the ten reward sequences (B).

consecutive movement primitives up to second-order deriva-
tives.
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Abstract

When describing robot motion with dynamic motion primitives (DMPs) one employs two

types of parameters: ”goal” position, towards which the movement is attracted; and pa-

rameters for the non-linear part of the DMP-equations (called ”weights”), which determine

the shape of the generated trajectory. When considering reinforcement learning (RL) with

DMPs, usually goals are pre-defined and only the weights for shaping a DMP are subject

to learning. Many tasks, however, exist where the best goal position is not a priori known,

requiring to learn it. Here we chose the task of learning to pour liquid from one container

into another. Due to the turbulent motion of the liquid, it is very difficult to ”guess”, which

goal position should be used allowing for appropriate trajectory shape learning. Thus, using

this task as an example in this study we specifically address the question of how to simul-

taneously combine of goal and shape parameter learning. As such this is a difficult problem

because goal and shape parameters could easily interfere in a destructive way jeopardizing

convergence of learning. Value function approximation RL techniques are used for goal-,

and policy gradient RL methods for shape learning. Specifically, we use ”policy improve-

ment with path integrals (PI2)” and ”natural actor-critic (NAC)” for the policy gradient

approach. The methods are analyzed with simulations using a pouring model and are im-

plemented on a real robot setup using the Mitsubishi Pa10 robot arm. Results for learning

from scratch, learning calibration starting from a human demonstrated trajectory, as well as

learning re-calibration using a different different container for the liquid are presented. We

observe that the combination of value function approximation based goal-learning together
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with PI2 shape learning is stable and robust within large parameter regimes, where we

had tested up to six goal and shape combinations. Learning converges even in the presence

of large disturbances in about 20-40 movement trials, which makes this combined method

suitable for robotic applications.

1 Introduction

Dynamic movement primitives (DMPs) proposed by Ijspeert et al. (2002) have become one of

the most widely used tools for the generation of robot movements. Numerous applications can

be found in the literature (Perk and Slotine, 2006; Peters and Schaal, 2008; Kober and Peters,

2009; Theodorou et al., 2010). The DMP formalism is employed for describing goal-directed

movements and includes second order dynamics towards an attractor point, called the goal

point g of the movement, as well as several adjustable parameters, which are used to obtain the

desired shape of the trajectory. In this study we will consider questions of robot reinforcement

learning using dynamic movement primitives. Several efficient methods have been proposed

for DMP shape parameter learning. These include the natural actor-critic (NAC, Peters and

Schaal (2008)), policy improvement with path integrals (PI2, Theodorou et al. (2010)), policy

learning by weighting explorations with the returns, (PoWER, Kober and Peters (2009)). Using

those methods, robots were trained to acquire specific skills, for example jumping across a gap

by a robot dog (Theodorou et al., 2010), hitting a baseball ball with a robot arm (Peters and

Schaal, 2008), or playing the ball-in-a-cup game using a humanoid robot (Kober and Peters,

2009).

Here we will consider the combination of DMP goal and shape learning. DMP goal learning

was not much considered in robot experiments before (Peters et al., 2009) and the simultaneous

combination of the two learning regimes is novel. The reason for this is that in most tasks

considered so far the goal position is well-enough known. Thus, goal learning is not required.

There are, however, many tasks where this is not the case. These include all tasks where it is

next to impossible to pre-define the most appropriate goal position, which happens as soon as

the goal has a hard-to-predict effect on the outcome. One example, which is also in the core

of the current study, is pouring of liquid. The complex turbulent motion of the liquid taking

place at the rim of the container makes it very hard to predict at what position (=goal) the

container should be optimally placed for best pouring results. The same is true for other tasks,
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like optimally hitting a ball with a tennis racket. Here the situation is a little bit better and

target goal (as well as angle) can be calculated for an ideal racket. However, as soon as the

tension of the cords is not optimal anymore these calculations might not reflect the optimal

goal and goal-learning would again be the better strategy.

We will use function approximation reinforcement learning (Sutton and Barto, 1998; Reynolds,

2002) for goal learning and PI2 or NAC for shape learning. It will be shown how two learn-

ing processes can be combined in the same learning experiment without mutually jeopardizing

convergence.

As our example task we will teach the robot to pour. For this, the robot has a container

with liquid in its hand and executes approach as well as pouring into an empty glass positioned

on a table. As mentioned, the pouring task is a good example where both shape and goal of

the trajectory need to be learned. The shape parameters determine the best way of curving

the trajectory during the approach and while tilting the container. The goal parameters, on

the other hand, determine the target position of the trajectory. This task was chosen as it

represents an example of a generic set of learning tasks which often occur especially in service

robotics. There one often finds ”fuzzy” tasks of a kind where many successful solutions exist

and where highest accuracy (such as that needed for industrial robots) is not required.

The paper is organized in the following way: in section 2 the setups and the methods used in

this study will be presented. In section 3 results obtained with the pouring simulator as well as

those obtained on the Mitsubishi Pa10 robot arm will be provided. With the pouring simulator

a more detailed scan of the parameter space is possible. With the real robot experiments both,

learning from scratch as well as starting to learn from a demonstrated human trajectory, will be

presented. To demonstrate the potential of the applied learning algorithm also a more complex

(redundant) learning task is analyzed using the pouring simulator. In section 4 the advantages

as well as shortcomings of the methods will be analyzed, and comparisons with alternative

approaches will be provided. In the Appendix algorithms will be described in more detail.
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Figure 1: Robot setup: Mitsubishi Pa10 robot arm and the scales for measuring correctly poured
water. Spilled water runs off the scales. On the left side the coordinate system used to evaluate
the wrist position is shown. The right picture provides a close to planar view onto the (y, z)
plain and the tilting angle φ is visualized in this plain. Rotation is performed around the neck
of the bottle.

2 Methods

Note a summary of the parameter values used in this study is provided in Table 1.

2.1 General Setup

The task is to learn pouring liquid from one container into another using a robot arm. We

use the assumption that the robot already has a full container in its hand and grasping the

container is not included in the task. However, the correct pouring position is considered to

be unknown. The pouring action should include both, the approach to the target container as

well as tilting of the manipulated container to get the liquid out.

As a platform for the experiments the 7DOF Mitsubishi Pa10 robot arm was used. The

arm was positioned so as to imitate the position of a human arm (see Fig. 1). The whole

pouring procedure was performed in the following way: the robot arm was brought to the start

position where the container was filled with water (approx 190 ± 10 grams). Afterwards, the

pouring action was executed. Pouring success was determined by the changing mass of the

lower container measured by a scales. The setup is such that all spilled water immediately runs

off the scales and is, thus, not weighed.

Parameter T defines the number of samples in a trajectory. In the real robot experiments

we had T = 300. This corresponds to pouring movements of 5 s duration (sampling frequency

60 Hz).
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Table 1: Parameters used for simulation and real robot experiments.

Parameter type Parameter name Simulation Real robot

Robot workspace wrist side displacement y(t) [-0.4, -0.1] [-0.35, -0.1]
wrist height z(t) [-0.15, 0.15] [-0.1, 0.1]
tilting angle φ(t) [0, π] [0, 7

9
π]

DMP K 36 36
D 3 3
α 0.1 0.1
τ 1 2
No. of kernels L 15 15
kernel width σD 0.005 0.005
integration step dt 0.01 s 0.017 s
trajectory length T 120 300

Value function approximation No of kernels N in 2D 200 200
No of kernels N in 3D 2000 n.a.
kernel width σV 2 cm 2 cm
learning rate µ 0.7 0.7
discount factor γV 0.7 0.7
initial straightening c 1.5 1.5
c reduce per epoch 0.1 0.1
initial exploration p 0.5 0.5
p reduce per epoch 0.05 0.05
step length 2.2 cm 2.2 cm
step decay per epoch 0.85 0.85
(starting after 2 epochs)

PI2 procedure No of trials in an epoch 8 8
No of epochs performed 9 9
No of trials in exploration K 7 7
No of trials in testing 1 1
Noise variance σP 30 (opt.) 30

80 40
130

learning rate 1 3
3 5
10 (opt.)

control penalty R 10−9 10−9

(diagonal element)

NAC procedure No of trials in an epoch 17 n.a.
No of epochs performed 6 n.a.
No of trials in exploration 7 n.a.
No of trials in probing for γN 10 n.a.
initial variance σN 10 n.a.
σN decay factor per epoch 0.85 n.a.
interval of γN [0.1, 1] n.a.

2.2 DMPs

Movements were generated using dynamic movement primitives (Schaal et al., 2007).

v̇D =
1
τ

(K(g − yD)−DvD + f(xD)) , (1)

ẏD =
vD
τ
,

ẋD = −αxD
τ
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where vD and yD represent velocity and position of the system, xD is the phase variable, which

defines the time evolution of the trajectory, τ is the temporal scaling factor, K is the spring

constant, and D the damping. here we use variables labeled with D (shortcut for ”DMP”), to

distinguish those from the variables used for notation of coordinates in the robot setup.

The non-linear part f(xD) was defined using radial basis functions (Ijspeert et al., 2002):

f(xD) =
∑L

l=1 ωlψl(xD)∑L
l=1 ψl(xD)

xD, (2)

where ψl are Gaussian functions defined as ψl(xD) = exp(− 1
2σ2
D,l

(xD − cl)2). Parameters cl

and σD,l define the center and the width of the l-th basis function, while wl are the adjustable

weights used to obtain the desired shape of the trajectory.

Three DMPs were used: one for the horizontal side displacement, y(t); one for the vertical

displacement, z(t); and the last one for the tilting angle parallel to the frontal plane, φ(t). To

simplify the situation, the horizontal forward displacement was kept fixed and the tilting angle

was constrained to a plane. Learning of the goal parameters g of y(t) and z(t) was performed,

but for the tilting angle φ(t) not the goal but the shape ωi was learned. Note, shapes of the

horizontal and the vertical displacement of the wrist y(t) and z(t) were kept unchanged, using

the initial trajectories of our second-order linear system, as we wanted to keep the setup non-

redundant. The DMP trajectory for the tilting angle φ(t) was hard-limited between zero and

7
9π in the real robot implementation to avoid unrealistic actions (negative tilt) and unreachable

configurations for too big tilt angles.

To show the potential of the learning methods used, we have in addition implemented

learning in a more complex setup, where goal parameters as well as shape parameters were

learned for all the three DMPs: y(t), z(t) and φ(t). That is, six entities were learned: three

goals and three weight sets. Even though simpler formulation of the pouring task as described

before is better for application on a robot, as it is non-redundant, the more complex formulation

can show interactions of the employed learning algorithms better and provide results more

interesting from the theoretical point of view.

We used parameters K = 36, D = 3, α = 0.1, and τ = 1 or τ = 2 as well as step dt = 0.017

for the Euler integration. The value of α was kept small to obtain an almost constant variable

xD so as to obtain strong influence of kernels for the whole length of the trajectory. In the

DMP framework the variable xD is used to shape the influence of the non-linear part of the
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equations over time (Eq. 1)). In other studies α was kept higher, as usually in those tasks it

was important to have the biggest shaping effects in the beginning of the trajectory, but not

at the end (Schaal et al., 2004; Kober and Peters, 2009). Consequently, the variable xD had

in these cases been strongly dampened to get close to zero at the end of the trajectory. In our

pouring task, on the other hand, the shape of the tilting of the glass had to be considered along

the whole length of the trajectory and thus xD was kept (almost) constant. We used L = 15

kernels in the non-linear part of the DMP.

A bottle was used as the container from which the water was poured and a glass as the

target container (Fig. 1). In addition we have evaluated the learning process in the case when

initial shapes of the trajectories were obtained from human demonstration and adaptation to

the robot setup (calibration) was required from the learning. Also we were testing the capability

of the algorithm to relearn (recalibrate), giving the robot a different bottle after the movement

was learned with the first bottle.

2.3 Simulation of the pouring process

To pre-tune the algorithm, as well as to gather statistics for comparing different learning meth-

ods, we were using a pouring model. The model was designed to simulate liquid pouring from a

bottle. Note, no attempts were made to make this model fully accurate, which is very difficult,

due to the problem of having to model turbulent flow. The level of model detail was matched

to our purpose of being able to compare different learning methods with a high enough degree

of trust. According to the Bernoulli equation, the exit velocity of the liquid equals

vo =
{ √

(2ghl), hl > 0

0, hl <= 0,
(3)

where g is the gravitational acceleration and hl is the liquid level according to Fig. 2. The

direction of the v0 is determined by the bottle pouring angle ϕ. Hence, the liquid velocity

components, vy and vz, are

vy = v0sin(ϕ) (4)

vz = v0cos(ϕ) + gt,
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where t denotes time.

Figure 2: Pouring model setup

The predicted displacement of the liquid flow with respect to the bottle neck in y direction

is thus

yd = vyt (5)

t =
−v0cos(ϕ)) +

√
(v0cos(ϕ)2 + 2gh
g

and the liquid flow is

φ = Av0, (6)

where A is the cross sectional area of the liquid at the bottle neck.

Even though the model presents a simplified scheme it allowed analyzing and pre-tuning

the learning algorithms to the degree that they could be successfully applied on the real robot.

With the pouring model we used a trajectory duration of T = 120. We used coarser

trajectories in the simulation experiments to reduce run time for obtaining larger statistics for

the different parameters.

2.4 Reinforcement learning methods

Two different reinforcement learning approaches are of relevance here: (1) value function based

RL, where for each state the value of being in the state is determined by learning (Sutton and

Barto, 1998) and (2) policy gradient methods, where one does not keep information about values

of states, but instead directly introduces action parametrization where parameter updates follow

the gradient of the return. Throughout learning the parameters are adjusted to optimize the
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desired goal directed behavior (Baxter and Bartlet, 2001). We are combining both techniques,

where the value function approximation approach was used for goal learning, and the policy

gradient approach for shape learning.

2.4.1 Goal learning method

For our value function approach we used a reinforcement learning method with function ap-

proximation developed by us in an earlier study (Tamosiunaite et al., 2009) and modified as

described next. The value function V (s) is defined as follows

V (s) =
N∑
k=1

θkΦk(s)/
N∑
k=1

Φk(s) (7)

where Φk(s) is the activation function of the k-th kernel in state s, θk are the weights associated

with the k-th kernel function, and N is the overall number of kernels in the system. In the

context of our experiment, every state s is defined as a pair of Cartesian coordinates, thus

all coordinates (y, z) denote possible goal points of a DMP (parameter g in eq. 1). Weights

θ are adapted by learning as described later. We used spherical Gaussian kernels, uniformly

distributed over the analyzed area with σV = 2 cm. A value of N = 200 was used in 2D case

(non-redundant setup) and N = 2000 was used in 3D case (redundant setup).

To define a new exploratory action, the gradient of the current estimate of the value function

was calculated ∆ = gradV (s), and an action was performed taking the direction of the gradient

into account. Instead of using pure gradient ascent, the update for the next state was calculated

as a combination of the current gradient and the previous action Aprevious:

∆current = (∆y,∆z)current, (8)

Aprevious = (Ay,Az)previous, (9)

which resulted in

Afinal = c∆current + (1− c)Aprevious, (10)

where at the beginning of learning c = 1.5 was used, while in later trials c was reduced by 0.1

in each epoch. The proposed smoothing procedure helps avoiding jerky exploratory movements

in the beginning of the learning process and also to some degree influences the process of
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refinement in RL with function approximation. Traditional proofs of convergence for RL are

no longer valid when using action smoothing, but in practice learning converged reliably.

In the beginning of learning, the probability of random exploration was set to 0.5 due

to the fact that the chosen method for performing continuous actions in the value function

approximation scheme was sometimes attracted towards local minima. Exploration was reduced

by 0.05 in each epoch to increasingly better adhere to the learned components.

In the proposed learning framework, the change in the value of θk follows the mean across

all activated kernels of the next state s′

θk = θk + µ[r + γV V (s′)− θk]Φk
N (s), (11)

where k is the number of the kernel to which the weight is associated, r is the reward, µ < 1

the learning rate, γV < 1 the discount factor, V (s′) is the value of the next state, and Φk
N (s) is

the normalized activity function for kernel k in state s

Φk
N (s) = Φk(s)/

N∑
k=1

Φk(s). (12)

The rule in Eq. 11 is called averaging function approximation rule and is considered to perform

more stably (Reynolds, 2002) in function approximation schemes as compared to standard

methods (Sutton and Barto, 1998). As reward r we used the amount of liquid correctly poured

into the target container.

2.4.2 Shape learning methods

For shape learning as a primary means we have used the recently developed PI2 method

(Theodorou et al., 2010), but also made a comparison to the natural actor critic (Peters and

Schaal, 2008), which has been very influential in the last years. We are giving a detailed

description of those algorithms in the Appendix and keep it brief in the main text. Note, both

algorithms are quite complex, thus readers are in addition referred to the original papers of

Theodorou et al. (2010) and Peters and Schaal (2008).

Policy Improvement with Path Integrals PI2: Even though the PI2 method is derived from

the principles of stochastic optimal control, it results in a gradient-type update rule of the

control parameters. The method is considering ”cost” instead of ”reward” and allows adding
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noise (to emulate exploration) directly onto the weights of the DMP. The procedure of learning

is organized in epochs: first for some trials exploration noise is added and the success of each

of those noisy trials is evaluated. Afterwards, weights are updated. The update is organized

in such a way that the weights move towards those values where smaller costs were evoked in

the previously performed trials. Noise was generated using a Gaussian distribution. According

to Theodorou et al. (2010), noise was only placed on the weight of the leading kernel and was

kept fixed across the whole extension of the kernel. In addition to the recommendations of

the authors, we were varying the learning rate parameter γP (see Appendix). Although the

authors state that their method has only a single adjustable parameter (noise variance σP ), our

experiments on the pouring model with this algorithm have shown that e.g. ten-fold increase

in noise level gives substantially different learning results as compared to a ten-fold increase in

the learning rate (see results, below).

In the experiments with the pouring model for the immediate cost function, which we will

call q(t), we were using the amount of spilled liquid per time-step, where the amount of the

spilled liquid was multiplied by a factor of ten in those time steps, where nothing was poured

successfully as yet in the current trial:

q(t) =
{ 10aspill(t), if

∑t
j=0 atarget(j) = 0

aspill(t), if
∑t

j=0 atarget(j) > 0,
(13)

where aspill(t) is an amount of spilled liquid in time step t and atarget(t) is the amount of

correctly targeted liquid in time step t. With the factor of 10 we were attempting to emphasize

the punishment for the mistargeted liquid in the beginning of pouring which was more difficult

to learn. As the terminal cost qterminal we were using the final amount of liquid remaining in

the upper container. In the real robot experiments, in order to simplify the setup, we used only

the terminal cost term:

qterminal =
T−1∑
t=0

aspill(t), (14)

where T is the length of the trajectory, while immediate costs were considered zero.

Natural Actor-Critic (NAC): This is a policy gradient method where the gradient is trans-

formed using the Fisher information matrix and then a so called ”natural gradient” is obtained,

which is better targeted to the optimum of the reward surface over parameter space as com-

pared to the regular gradient. We have implemented the time-variant baseline version of the
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methods from Peters and Schaal (2008), which takes into account immediate rewards. As im-

mediate rewards we used the correctly poured amount of liquid in each discrete time step of

the performed trajectory.

One of the main claims of the authors of the NAC method is about of the utility of the

method to consider exploration noise σN together with other parameters in the learning pro-

cedure, e.g. weights of the kernels of a DMP in our case (Peters and Schaal, 2008). However,

when using the NAC we did not join the exploration noise parameter into the same learning

procedure with the shape parameters. To our observation the exploration noise parameter had

dramatically different properties, as compared to trajectory shape parameters and was slowing

down the learning procedure (one could not use high enough learning rates for the gradient pro-

cedure when including into the procedure the exploration noise). Instead, we were annealing

the exploration noise independently.

Also, we did not manage to stabilize the NAC algorithm for our task without introducing

probing for appropriate learning rate after the natural gradient was determined. Consequently,

we added a learning rate probing block in our NAC implementation (see Appendix). In sum-

mary, the procedure is as follows: we were probing trajectories with noise for seven trials.

Afterwards, the natural gradient was calculated. With the obtained gradient, in addition, we

were probing for ten more trials without noise, but with variable learning rate. Afterwards,

new weights were obtained using the learning rate providing the best performance. We were

considering the trial with the best learning rate as the test trial. Thus the NAC epoch consisted

of 17 trials. We were performing six such epochs.

2.4.3 Combination of goal and shape learning

We have combined value function approximation for goal parameter learning and policy gradient

methods for weight learning into a single procedure. A block-diagram showing the principles

of interaction of the two learning methods is presented in Fig. 3. For implementing the PI2

(and NAC) methods, several epochs of experiments need to be performed. Let us say K trials

compose one epoch. In each of those K trials different noise is added onto the weights and this

results in differently shaped DMPs. For each of those K trials the cost is calculated. Both,

noise profile and cost function, are memorized for each trial. After the epoch is finished, the

weights are updated according to the collected noise-reward statistics. As we were combining
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Figure 3: Block-diagram of interaction between goal and weight learning.

two reinforcement learning procedures, we were using the mentioned K trials inside one epoch

not only to vary the weights, but also to vary the goal parameters. Goal parameters were varied

according to the exploration/exploitation requirements of the reinforcement learning with our

function approximation procedure. Updates of the function V (t) were made after each trial,

according to Eq. 11. Consequently, the two learning processes were acting together: weights

were varied and shape learning was performed, but the same trials were at the same time used

out to vary and learn the goal.

3 Results

3.1 Experiments with the pouring model

Central goal of this part of the study is to tune parameters preparing for the real robot task

and to compare the PI2 and NAC methods employed for the shape parameter learning. To

this end we first carried out experiments with the pouring model, where many repetitions of

an experiment could be executed and statistically evaluated. In Fig. 4 A an example learning
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Figure 4: A) Cost decrease with the number of learning trials for shape and goal learning using
the pouring model. Solid line - overall cost decrease, red dots - noise-free trials. Parameters:
for noise generation σP = 30, learning rate γP = 10. B) trajectories generated by DMPs at the
beginng (red) and end of learning (black) , solid line - z(t), dashed line - y(t), dotted line φ(t),
learning applied for the goal parameters of y(t) and z(t) and shape parameters of the φ(t). C,D)
analogous to A,B), but learning applied both for goal and weight learning of all three DMPs (i.e.
three goal values and three sets of weights are learned)

curve is shown obtained using the combination of goal and shape learning, where the shape

is learned using the PI2 algorithm. We plot PI2-cost (defined as described above in eq. 13)

against trial number. The figure shows how the cost varies and becomes smaller with learning.

The black curve shows the overall learning process. Each learning epoch consists of eight trials.

The first seven represent exploration and the weights are disturbed by the exploration noise

in these trials. After these seven trials the weight update is calculated. The eighth trial in an

epoch is performed noise-free to measure the current system performance and is represented by

a red dot in the plot. Nine such epochs are performed. Goal and weight learning is performed

for the first six epochs (6×8 = 48 trials), later for the final three epochs only weight learning is

performed as the goal has by then already become stable. In Fig. 4 B the learned trajectories

are shown, where the lowest trajectory is for the side displacement y(t), the middle trajectory
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is for the height z(t), and the highest trajectory is for the tilt angle φ(t). For the y(t) and z(t)

only the goal parameter was learned. For the tilting trajectory φ(t) shape was learned, and

the goal parameter was kept fixed. One can see that the tilt trajectory obtains a steep slope

in the middle of the movement which then crosses the margin of π/2 after which the actual

running-out of the liquid starts in the employed pouring model. The increase in slope has to

synchronize with the wrist movement to a position from which it is possible to successfully pour

the liquid into the lower container.
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Figure 5: Cost value histograms showing our parameter investigation. First column - result
after three epochs , second column - after six epochs and third column - after nine epochs (at the
end of learning). First three rows show effects of exploration noise increase in combined goal
and shape learning (σP = 30, 80, 130), rows 4-5 - effects of learning rate increase in combined
goal and shape learning (γP = 3, 10, for γP = 1 see row 1), row 6 - first goal (4 epochs), then
weight (the rest 5 epochs) learning, row 7 - NAC method for combined goal and shape learning,
row 8 - redundant learning experiment where goal and shape parameters are learned for all y(t),
z(t) and φ(t), for parameters see text.

We have performed experiments to determine the optimal learning parameters for the PI2

method. Parameters for value function approximation employed for goal learning were taken

from our previous studies (Nemec et al., 2009) (for the numerical values see Table 1). We

have done a series of twenty experiments to discover the most appropriate noise level for the

PI2 learning. The results are shown using histograms (Fig. 5). In the first, second and third

columns of the figure the cumulative cost along the trajectory Q =
∑

t q(t) attained after three,

six and nine learning epochs (first third, second third, and the end of learning) are provided.

As the initial amount of liquid in the model bottle was normalized to one, the maximum

cumulative cost that could be attained according to Eq. 13 was ten. Values slightly above ten
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in Fig. 4 arise because of discretization effects. In Fig. 5, lower costs earlier in learning show

better performance. In the first three rows we provide histograms for three different values of

the noise variance σP = 30, 80 and 130. One can see that there are no essential differences

between learning success in those three cases. Even though the performance grows a small

fraction with bigger σP , with the highest noise (σP = 130) instabilities in learning are starting

to emerge: the right histogram in the third row shows several experiments with high cost, thus,

where the desired learning outcome was not achieved even at the end of learning. Trials with

σP = 10 (not shown in the histograms), showed very stable but far from optimal performance.

Consequently, for further experiments we were choosing σP = 30 (or σP = 40 for the real

robot experiments). In the robot experiments the exploration noise should be big enough as to

overcome the background (unobservable) noise.

As good learning results (zero spill) could not be obtained with changing the noise parameter

alone, we increased the learning rate. In Fig. 5, rows 4 and 5 we show histograms, where the

noise level is kept constant, but learning rate is increased (γP = 3 and 10). One can observe,

that learning performance significantly increases with increasing the learning rate. We have

done experiments with learning rate γP = 15, which, however, started to lead to instabilities.

We have also performed an experiment with first goal, then weight learning (row 6 in the

histogram plot). In this case for the first four epochs only the goal was learned, and weight

learning was introduced only after goal learning was stopped, for epochs five to nine. In this

case σP = 30 and γP = 10 were used. One can observe, that goal and weight learning performed

together (Fig. 5, row 5) produced better results as compared to first goal than weight learning

(Fig. 5, row 6).

Finally we performed the same sets of experiments using NAC instead of PI2. These

experiments will not be shown in detail and only the very best result from a large parameter

investigation is included in Fig. 5. To achieve this we had varied exploration noise and learning

rate. Also we were testing the choice whether to include exploration noise into the scheme of

the natural gradient of not. The best results were obtained with σN = 10 and a learning rate

γN in the interval [0.1, 1], where the actual learning rate was determined within this interval

by the probing procedure described in the Methods section. We did not include exploration

noise variance into the natural gradient evaluation procedure. This is due to the fact that,

when including the variance, the learning rate had to be significantly reduced to stabilize the
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NAC-procedure and appropriate pouring could be no longer learned in a reasonable number of

trials. The results for the NAC method are shown in Fig. 5, row 7. As the NAC epochs were

longer because we had to include additional trials for learning rate probing, in the histograms we

show the results after 2, 4, and 6 learning epochs. Even though NAC shows a comparatively

good performance in the beginning of learning, we did not manage to gain the same stable

convergence towards very good pouring in the final epochs as compared to the PI2 method.

Consequently, for the real robot experiments we have chosen PI2 for shape learning. Goal

and shape learning were combined, the noise level was in the range of σP = 30 to 40, and

a learning rate of γP = 3 to 5 was used. We have decreased the learning rate for the real

robot experiments, as compared to the optimum on the model, to be on the side of more stable

performance, rather than attempting to get the best speed of learning.

3.2 Learning in higher dimensions

In order to better reveal the potential of our combined learning algorithm we have performed

learning trials where goal and shape parameters were learned for all three DMPs: y(t), z(t) and

φ(t). That is, six entities were learned: three goal parameters and three weight sets. This is a

redundant setup, where goals and weights interfere within and - via the world - across DMPs.

For each DMP, L = 15 shape parameters were used. The noise added on DMP weights for y(t)

and z(t) was ten times smaller as compared to the noise added on the weights for φ(t) (σP = 3

vs. σP = 30), as those signals are approximately ten times smaller as compared to φ(t).

When combining goal and shape learning methods we were simultaneously updating all

three goal parameters and all three sets of weights. The shape parameters of each DMP, on the

other hand, were optimized independently of all other DMPs’ shape parameters, as suggested

by Schaal (personal communication). Note, due to goal and weight update one gets direct

interference of the parameters at each individual DMP (Fig. ??, above gray box). The two

learning procedures were, however, also interfering with each other across DMPs (as in all

previous cases), due to the fact that all DMPs are excuted at the robot at the same time

(Fig. ??, gray box).

An example of a learning curve, as well as trajectories before an after learning for this

bigger (redundant) learning task are provided in Fig. 4 C,D. One can observe that relatively

good performance is achieved already after the first epoch, that is, earlier as compared to

18



the non-redundant setup (see Fig. 4A), but the final cost-drop to zero happens only later, as

compared to the non-redundant setup. Also in the redundant case towards the end of learning

there are many exploration trials which are out of range of good performance, which, though, do

not affect the noise-free trials, and consequently the overall learning result remains untouched.

If one looks at the trajectories of the redundant setup before and after learning (Fig. 4 D), one

can observe that the side displacement of the wrist which is crucial for correct pouring (solid

line) at the end of learning is shaped by the weights in such a way that it reaches the correct

pouring position earlier (trajectory is curved downwards), as compared to the non-redundant

case (see Fig. 4 B). Even though we show only one example in the figure, these observations

are quite general and hold when analyzing many examples from those two setups.

The results on performance statistics for the higher dimensional (redundant) learning task

are summarized in the last row in Fig. 5 (row 8). One can see that learning results are similar

to the best non-redundant setup in row 5. In the redundant setup only in two out of 20 trials

learning was a fraction slower, which is remarkable as dimensionality is now much higher. The

possible disruptive effect of the interference between DMP parameter is apparently very small.

As there are many appropriate combinations of goals and shapes, we observe different DMPs

as in the non-redundant case (Fig. 4), but in both cases the values of shape parameters were

small at the end of the trajectory. The shape of the z(t) trajectory (height of the wrist) was

changed minimally through learning, while the shape of y(t) trajectory (side displacement) was

showing bigger weights in the beginning of the trajectory, which brought the mentioned quicker

approach of the wrist to the correct pouring position. In general one can conclude that also

the redundant setup shows quick and stable learning. Learning was only minimally delayed

because of learning six quantities (three goals, three sets of weights)instead of three quantities

(two goals and one set of weights).

3.3 Learning shape and goal parameters in a real robot experiment

For real robot experiments it is important that any learning algorithm will converge only after

a few trials. Furthermore, learning should be robust against fine-tuning of parameters, against

measurement errors, as well as against external, uncontrollable noise. To show this, in our

experiments we purposefully chose a setup where the pouring success could only be measured

with quite wide accuracy margins of ≈ ±10 grams corresponding to only an accuracy of about
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Figure 6: A) Cost decrease with the number of learning trials for the shape only learning. Solid
line - overall cost decrease, red dots - noise-free trials; missing values stand for incorrect reading
of the scales; parameters: σP = 30, γP = 5. B) Trajectories generated by DMPs at the end of
learning, z(t) as solid line, y(t) as dashed line, φ(t) as dotted line, red - before learning, black
- after learning, learning applied only for the shape trajectory φ(t).

±5% of the total liquid. Furthermore, the scales used to measure pouring success were set up to

produce frequent false readings (in one out of 20 cases read-out was zero as if pouring had been

totally unsuccessful). The following experiments show an amazing degree of robustness of the

combined PI2-shape with our goal learning algorithm against such large contingencies. Fur-

thermore, convergence is fast and the analysis above has already demonstrated that parameters

are not terribly critical, either.

3.3.1 Learning shape only

Let us assume that the robot ”knows” a good enough final position of the wrist (goal parameter

of the DMPs for y(t) and z(t)) and that only the weights of the tilting DMP φ(t) are being

learned. The learning curve obtained in this case with the Pa10 robot arm is shown in Fig. 6 A

plotting cost of a pouring attempt against trial number. The cost is measured in grams of liquid

spilled. The black curve shows the overall learning process including exploration trials and the

red dots show the noise-free trials performed to evaluate the learning process. The missing

values stand for the trials where the scalew was giving incorrect readings. The final trajectories

of the three curves (φ(t) as learned and y(t), z(t) fixed) are shown in Fig. 6 B. The solid line

denotes y(t), the dashed line denotes z(t), and the dotted line denotes the tilting trajectory

φ(t). In this experiment the goal position was set on purpose behind the glass and the learning

process had, thus, to tune the tilting trajectory for an early tilt. This way the DMP weights

obtained positive values with an emphasis on the first half of the trajectory and the learned
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pouring trajectory was steeper as compared to the original trajectory that was obtained with

zero weights of the DMP (shown in red dots in the figure).

One can observe that in the learning curve (Fig. 6 A) the behavior close to optimum (almost

all the poured liquid is correctly poured into the lower container) is attained in two learning

epochs (first 16 trials). Later the result is sometimes disturbed by noise (solid line), but the

noise-free trials always show good pouring results after the first two epochs. The difference of

the final cost from zero is in the range of precision of the measuring system. The unobservable

part of the noise of the experiment is composed mainly of the imprecision in the initial amount

of liquid poured into the bottle, as well as the not ideal running-off from the scales of the spilled

amount.

Figure 7: Cost decrease with the number of learning trials for combined goal and shape learning.
Solid line - overall cost decrease, red dots - noise-free trials. Missing values show incorrect
scales measurements. Parameters: A,B) σP = 30, γP = 5, both constant over the length of the
experiment, C) σP = 40, γP = 3, where the learning rate was multiplied by a factor of 0.85
after each epoch, the new noise is added and trajectory is recalculated if the last third of the
trajectory has an average less than 5

8π, D) like (C) but noise level was multiplied by a factor of
0.85 after each epoch.
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3.3.2 Combined learning of goal and shape in a real robot experiment

If one drops the assumption that the goal position for the DMPs is known, then both, goal

and shape, need to be learned. The results of four trials with the Pa10 robot arm are shown

in Fig. 7. In panel A and B one can see two trials with σP = 30 and γP = 5. The exploration

noise provided some jumps in cost also at the end of learning, but no big jumps occurred for

the noise-free trials (red dots), which is indicating that convergence was essentially reached.

The variability of the red dots is within the precision limit for these experiments, which was

about ±10 g. With interrupts in the signal we denote the trials where the scalew provided

bad readings. This is interesting, because, even with such relatively frequent false readings the

proposed combined goal and shape learning algorithm was behaving in a stable way and was

able to bring learning to convergence.

In Fig. 7 C the results with gradual learning rate reduction (”annealing”) are shown (for

details on the annealing procedure see figure legend).

For this experiment the trajectories with too small tilt were rejected, as with small tilt it

is impossible to pour any water out of the bottle. In our setup the liquid could not be poured

out of the bottle using tilt angles lower than approx. 5
8π. This was judged only for the end of

the tilting, i.e. for the last 1.67 s of the trajectory. On failure to comply, a new trajectory was

generated. One can see that the noise-free trajectories start giving persistently low cost after

40 trials. In this experiment one can observe that for the first time good results were achieved

after only two learning epochs (noise-free trial no 16), but that the cost has grown again in

the next epoch. This could have happened because of a too high learning rate or because of

the interactions between goal and shape learning procedures. This worse learning result was

improved again after two more learning epochs and the result remained stable afterwards.

In Fig. 7 D in addition to the learning rate reduction also the exploration noise was reduced

with the progression of learning. Precise pouring was achieved after 3 − 4 epochs. One has,

however, to be careful with reducing exploration noise in real-world experiments as there exist

multiple sources of unobservable noise. If exploration noise is smaller than those sources a good

result might be observed due to the uncontrollable noise and not due to the exploration noise,

leading to incorrect learning.
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Figure 8: Cost decrease with the number of learning trials for relearning to pour from a different
bottle (A) and learning using weights obtained from human demonstration (B). Solid line show
overall cost decrease, red dots show noise-free trails. Parameters: σP = 40, γP = 3, learning
rate was multiplied by a factor of 0.85 after each epoch.

3.3.3 Relearning after change of bottle

In Fig. 8 A the results for the relearning experiment using a different bottle are presented.

First the pouring movement was learned with the regular bottle, then a bottle with a wider

opening was given to the robot and the pouring movement was relearned. Good pouring

results were obtained already after the first re-learning epoch. This experiment shows that

after preliminary learning of the pouring movement much less trials are required after changing

the tool, as compared to learning from scratch, and suggests that reinforcement learning may

be successfully used for manipulation re-calibration.

3.3.4 Learning using data from human demonstration

Fig. 8 B shows results for the experiment where the movement was initialized with weights ob-

tained from human demonstration. Weights were provided for all three DMPs and were obtained

using regression techniques (Schaal et al., 2004). We assumed that the goal position cannot

be extracted with good enough precision from such a demonstration. Instead, we assigned an

arbitrary initial goal position close to target and just used the same goal position as in the

previous experiments where learning was starting from zero weights. Both, goals and shapes,

were allowed to change by learning. Relatively good pouring in this experiment was obtained

already after only two learning epochs. Note, the trajectories remained human-like throughout

learning. The initial weights were not much changed at the end of learning as compared to

the ones obtained from the human demonstration, but the pouring success was substantially
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improved. This way the demonstrated pouring movement was successfully adapted to the new

setup.

4 Discussion

Two different reinforcement learning techniques, value function approximation-based learning

and policy gradient learning, were joined together into one procedure to perform the task of

learning to pour. Value function approximation was used for DMP goal parameter learning,

while the policy gradient approach was used for the DMP shape parameter learning. The

recently developed policy gradient algorithm PI2 method was employed and compared to the

Natural Actor Critic. Learning to pour liquid into a glass was achieved in 16 to 40 trials, which

is a good score for a robotic application including complex learning. Relearning (of a different

bottle) or re-calibration after human demonstration took about 16 and 32 trials, respectively.

Furthermore, experiments were on purpose ”dirty”, including bad measurements and much

limiting the resolution of the cost-determining function. In spite of this we observed an excellent

robustness of PI2 on its own as well as in combination with value function approximation for

goal learning.

4.1 Motivating our Approach

Combination of DMP goal and shape learning for DMPs is a novel approach, where other

authors have also pointed out that such a combination should be investigated (Peters et al.,

2009). We used two different methods for the learning of the two components (shape and

goal), instead of doing the whole learning with only the policy gradient procedure, because

of several reasons. First, our previous experiments with the natural actor-critic (Peters and

Schaal, 2008) have shown that this method was slow when trying an intrinsic combination of

DMP goal and shape learning for pouring. Possibly the ”reward surface” was not favorable for

such an inner-combination. For the PI2 algorithm, on the other hand one observes that its

algorithmic structure as described in Theodorou et al. (2010) is not readily adaptable to goal

parameter learning because PI2 needs time-variable kernels, whereas for the adaptation of a

goal the kernels have to be constant. These are the reasons that support the idea of trying a

combination of different methods instead.
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4.2 Stability and Robustness

The general problem when combining learning methods is that destructive interference could

occur, where both methods - as they are essentially independent - work against each other.

This has not been observed with the here pursued mix of goal and weight learning even though

the same learning trials were used to provide information for the two learning procedures at

the same time.

We found that the PI2 is a very efficient procedure and is able to extract information

from a very small number of successful trials. Also, it mainly ignores the information of the

unsuccessful trials. This adds to the success of the combined algorithm. If ”good” weights were

accidentally combined with bad goals, those experiences could not disrupt learning due to the

design of the PI2 method. On the other hand, the value function approximation procedure

employed in this study proved to be stable in spite of occasional combination of potentially

good goal position with improper weights.

In addition, we performed simulation experiments with a redundant setup, where goals

and weights were interfering with each other on a single DMP as well as across DMP during

execution. When the goal is set a-priori, and only the weights are changed through learning, as

in previous studies (Peters and Schaal, 2008; Kober and Peters, 2009), an intrinsic interference

does not happen. When both quantities are allowed to change in the process of learning, specific

requirements for the learning algorithm emerge, where it is important that goal and weights

don’t start counter-acting each other (big positive goals counteract the big negative weights, or

vice versa). This was the case which we were obtaining when learning both goals and weights

into a single NAC procedure, but not with the combined value function approximation and

PI2 that proved favorable in this study.

Learning in the redundant setup has also proven that the here introduced combination of

algorithms can deal with tasks of relatively high dimensionality, as in this case six entities were

learned in parallel, three goals and three sets of 15 weights each.

One can argue that using value function approximation method for goal learning does not

generalize to much higher dimensions. Our prior work has demonstrated that good convergence

is obtained for up to six and possibly even more dimensions as long as the total learning space

remains restricted (Tamosiunaite et al., 2009). This is often the case for tasks where general

targeting can be learned by supervised methods (e.g. learning from demonstration) or can be
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achieved by (visual) servoing (Tamosiunaite et al., 2009) and only the final tuning requires

RL methods. Many such tasks exist. Thus, our value function approximation method can be

advantageously used for such tasks.

These arguments explain why the combination of goal and shape learning based on our

value function approximation algorithm together with the PI2 is stable supporting it potential

usefulness also for other tasks.

Still the question remains to what degree such a combination would be robust against

parameter changes. We have checked the methods in a wide parameter range, changing explo-

ration noise and learning rate for the policy gradient methods. Even though the convergence

rate proved to be different with different parameters, convergence of the combined learning

algorithm persisted.

We have also specifically checked the stability of the proposed algorithm in respect to occa-

sional incorrect feedback. The scales we were using was providing frequent bad readings. The

algorithm managed to ignore those and they did not influence convergence. This proved the

capability of the algorithm to tolerate incorrect feedback information, which is quite a generic

case in experimental robotics. Also one would expect occasional incorrect measurements or

incorrect interpretations of the environment in the operation of future home robots. Conse-

quently, when developing adaptive (learning) algorithms for those robots one needs to make

them robust against such errors.

4.3 Comparison of Methods and Alternative Approaches

While we were performing this study, new methods have emerged for policy gradient evaluation.

One of those is the PoWER method (Kober and Peters, 2009). This method is based on the idea

of expectation maximization, but its algorithmic formulation is very similar to the PI2 method.

Even though different methods for policy gradient learning are derived from different principles

(e.g. stochastic optimal control for PI2 and expectation maximization for PoWER), to our

experience, the main difference that really matters between methods like PI2 and PoWER, as

compared to NAC, is how exploration noise is being introduced. The efficient way is to put

noise on weights (like in PI2 and PoWER), but not on acceleration like suggested for NAC.

When putting noise directly on the weights, the correspondence between weight values and

rewards is more straightforward and this brings faster convergence of the learning methods.

26



To our observation, modifications of the details of the algorithms do not lead to big changes

in the final result1. Our observations are supported by those of Kolter and Ng (2009), who

find that quite a coarse algorithm can perform very well in policy gradient learning. They

simplified the policy gradient search by replacing the Jacobian terms with a signed derivative

approximation (+1,−1 or 0) and obtain good results in complicated system control (robot-dog

climbing stairs). Also more traditional gradient approaches have proven to produce good results

in complex robot control tasks (Morimoto and Atkeson, 2009; Endo et al., 2008).

Potentially, one can also use policy gradient approaches for the goal learning, too, as these

methods tolerate multiple dimensions better as compared to the value function approximation

techniques. This question has to be investigated in the future but certain drawbacks are ob-

vious as discussed above and neither NAC nor PI2 seem well suited for such a combination.

Alternatively, here we show a successful combination of goal and weight learning using different

frameworks. This combination also performed well for calibration after having initially learned

a movement from demonstration. This is important, because learning from demonstration re-

mains possibly the most efficient learning framework in many complex robotic applications like

service robotics (Calinon et al., 2007; Hersch et al., 2008; Pastor et al., 2009). We have done

such an experiment in this study showing that our learning was able to arrive at the required

calibration of the goal position in a small number of trials. Similarly only a small episode of

reinforcement learning needs to be used for recalibration when changing the tool (e.g. changing

the bottle in our experiment). Thus, we believe that the here demonstrated combination could

be usefully applied also to other tasks of robot manipulation.

Acknowledgments: The work described in this paper was conducted within the EU Cognitive

Systems project PACO-PLUS (FP6-2004-IST-4-027657) funded by the European Commission

and the BCCN, Göttingen funded by the German Ministry of Science, grant BCCN Göttingen,

W3.
1This notions is much supported by our own experimental observations. Namely, for this study we performed

a big set of additional experiments (data not shown) where we made different modifications to the algorithms.
For example, we did some experiments with PI2, by introducing a discount factor, as well as using only the best
trial of the epoch for weight update in step 4, see the section ”Parameter update rule for PI2” in the Appendix,
etc., etc. Most of these modification did not significantly reduce learning success.
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Appendix

This appendix will describe the implementation of PI2 and NAC using consistent notation, al-

lowing readers to implement it without having to heavily consult the original papers Theodorou

et al. (2010) and Peters and Schaal (2008). Algorithmic ”peculiarities” and specific alteration,

which we found useful are being commented.

Definitions

1. DMPs are used as given in Eq. 1 (see main text) and integrated using the Euler method,

where time steps are numbered t = 0, 1, 2..., T − 1.

2. Kernels in the non-linear part of DMP are indexed with l = 1, 2, ..., L, where L is the

overall number of Gaussian kernels in the DMP.

3. One attempt to pour we call a trial.

4. Learning epochs are sets of trials, consisting of the exploration stage (K trials), the

learning rate probing stage (used only in NAC with D trials) and the testing stage (used

only for PI2 one trial). One learning epoch includes K + 1 trials for the PI2 and K +D

trials for the NAC. In the exploration stage of an epoch trials are indexed k = 1, 2, ...,K.

In the learning rate probing stage trials are indexed d = 1, 2, ..., D.

PI2

Here we will describe the algorithmic procedure for implementing PI2, which consists of the

learning procedure as such and the pseudo-code of the PI2 parameter update rule.

Learning procedure for PI2

1. Initialize algorithm with kernel weights ωl, l = 1, 2, ..., L, the weight vector we will notate

by ω.

2. Repeat for several learning epochs (or until convergence of cost measure Q):

(a) Repeat for trials k = 1, 2, ...,K in the exploration stage of an epoch:

i. Generate noise values εl,k,t from N (0, σP ), and consider those as K × T vectors

εk,t of length L, save in memory.
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ii. Add noise to weight vector ω and obtain weight vectors ωk,t (or add noise only

on the leading kernel2).

iii. Generate trajectory yk(t) with noisy weights. Among the components required

to obtain yk(t) are kernel activation vectors ψk,t, save those vectors in memory3.

iv. Execute trajectory yk(t) on a robot or simulator.

v. Measure/obtain cost function qk(t) and terminal cost term qterm, save in memory.

(b) Modify weights ω according to PI2, using memorized noise vectors εk,t, kernel ac-

tivation vectors ψk,t, and cost functions qk(t) (see Pseudo-Code in the subsection

”Parameter update rule for the PI2”).

(c) Execute one trial in the testing stage of the epoch:.

i. Generate trajectory y(t) with noise-free weights ω.

ii. Execute trajectory y(t).

iii. Measure/obtain cost function q(t) and terminal cost qterm.

iv. Evaluate overall cost measure Q = qterm +
∑T−1

t=0 q(t).

Parameter update rule for the PI2

1. For each k, t compute matrix Mk,t =
R−1ψk,tψ

T
k,t

ψTk,tR
−1ψk,t

, where R is control penalty (regulariza-

tion) matrix.

2. For each k, t compute cost including regularization term: Sk,t = qterm +
∑T−1

j=t qk,j +

0.5
∑T−1

j=t+1 (ω +Mk,tεk,t)TR(ω +Mk,tεk,t).

3. For each k, t compute relative goodness for each trajectory point (as compared to the

same point on the other trajectories in an epoch) Pk,t = e
− 1
λ
Sk,t∑K

k=1 e
− 1
λ
Sk,t

, where Theodorou

et al. (2010) suggest to approximate e−
1
λ
Sk,t ≈ exp(−c Sk,t−mink Sk,t

maxk Sk,t−mink Sk,t
) with c = 10.

4. For each time point compute an update term δωt =
∑K

k=1 Pk,tMk,tεk,t. See note4.

2While the core algorithm would allow adding noise to all kernels, Theodorou et al. (2010) suggested to only
add noise to the kernel with the biggest activation level (leading kernel), as well as to add the same noise value
over the extension where that kernel is remaining the leading kernel. This way one would be dealing with noise
K vectors εk, as only one noise vector per trial is required. Our own tests in doing this or adding noise to all
kernels showed indeed delayed convergence in the latter case. Hence we like Theodorou et al. (2010) used noise
on the leading kernel only.

3For the sake of more intuitive notation we will use notation f(t) (e.g. yk(t)), where we talk about the entire
function (trajectory) in time, and ft where we talk about the specific value of the function in time.

4Here the method multiplies ”goodness” by noise values used to obtain that score and introduces correlations
in updates for kernels activated in a correlated way by multiplication by matrix M .
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5. Using cumulative sums, summarize updates along the trajectory into one weight update

value δω =
∑T−1
t=0 (T−t)δωt∑T−1
t=0 (T−t)

.

6. Update weights ω ← ω + γP δω, See note5.

NAC

Here we will describe the algorithmic procedure for implementing NAC, of the learning proce-

dure as such and the pseudo-code of the NAC parameter update rule.

Learning procedure for NAC

1. Analytically derive expression for log-policy derivatives δ = ∇ω,σN log Π(v̇(t, ω), σN ) ac-

cording to parameters ωl, l = 1, 2, ..., L and σN (see note6), where policy Π(v̇(t, ω), σN )

is defined by distribution of acceleration values v̇(t) ∼ N (¯̇v(t), σN ), where the expression

for ¯̇v(t) is obtained from the right hand side of eq. 1.

2. Initialize algorithm with weights ωl, l = 1, 2, ..., L and exploration noise value σN .

3. Repeat for several learning epochs (or until convergence of return R):

(a) Repeat for trials k = 1, 2, ...,K in the exploration stage of an epoch:

i. Generate noise values ξk,t from N (0, σN ) and save in memory.

ii. Use weights ω as they appear (without noise).

iii. Add noise ξk,t, to acceleration v̇ in all time steps of DMP integration.

iv. Generate trajectory yk(t) using noisy acceleration, save in memory kernel acti-

vation vectors ψk,t and trajectory xDk(t) from DMP equation for xD(t) (1).

v. Execute trajectory yk(t) on a robot or simulator.

vi. Measure/obtain reward function rk(t) and save in memory.

(b) Calculate natural gradients gNG according to NAC, using memorized noise values

ξk,t, kernel activation vectors ψk,t, DMP variable xD trajectories xk(t) and reward

functions rk(t) (see Pseudo-Code in the subsection ”Parameter update rule for the

NAC”).
5In original formulation by the authors strictly γP = 1 is used, but to our experience γP > 1 might work

better.
6σN might be either included in the framework of the NAC learning, or annealed independently.
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(c) Decrease exploration noise σN .

(d) Repeat for d = 1...D trials in the learning rate probing stage of the epoch7:

i. Generate new learning rate value γd and save in memory.

ii. Modify weights ω with the learning rate γd and obtain temporary weights

ωtemp = ω + γd gNG.

iii. Generate trajectory yd(t) with the temporary weights ωtemp.

iv. Execute trajectory yd(t).

v. Measure/obtain reward function rd(t).

vi. Evaluate the return Rd =
∑T−1

t=0 rd(t) and save in memory.

(e) Find the optimum of γd according to saved Rd values and permanently modify the

weights ω = ω + γopt gNG.

(f) Consider the return of the optimum trial from the learning rate probing procedure

as the overall return of the current learning epoch R = minRd.

Parameter update rule for the NAC

We used the episodic NAC version with time-variant baseline from Peters and Schaal (2008).

1. For each l, k, t evaluate log-policy derivatives, let us assume they are kept as K×T vectors

δk,t of length L + 1 , where L + 1 denotes the number of adjustable weights L plus one

additional component for the variance σN .

2. Calculate Fisher matrices for each trial Fk =
∑T−1

t=0 (
∑t

j=0 δk,j)δ
T
k,t.

3. Calculate the average over k trials F = 1
K

∑K
k=1 Fk.

4. Calculate gradient for each trial gk =
∑T−1

t=0 (
∑t

j=0 δk,j)αtrt, where αt is weighting factor

introducing discount.

5. Calculate the average over K trials g = 1
K

∑K
k=1 gk.

6. Calculate cumulative log-policy derivative values ηk,t =
∑t

j=0 δk,t.

7. Calculate the average over K trials ηt =
∑K

k=1 ηk,t, let us join the vectors ηt into matrix

H.
7This probing for the value of the learning rate was not included in the original procedure (Peters and Schaal,

2008) but we found it necessary in order to stabilize learning in our pouring task
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8. Obtain weighted reward vector ϑ = [ϑ0, ϑ1, ..., ϑT−1]T , where ϑt = 1
K

∑K
k=1 αtrt

9. Calculate matrix Q = K−1(I +HT (KF −HHT )−1H)

10. Calculate time variable baseline b = Q(ϑ−HTF−1g)

11. Calculate natural gradient gNG = F−1(g −Hb)
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