
29/1-2010 Page 1 of 10

IST-FP6-IP-027657 / PACO-PLUS

Last saved by: SDU Public

Project no.: 027657

Project full title: Perception, Action & Cognition through learning of
Object-Action Complexes

Project Acronym: PACO-PLUS

Deliverable no.: D4.1.4
Title of the deliverable: Publication on fully grounded object-

action complexes in terms of object shape
and action affordances

Contractual Date of Delivery to the CEC: 31.1.2010
Actual Date of Delivery to the CEC: 31.1.2010
Organisation name of lead contractor for this deliverable: SDU
Author(s): Dirk Kraft, Norbert Krüger, Renaud Detry, Damir Omrčen, Aleš Ude, Christopher Geib,
Ron Petrick, Mark Steedman, Justus Piater
Participant(s): JSI, UEDIN, SDU, ULg
Work package contributing to the deliverable: WP1,WP2,WP4
Nature: R
Version: Final
Total number of pages: 10
Start date of project: 1st Feb. 2006 Duration: 48 month

Project co-funded by the European Commission within the Sixth Framework Programme (2002–2006)
Dissemination Level

PU Public X
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Abstract:

This report describes the work of the PACO-PLUS consortium on grounding through Object Action
Complexes (OACs) done in WP4.1 in months 37–48. In particular we describe how a cognitive system
grounds objects as well as their grasping and pushing affordances through exploration by means of OACs.
It then uses these grounded representations for planning as well as for learning in discrete state spaces.
This deliverable covers six publications [A, B, C, D, E, F] (some of them in the status submitted).

Keyword list: Vision, Object-Action Associations, Grasping, Pushing, Grounding

IST-FP6-IP-027657 / PACO-PLUS

Page 2 of 10

Public

Table of Contents
1. I . 3

2. F  OAC . 3

3. G D L . 4

4. G     . 5

5. R     (P) . 7

6. P . 8

7. L  W . 9

IST-FP6-IP-027657 / PACO-PLUS

Page 3 of 10

Public

1. Introduction

In this deliverable we present a formal definition of Object Action Complexes (OACs) (Section 2) and how to
learn them, aiming at planning with these grounded representations. We describe the learning of a grasping
OAC in Section 3 and how objects and grasping affordances become grounded in a cognitive system by pure
exploration (Section 4). The grounding of an object independent pushing OAC and its use in a planning
context is described in Section 5. Learning in the discrete state spaces of the planning level is described in
Section 6.

This deliverable covers six publications [A, B, C, D, E, F] (some of them in the status submitted).

2. Formalisation of OACs

Model

Sensed World

OAC

wso wsa

so

CP

sp

Actual World

(a)

Figure 1: Graphical representation of an OAC and its relationship to the sensed world and a control program.

Autonomous cognitive robots must be able to interact with the world and reason about their interactions.
On the one hand, physical interactions are inherently continuous, noisy, and require feedback. On the
other hand, the knowledge needed for reasoning about high-level objectives and plans is more conveniently
expressed as symbolic predictions about state changes. Bridging this gap between control knowledge and
abstract reasoning has been a fundamental concern of autonomous robotics. Object-Action Complexes
are the basis for symbolic representations of sensorimotor experience. OACs are designed to capture the
interaction between objects and associated actions in artificial cognitive systems.

Figure 1 illustrates this idea with an OAC that predicts the behaviour of a low-level control program CP
functioning in the real world to move an agent’s end effectors. Since the agent’s perception of the world is
completely mediated by its sensors and effectors, any change in the world can only be observed by the agent
through its (possibly faulty) sensors. Thus, executing CP causes the actual state of the world to move from
an initial actual world state awso (sensed as wso) to some resulting actual world state awsa (sensed as wsa).

IST-FP6-IP-027657 / PACO-PLUS

Page 4 of 10

Public

(a) (b)

(c) (d)

Figure 2: Grasp densities. Isotropic kernels (a) are used to represent a grasp success likely related to
an actually executed two finger grasp (b). (c) By combining the information from multiple grasps the
probability density function for grasp success over SO(3) can be represented by a set of these kernels. (d)
Shows a different way to represent a grasp density. Here the green cloud indicates positions in which the
likelihood of a successful grasp is high (orientation is disregarded in this image).

For an OAC to be effective for planning, its higher level states must map to states that are equivalent to those
the control program actually produces. For instance, if wso maps to state so and wsa maps to state sp then all
OACs that model this particular CP must also map so to sp to maintain representational congruency. Thus,
we envision real-time cognitive systems as using OACs to solve a problem at one level of abstraction such
that the resulting solution can be understood in terms of the lower levels of abstraction, even down to the
level of the agent’s sensors and effectors.

The paper [D] defines a formalism for describing object action relations and their use for autonomous
cognitive robots, and describes how OACs can be learned. We also demonstrate how OACs interact across
different levels of abstraction in the context of two tasks: the grounding of objects and grasping affordances,
and the execution of plans using grounded representations.

3. Grasp Density Learning

An OAC representing object specific grasping affordances is connected to so called “grasp density learning”.
The publications [A, B] present this approach for learning object grasp affordance models in 3D from expe-
rience, and demonstrate its applicability through extensive testing and evaluation on a realistic and largely
autonomous platform. Grasp affordance refers to relative object-gripper configurations that yield stable
grasps. These affordances are represented probabilistically with grasp densities, i.e. continuous density
functions defined on the space of 3D positions and orientations. A grasp density characterizes an object’s
grasp affordance; densities are linked to visual stimuli through registration with a visual model of the object
they characterize. We explore a batch, experience-based learning paradigm where grasps sampled randomly
from a density are performed, and an importance-sampling algorithm learns a refined density from the out-
comes of these experiences. The first of such learning cycles is bootstrapped with a grasp density formed

IST-FP6-IP-027657 / PACO-PLUS

Page 5 of 10

Public

from visual cues. The robot successfully exploits its actions into down weighting poor grasp solutions,
which is reflected in the higher success rates achieved in subsequent learning cycles. The success rate of
our method is quantified in a practical scenario where a robot needs to repeatedly grasp an object lying in
an arbitrary pose, where each pose imposes a specific reaching constraint, and thus forces the robot to make
use of the entire grasp density to select the most promising grasp within the set of achievable approaches.
Figure 2 illustrates grasp densities and some of the achieved results.

4. Grounding objects and grasping affordances

Possible

3D Reconstruction

L
e
a
rn

in
g
 G

ra
sp

in
g
 A

ff
o
rd

a
n
c
e
s

Impossible

SuccessfulUnsuccessful

...

O
b
je

c
t

M
e
m

o
ry

B
ir

th
 o

f
th

e
 O

b
je

c
t

Figure 3: The two learning cycles. (top) In the first cycle visual object representations are learned. For
this the grasping reflex OAC (to gain initial physical control over an unknown object) and the accumulation
OAC (to view the object from different viewpoints and create a unified model) are combined. (bottom) In
the second learning cycle we learn a grasp affordance model. The visual object models learned in the first
cycle enable us to use the pose estimation to attach executed grasps to a common model. The grasp density
OAC is used in this process and its inner model (an object specific grasp density) is learned.

The work [C] describes a system that uses a set of OACs for autonomous learning of visual object represen-
tations and their grasp affordances on a robot-vision system. It segments objects by grasping and moving
3D scene features, and creates probabilistic visual representations for object detection, recognition and
pose estimation, which are then augmented by continuous characterizations of grasp affordances generated
through biased, random exploration. The system uses a carefully balanced set of generic prior knowledge
(1) about the embodiment of the system, (2) encoded in a vision system extracting structurally rich infor-
mation from stereo image sequences as well as (3) contained in a number of built-in behavioural modules.
This prior knowledge, applied in an autonomous exploration process, allows the system to generate object
and grasping knowledge through interaction with its environment. Figure 3 shows the interaction of the
used subcomponents from a technical point of view while Figures 4 and 5 shows how it can be interpreted
in accordance with Baddeley’s model of working memory [1].

IST-FP6-IP-027657 / PACO-PLUS

Page 6 of 10

Public

Accu GR Pose

1. failed grasp

I

Accu GR PoseII
1. failed grasp
2. sthg. grasped

Accu GR PoseIII
1. failed grasp
2. sthg. grasped

Accu GR PoseIV
1. failed grasp
2. sthg. grasped
3. object grasped

a)

Accu GR Pose

a)1. failed grasp
2. sthg. grasped
3. object grasped

V

Iconic Memory Visuospatial Sketchpad Episodic Buffer Object Memory Grasp Memory

Iconic Memory Visuospatial Sketchpad Episodic Buffer Object Memory Grasp Memory

Iconic Memory Visuospatial Sketchpad Episodic Buffer Object Memory Grasp Memory

Iconic Memory Visuospatial Sketchpad Episodic Buffer Object Memory Grasp Memory

Iconic Memory Visuospatial Sketchpad Episodic Buffer Object Memory Grasp Memory

Competences

Competences

Competences

Competences

Competences

Figure 4: Illustration showing how the described grounding process can be interpreted in a accordance with
human memory models (using Baddeley’s model of working memory [1]). I) The grasping reflex is used.
A collision between gripper and basket happens. The grasp is labelled as failed and stored in the episodic
buffer. II) Successful application of the grasping reflex. The basket is grasped and the action labelled
accordingly. III) The accumulation process is triggered by the successful grasp. IV) After a set of views
have been collected they are incorporated into a common model. An object is born. The episodic buffer is
updated (we now know that the previously perceived “something” corresponds to the new object) and the
object model is stored in object memory. V) The new entry in the object memory enables a more complex
representation in the visual sketchpad [1, p. 63] by the use of the pose estimation process.

IST-FP6-IP-027657 / PACO-PLUS

Page 7 of 10

Public

...

VI

X

1. failed grasp
2. sthg. grasped
3. object grasped
4. object grasped

Iconic Memory Visuospatial Sketchpad Episodic Buffer Object Memory Grasp Memory

Iconic Memory Visuospatial Sketchpad Episodic Buffer Object Memory Grasp Memory

Competences

Competences

Iconic Memory

a) a)

Accu GR Pose

Play

Accu GR Pose

Play

1. failed grasp
2. sthg. grasped
3. object grasped
4. object grasped
 ...
20. object grasped

a) a)

...
CI

Iconic Memory Visuospatial Sketchpad Episodic Buffer Object Memory Grasp Memory

Competences Accu GR Pose

Play

1. failed grasp
2. sthg. grasped
3. object grasped
4. object grasped
 ...
20. object grasped
 ...

a) a)

Plan

b)b)

Figure 5: Illustration showing how the described grounding process can be interpreted in a accordance
with human memory models (using Baddeley’s model of working memory [1]). VI) A new competence
combining grasping reflex and pose estimation, generating new entries in episodic buffer and grasp memory
is activated (grasp affordance learning). X) After grasping the object multiple times the grasping model
becomes sufficiently complex. XI–C) Additional objects are born and grasping models are learned. CI)
Planning becomes possible with grounded object and grasp representations.

5. Relating motor knowledge to objects (Pushing)

We investigated in [E] how to relate robot motor knowledge to objects by exploration, thereby enabling the
robot to autonomously acquire elementary object-action complexes. To this end they studied the learning of
new manipulation OACs by observing the effects that the robot’s exploratory movements have on objects.
The proposed learning process results in a neural network that encodes the relationship between the robot’s
own manipulation actions and the resulting object behaviour. The learnt network can later be used for a goal-
directed feedback control. The proposed approach is suitable for the acquisition of motor knowledge that is
applicable not only to objects that the robot acted upon during learning, but to whole classes of objects. In a
real-world experiment we showed that the developed system can be successfully applied to acquire a general
pushing rule describing the relationship between the direction of push and the observed object motion for a

IST-FP6-IP-027657 / PACO-PLUS

Page 8 of 10

Public

class of objects. In this way the robot acquires new sensorimotor knowledge without having any specialized
prior model about the actions and/or objects. Figure 6 shows how this OAC has been used in a planning
context on the humanoid robot ARMAR3 where the object needs to be pushed to the corner of the worktop
before it can be grasped.

Figure 6: A sequence of robot pushes that bring the object to a graspable position.

6. Planning

In [F] we describe an approach to robot control in real-world environments that integrates a cognitive vision
system with a knowledge-level planner and plan execution monitor. This approach makes use of OACs
to overcome some of the representational differences that arise between the low-level control mechanisms
and high-level reasoning components of the system. We are here particularly interested in using OACs as
a formalism that enables us to induce certain aspects of the representation, suitable for planning, through
the robot’s interaction with the world. We have implemented our ideas in a framework that supports object
discovery, planning with sensing, action execution, and failure recovery, with the long term goal of designing
a system that can be transferred to other robot platforms and planners. Figure 7 shows the execution of a
simple plan to clean a table while Figure 8 shows sensing actions as well as resensing which is used when
the plan monitor detects a problem.

(a) graspD-table(obj2) (b) putInto-object(obj2,obj1) (c) graspD-table(obj1) (d) putAway(obj1)

Figure 7: Executing a high level plan to clear a table.

IST-FP6-IP-027657 / PACO-PLUS

Page 9 of 10

Public

(a) closed object (b) open object (c) normal view (d) “zoomed in”

Figure 8: (a-b) Poking into a potential opening as sensing action (sense-open). (c-d) Resensing as one
possible solution to inconsistencies detected by the plan monitor. Resensing is realised here as focusing our
attention on the relevant object.

7. Links to other Workpackages

Deliverable D4.1.4 is linked to and makes use of work made in a number of workpackages. It is linked to the
software and hardware integration issues dealt with in WP1. In WP8, a number of sub-modules are used that
have been developed in WP4, most notably the object specific grasping OAC as well as the pushing OAC.
The planner and the acquisition of symbolic representations of OACs adapted to planning are developed
elsewhere under WPs 4 and 5.

Attached Papers

[A] Renaud Detry, Emre Başeski, Norbert Krüger, Mila Popović, Younes Touati, Oliver Kroemer, Jan Pe-
ters, and Justus Piater. Learning object-specific grasp affordance densities. In International Conference
on Development and Learning, 2009.

[B] Renaud Detry, Dirk Kraft, Anders Glent Buch, Norbert Krüger, and Justus Piater. Refining grasp
affordance models by experience. In IEEE International Conference on Robotics and Automation
(ICRA), 2010. (accepted).

[C] Dirk Kraft, Renaud Detry, Nicolas Pugeault, Emre Başeski, Justus Piater, and Norbert Krüger. Learn-
ing objects and grasp affordances through autonomous exploration. In International Conference on
Computer Vision Systems (ICVS), 2009.

[D] Norbert Krüger, Justus Piater, Christopher Geib, Ronald Petrick, Mark Steedman, Florentin Wörgötter,
Aleš Ude, Tamim Asfour, Dirk Kraft, Damir Omrčen, Alejandro Agostini, and Rüdiger Dillmann.
Object-action complexes: Grounded abstractions of sensorimotor processes. Robotics and Autonomous
Systems. (submitted).

[E] D. Omrcen, C. Böge, T. Asfour, A. Ude, and R. Dillmann. Autonomous acquisition of pushing actions
to support object grasping with a humanoid robot. In IEEE/RAS International Conference on Humanoid
Robots (Humanoids), Paris, France, 2009.

[F] Ronald Petrick, Dirk Kraft, Norbert Krüger, and Mark Steedman. Combining cognitive vision,
knowledge-level planning with sensing, and execution monitoring for effective robot control. In Pro-
ceedings of the Fourth Workshop on Planning and Plan Execution for Real-World Systems at ICAPS
2009, pages 58–65, Thessaloniki, Greece, September 2009.

IST-FP6-IP-027657 / PACO-PLUS

Page 10 of 10

Public

References

[1] Alan Baddeley. Working Memory, Thought, and Action. Oxford University Press, 2007.

2009 IEEE 8TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 1

Learning Object-specific Grasp Affordance
Densities

R. Detry, E. Başeski, M. Popović, Y. Touati, N. Krüger, O. Kroemer, J. Peters and J. Piater

Abstract—This paper addresses the issue of learning and
representing object grasp affordances, i.e. object-gripper relative
configurations that lead to successful grasps. The purpose of
grasp affordances is to organize and store the whole knowledge
that an agent has about the grasping of an object, in order
to facilitate reasoning on grasping solutions and their achiev-
ability. The affordance representation consists in a continuous
probability density function defined on the 6D gripper pose
space – 3D position and orientation –, within an object-relative
reference frame. Grasp affordances are initially learned from
various sources, e.g. from imitation or from visual cues, leading
to grasp hypothesis densities. Grasp densities are attached to
a learned 3D visual object model, and pose estimation of the
visual model allows a robotic agent to execute samples from
a grasp hypothesis density under various object poses. Grasp
outcomes are used to learn grasp empirical densities, i.e. grasps
that have been confirmed through experience. We show the result
of learning grasp hypothesis densities from both imitation and
visual cues, and present grasp empirical densities learned from
physical experience by a robot.

I. INTRODUCTION

Grasping previously unknown objects is a fundamental skill
of autonomous agents. Human grasping skills improve with
growing experience with certain objects. In this paper, we
describe a mechanism that allows a robot to learn grasp
affordances [12] of objects described by learned visual models.
Our first aim is to organize and memorize, independently of
grasp information sources, the whole knowledge that an agent
has about the grasping of an object, in order to facilitate
reasoning on grasping solutions and their likelihood of success.
We represent the affordance of an object for a certain grasp
type through a continuous probability density function defined
on the 6D gripper pose space SE(3), within an object-relative
reference frame. The computational encoding is nonparamet-
ric: A density is represented by a large number of weighted
samples called particles. The probabilistic density in a region
of space is given by the local density of the particles in that
region. The underlying continuous density function is accessed
through kernel density estimation [27].

The second contribution of this paper is a framework that
allows an agent to learn initial affordances from various grasp
cues, and enrich its grasping knowledge through experience.

R. Detry and J. Piater are with the University of Liège, Belgium. Email:
Renaud.Detry@ULg.ac.be.

E. Başeski, M. Popović, Y. Touati and N. Krüger are with the University
of Southern Denmark.

O. Kroemer and J. Peters are with the MPI for Biological Cybernetics,
Tübingen, Germany.

Affordances are initially constructed from human demonstra-
tion, or from a model-based method [1]. The grasp data
produced by these grasp sources is used to build continuous
grasp hypothesis densities (Section VI). These densities are
attached to a 3D visual object model learned beforehand [9],
which allows a robotic agent to execute samples from a grasp
hypothesis density under arbitrary object poses, by using the
visual model to estimate the 3D pose of the object.

The success rate of grasp samples depends on the source
that is used to produce initial grasp data. However, no existing
method can claim to be perfect. For example, data collected
from imitation will suffer from the physical and mechanical
difference between a human hand and a robotic gripper.
In the case of grasps computed from a 3D model, results
will be impeded by errors in the model, such as missing
parts or imprecise geometry. In all cases, only a fraction of
the hypothesis density samples will succeed; it thus seems
necessary to also learn from experience. To this end, we
use samples from grasp hypothesis densities that lead to a
successful grasp to learn grasp empirical densities, i.e. grasps
that have been confirmed through experience.

While we do not explicitly model human development,
our learning-based approach loosely follows the biological
example. In contrast to traditional robotics approaches that
employ 3D scans or CAD models of the object and compute
grasp parameters based on analytical physical models [2],
[4], [22], we learn gripper poses that lead to stable grasps.
We start with hypothesis densities, which may originate from
a premature grasping mechanism providing only little bias
towards stable grasp configurations. While this yields a rather
low success rate, it is sufficient to bootstrap the acquisition of
object-specific knowledge for skilled grasping. This procedure
– feature-induced grasping refined by sensorimotor exploration
– loosely resembles human acquisition of grasping skills
during infancy, and constitutes a promising avenue towards
viable robotic grasping, as it does for humans. Moreover, many
of the employed methods (visual model and inference, vision-
induced grasping, continuous affordances) resemble their bio-
logical counterparts, as explained in Section IV.

A unified representation of grasp affordances can potentially
lead to many different applications. For instance, a grasp
planner could combine a grasp density with hardware physical
capabilities (robot reachability) and external constraints (ob-
stacles) in order to select the grasp that has the largest chance
of success within the subset of achievable grasps. Another
possibility is the use of continuous grasp success likelihoods
to infer robustness requirements on the execution particular

978-1-4244-4118-1/09/$25.00 c© 2009 IEEE

2009 IEEE 8TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 2

grasp: if a grasp is centered on a narrow peak, pose estimation
and servoing should be performed with more caution than
when the grasp is placed in a wide region of high success
likelihood.

II. RELATED WORK

Object grasps can emerge in many different ways. A popular
approach is to compute grasping solutions from the geometric
properties of an object, typically obtained from a 3D object
model. The most popular 3D model for grasping is probably
the 3D mesh [17], [22], obtained e.g. from CAD or su-
perquadrics fitting [3]. However, grasping has also successfully
been achieved using models consisting of 3D surface patches
[26], 3D edge segments [1], or 3D points [15].

When combined with an object pose estimation technique,
the previous methods allow a robot to execute a grasp on a
specific object. This involves object pose estimation, compu-
tation of a grasp on the aligned model, then servoing to the
object and performing the grasp [17].

Means of representing grasp affordances probabilistically
have been discussed in the work of de Granville et al. [7],
which is quite closely related in spirit to ours. In this work,
affordances correspond to object-relative hand approach orien-
tations, although an extension where object-relative positions
are also modeled is under way [6]. The aim of the authors
is to build compact sets of canonical grasp approaches from
human demonstration; they mean to compress a large number
of examples provided by a human teacher into a small number
of clusters. An affordance is expressed through a density
represented as a mixture of position-orientation kernels; ma-
chine learning techniques are used to compute mixture and
kernel parameters that best fit the data. This is quite different
from our approach, where a density is represented with a
much larger number of simpler kernels. Conceptually, using
a larger number of kernels allows us to use significantly
simpler learning methods (down to mere resampling of input
data, see Section VI-A). Also, the representation of a grasp
cluster through a single position-orientation kernel requires the
assumption that hand position and orientation are independent
within the cluster, which is generally not true. Representing
a cluster with many particles can intrinsically capture more
of the position-orientation correlation (see Section VII, and
in particular Fig. 7). The affordance densities presented by
de Granville et al. correspond to the hypothesis densities
developed in this paper.

Learning grasp affordances from experience was demon-
strated by Stoytchev [28], [29]. In this work, a robot discovers
successful grasps through random exploratory actions on a
given object. When subsequently confronted with the same
object, the robot is able to generate a grasp that should present
a high likelihood of success.

III. SYSTEM OVERVIEW

The visual object model to which affordances are attached
is the part-based model of Detry et al. [9] (Section IV-C).
An object is modeled with a hierarchy of increasingly ex-
pressive object parts called features. The single top feature

(a) ECV descriptors (b) Accumulated reconstructions

Fig. 1. ECV reconstructions

of a hierarchy represents the whole object. Features at the
bottom of the hierarchy represent short 3D edge segments
for which evidence is collected from stereo imagery via the
Early-Cognitive-Vision (ECV) system of Krüger et al. [18],
[25] (Section IV-A). In the following, we refer to these edge
segments as ECV descriptors. The hierarchical model grounds
its visual evidence in ECV reconstructions: a model is learned
from segmented ECV descriptors, and the model can be used
to recover the pose of the object within an ECV representation
of a cluttered scene.

The mathematical representation of grasp densities and
their association to hierarchical object models is discussed in
Section V. In Section VI, we demonstrate the learning and
refining of grasp densities from two grasp sources. The first
source is imitation of human grasps. The second source uses a
model-based algorithm which extracts grasping cues from an
ECV reconstruction (Section IV-B).

IV. METHODS

This section briefly describes the methods that are brought
together for modeling the visual percepts of an object, and
for bootstrapping hypothesis densities from visual cues. These
sophisticated methods have proved essential for a robust
execution of grasps on arbitrary objects in arbitrary poses.

A. Early Cognitive Vision

ECV descriptors [18], [25] represent short edge segments
in 3D space, each ECV descriptor corresponding to a circular
image patch with a 7-pixel diameter. To create an ECV recon-
struction, pixel patches are extracted along image contours,
within images captured with a calibrated stereo camera. The
ECV descriptors are then computed with stereopsis across
image pairs; each descriptor is thus defined by a 3D posi-
tion and orientation. Descriptors may be tagged with color
information, extracted from their corresponding 2D patches
(Fig. 1a). The descriptors have been motivated by the concept
of hypercolumns in the human visual system [14].

ECV reconstructions can further be improved by manipu-
lating objects with a robot arm, and accumulating visual in-
formation across several views through structure-from-motion
techniques [13]. Assuming that the motion adequately spans
the object pose space, a complete 3D reconstruction of the
object can be generated, eliminating self-occlusion issues [16]
(see Fig. 1b).

B. Grasp Reflex From Co-planar ECV Descriptors

Pairs of ECV descriptors that are on the same plane and
which have color information such that two similar colors are

2009 IEEE 8TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 3

Fig. 2. Grasp reflex based on visual data.

pointing towards each other can be used to define grasps.
Grasp position is defined by the location of one of the
descriptors. Grasp orientation is calculated from the normal
of the plane linking the two descriptors, and the orientation of
the descriptor at which the grasp is located [16] (see Fig. 2).
The grasps generated by this method will be referred to as
reflexes. Since each pair of co-planar descriptors generates
multiple reflexes, a large number of these are available. It has
been shown that such a relatively simple mechanism can lead
to success rates of around 30% [24] and hence can be used
to bootstrap more sopisticated grasp representations as been
described in this paper.

C. Feature Hierarchies For 3D Visual Object Representation

As explained in Section IV-A, an ECV reconstruction mod-
els a scene or an object with low-level descriptors. This section
outlines a higher-level 3D object model [9] that grounds its
visual evidence in ECV representations.

An object is modeled with a hierarchy of increasingly
expressive object parts called features. Features at the bottom
of the hierarchy (primitive features) represent ECV descriptors.
Higher-level features (meta-features) represent geometric con-
figurations of more elementary features. The single top feature
of a hierarchy represents the object.

Unlike many part-based models, a hierarchy consists of fea-
tures that may have several instances in a scene. To illustrate
this, let us consider a part-based model of a bike, in which
we assume a representation of wheels. Traditional part-based
models [11], [5] would work by creating two wheel parts – one
for each wheel. Our hierarchy however uses a single generic
wheel feature; it stores the information on the existence of
two wheels within the wheel feature. Likewise, a primitive
feature represents a generic ECV descriptor, e.g. any descriptor
that has a red-like color. While an object like the basket of
Fig. 1 produces hundreds of red ECV descriptors, a hierarchy
representing the basket will, in its simplest form, contain a
single red-like primitive feature; it will encode internally that
this feature has many instances within a basket object.

A hierarchy is implemented in a Markov tree. Features
correspond to hidden nodes of the network; when a model is
associated to a scene (during learning or detection), the pose
distribution of feature i in the scene is represented through
a random variable Xi. Random variables are thus defined
over the pose space, which exactly corresponds to the Special
Euclidean group SE(3) = R3 × SO(3). The random variable
Xi associated to feature i effectively links that feature to its

instances: Xi represents as one probability density function
the pose distribution of all the instances of feature i, therefore
avoiding specific model-to-scene correspondences.

The geometric relationship between two neighboring fea-
tures i and j is encoded in a compatibility potential
ψij(Xi, Xj). A compatibility potential represents the pose
distribution of all the instances of the child feature in a
reference frame defined by the parent feature; potentials are
thus also defined on SE(3).

The only observable features are primitive features, which
receive evidence from the ECV system. Each primitive fea-
ture i is linked to an observed variable Yi; the statistical
dependency between a hidden variable Xi and its observed
variable Yi is encoded in an observation potential φi(Xi),
which represents the pose distribution of ECV descriptors that
have a color similar to the color of primitive feature i.

Density functions (random variables, compatibility poten-
tials, observation potentials) are represented nonparametri-
cally: a density is represented by a set of particles [9].

D. Pose Estimation

The hierarchical model presented above can be used to
estimate the pose of a known object in a cluttered scene.
Estimating the pose of an object amounts to deriving a
posterior pose density for the top feature of its hierarchy, which
involves two operations [9]:

1) Extract ECV descriptors, and transform them into ob-
servation potentials.

2) Propagate evidence through the graph using an applica-
ble inference algorithm.

Each observation potential φi(Xi) is built from a subset of the
early-vision observations. The subset that serves to build the
potential φi(Xi) is the subset of ECV descriptors that have a
color that is close enough to the color associated to primitive
feature i.

Evidence is propagated through the hierarchy using a belief
propagation (BP) algorithm [23], [30]. BP works by ex-
changing messages between neighboring nodes. Each message
carries the belief that the sending node has about the pose
of the receiving node. In other words, a message allows the
sending feature to probabilistically vote for all the poses of
the receiving feature that are consistent with its own pose
– consistency being defined by the compatibility potential
through which the message flows. Through message passing,
BP propagates collected evidence from primitive features to
the top of the hierarchy; each feature probabilistically votes
for all possible object configurations consistent with its pose
density. A consensus emerges among the available evidence,
leading to one or more consistent scene interpretations. The
pose likelihood for the whole object is eventually read out of
the top feature; if the object is present twice in a scene, the top
feature density should present two major modes. The global
belief about the object pose may also be propagated from the
top node down the hierarchy, reinforcing globally consistent
evidence and permitting the inference of occluded features.

Within a biological system, cortical visual processing in-
volves both bottom-up propagation of perceptual stimuli and

2009 IEEE 8TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 4

Xo

X2

Y2Y1

X1 Xg

ψog
ψo2ψo1

grasp
Red ECVGreen ECV
descriptordescriptor

Pinch

Fig. 3. Multi-sensory modeling of a table-tennis paddle with a 2-level
hierarchy. The paddle is represented by feature o (top). Feature 1 represents
a generic green ECV descriptor. The rectangular configuration of green edges
around the handle of the paddle is encoded in ψo1. Y1 and Y2 are observed
variables, which link features 1 and 2 to the visual evidence produced by
ECV. Xg is a grasp feature, linked to the object feature through the pinch
grasp affordance ψog .

modulation by top-down signals. Lee and Mumford [20]
suggested that the visual processing stream might perform
Bayesian inference within an undirected Markov chain, a
crucial aspect of which is that ambiguities at low levels should
persist and propagate upwards until they can be resolved by
integrating larger-scale evidence or top down expectations.
As a biologically plausible implementation of inference with
arbitrary, possibly multimodal probability densities, Lee and
Mumford suggest belief propagation using particle represen-
tations. The representation and methods presented above con-
stitute a working computer implementation of central aspects
of Lee and Mumford’s model.

Algorithms that build hierarchies from accumulated ECV
reconstructions are discussed in prior work [8].

V. REPRESENTING GRASP DENSITIES

This section is focused on the probabilistic representation of
grasp affordances, and on the integration of grasp affordances
within the hierarchical object model. By grasp affordance, we
refer to the different ways to place a hand or a gripper near an
object so that closing the gripper will produce a stable grip.
The grasps we consider are parametrized by a 6D gripper pose
composed of a 3D position and a 3D orientation.

A. Grasp Features

Within our framework, a grasp affordance is represented
with a probability density function defined on SE(3) in an
object-relative reference frame. Probabilistically speaking, we
store an expression of the joint distribution p(Xo, Xg), where
Xo is the pose distribution of the object, and Xg is the grasp
affordance. This is done by adding a new “grasp” feature to
the hierarchical Markov network, and linking it to the top
feature (see Fig. 3). The statistical dependency of Xo and
Xg is held in a compatibility potential ψog(Xo, Xg), which
exactly corresponds to the grasp density: ψog(Xo, Xg) holds
the relative configuration of grasp affordance and object pose,
i.e. the grasp distribution into the reference frame of the top
feature.

When an object model has been visually aligned to an
object instance (i.e. when the marginal posterior of the top
feature has been computed from visually-grounded bottom-
up inference), the grasp affordance of the object instance
is computed through top-down BP inference, by sending a
message from Xo to Xg through ψog(Xo, Xg). Intuitively, this
corresponds to transforming the grasp density to align it to the
current object pose, yet explicitly taking the uncertainty on
object pose into account to produce a posterior grasp density
that acknowledges visual noise.

B. Continuous Grasp Densities

From a mathematical point of view, grasp potentials are
identical to visual potentials. They can thus be encoded
with the same nonparametric density representation. Density
evaluation is performed by assigning a kernel function to each
particle supporting the density, and summing the evaluation
of all kernels. Sampling from a distribution is performed
by sampling from the kernel of a particle ` selected from
p(` = i) ∝ wi, where wi is the weight of particle i.

Grasp densities (grasp potentials and grasp random vari-
ables) are defined on the Special Euclidean group SE(3) =
R3 × SO(3), where SO(3) is the Special Orthogonal group
(the group of 3D rotations). We use a kernel that factorizes
into two functions defined on R3 and SO(3). Denoting the
separation of an SE(3) point x into a translation λ and a
rotation θ by

x = (λ, θ), µ = (µt, µr), σ = (σt, σr),

we define our kernel with

K(x;µ, σ) = N(λ;µt, σt)Θ(θ;µr, σr) (1)

where µ is the kernel mean point, σ is the kernel bandwidth,
N(·) is a trivariate isotropic Gaussian kernel, and Θ(·) is an
orientation kernel defined on SO(3). Denoting by θ′ and µ′

r

the quaternion representations of θ and µr [19], we define the
orientation kernel with the Dimroth-Watson distribution [21]

Θ(θ;µr, σr) = W(θ′;µ′
r, σr) = Cw(σr)eσr(µ′>r θ′)2 (2)

where Cw(σr) is a normalizing factor. This kernel corresponds
to a Gaussian-like distribution on SO(3). The Dimroth-Watson
distribution inherently handles the double cover of SO(3) by
quaternions [7].

The bandwidth σ associated to a density should ideally be
selected jointly in R3 and SO(3). However, this is difficult to
do. Instead, we set the orientation bandwidth σr to a constant
allowing about 10◦ of deviation; the location bandwidth σt is
then selected using a k-nearest neighbor technique [27].

The expressiveness of a single SE(3) kernel (1) is
rather limited: location and orientation components are both
isotropic, and within a kernel, location and orientation are
modeled independently. Nonparametric methods account for
the simplicity of individual kernels by employing a large
number of them: a grasp density will typically be supported
by a thousand particles. Fig. 4a shows an intuitive rendering
of an SE(3) kernel from a grasp density. Fig. 4b and Fig. 4c
illustrate continuous densities.

2009 IEEE 8TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 5

(a) (b) (c)

Fig. 4. Grasp density representation. The top image of Fig. (a) illustrates a
particle from a nonparametric grasp density, and its associated kernel widths:
the translucent sphere shows one position standard deviation, the cone shows
the variance in orientation. The bottom image illustrates how the schematic
rendering used in the top image relates to a physical gripper. Fig. (b) shows
a 3D rendering of the kernels supporting a grasp density for a table-tennis
paddle (for clarity, only 30 kernels are rendered). Fig. (c) indicates with a
green mask of varying opacity the values of the location component of the
same grasp density along the plane of the paddle (orientations were ignored
to produce this last illustration).

VI. LEARNING GRASP DENSITIES

This section explains how hypothesis densities are learned
from source data (Section VI-A), and how empirical densities
are learned from experience (Section VI-B).

A. Hypothesis Densities From Examples

Initial grasp knowledge, acquired for instance from imita-
tion or reflex, is structured as a set of grasps parametrized by
a 6D pose. Given the nonparametric representation, building
a density from a set of grasps is straightforward – grasps
can directly be used as particles representing the density.
We typically limit the number of particles in a density to a
thousand; if the number of grasps in a set is larger than 1000,
the density is resampled: kernels are associated the particles,
and 1000 samples are drawn and used as a representation
replacement.

Since we wish to record object-relative information, den-
sities have to be transformed to the reference frame of the
object. Assuming that grasp poses are initially defined in the
same reference frame as the visual ECV descriptors, this can
be done by aligning the hierarchical model of the object by
visual inference, and transforming the particles of each grasp
density in the reference frame defined by the pose of the top
feature of the aligned model.

A grasp density is integrated into the hierarchical object
model through a new primitive feature i. The new feature
is linked to the top model feature o through a potential
ψio(Xi, Xo) that corresponds to the object-relative density.

B. Empirical Densities Through Familiarization

As the name suggests, hypothesis densities do not pretend
to reflect the true properties of an object. Their main defect
is that they may strongly suggest grasps that might not be
applicable at all, for instance because of gripper discrepancies
in imitation-based hypotheses. A second, more subtle issue
is that the grasp data used to learn hypothesis densities will
generally be afflicted with a source-dependent spatial bias. A

very good example can be made from the reflex computation
of Section IV-B. Reflexes are computed from ECV visual
descriptors. Therefore, parts of an object that have a denser
visual resolution will yield more reflexes, incidentally biasing
the corresponding region of the hypothesis density to a higher
value. The next paragraph explains how grasping experience
can be used to compute new densities (empirical densities)
that better reflect gripper-object properties.

Empirical densities are leaned from the execution of samples
from a hypothesis density, intuitively allowing the agent to
familiarize itself with the object by discarding wrong hypothe-
ses and refining good ones. Familiarization thus essentially
consists in autonomously learning an empirical density from
the outcomes of sample executions. A simple way to proceed
is to build an empirical density directly from successful grasp
samples. However, this approach would inevitably propagate
the spatial bias mentioned above to empirical densities. In-
stead, we use importance sampling [10] to properly weight
grasp outcomes, allowing us to draw samples from the physical
grasp affordance of an object. The weight associated to a grasp
sample x is computed as a(x) /q(x), where a(x) is 1 if the
execution of x has succeeded, 0 else, and q(x) corresponds
to the value of the continuous hypothesis density at x. A set
of these weighted samples directly forms a grasp empirical
density that faithfully and uniformly reflects intrinsic gripper-
object properties. Each empirical density is associated to the
object model in the same way as hypothesis densities, through
a new feature in the hierarchical network.

VII. RESULTS

This section illustrates hypothesis densities learned from
imitation and reflexes, and empirical densities are learned by
grasping objects with a 3-finger Barrett hand. Densities are
built for two objects: the table-tennis paddle of Fig. 3, and a
toy plastic jug (Fig. 6). The experimental scenario is described
below.

For each object, the experiment starts with a visual hierar-
chical model, and a set of grasps. For the paddle, grasps are
generated with the method described in Section IV-B. Initial
data for the jug was collected through human demonstration,
using a motion capture system. From these data, a hypothesis
density is built for each object. The particles supporting the
hypothesis densities are rendered in Fig. 5.

In order to refine affordance knowledge, feedback on the
execution of hypothesis density samples is needed. Grasps are
executed with a Barrett hand mounted on an industrial arm.
As illustrated in Fig. 6, the hand preshape is a parallel-fingers,
opposing-thumb configuration. The reference pose of the hand
is set for a pinch grasp, with the tool center point located in-
between the tips of the fingers – similar to the reference pose
illustrated in Fig. 4a. A grasp is considered successful if the
robot is able to firmly lift up the object, success being asserted
by raising the robotic hand while applying a constant, inward
force to the fingers, and checking whether at least one finger
is not fully closed.

As expected, the hypothesis densities led to a rather low
success rate. We have observed approximate success rates of

2009 IEEE 8TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 6

Fig. 5. Particles supporting grasp hypothesis densities.

Fig. 6. Barrett hand grasping the toy jug.

14% for the paddle and 20% for the jug. Eventually, sets of
100 and 25 successful grasps were collected for the paddle and
the jug respectively. This information was then used to build a
grasp empirical density, following the procedure described in
Section VI-B. Samples from the resulting empirical densities
are shown in Fig. 7. For the paddle, the main evolution from
hypothesis to empirical density is the removal of a large
number of grasps for which the gripper wrist collides with
the paddle body. Grasps presenting a steep approach relative to
the plane of the paddle were also discarded, thereby preventing
fingers from colliding with the object during hand servoing.
None of the pinch-grasps at the paddle handle succeeded,
hence their absence from the empirical density.

While grasping the top of the jug is easy for a human hand,
it proved to be very difficult for the Barrett hand with parallel
fingers and opposing thumb. Consequently, a large portion of
the topside grasps suggested by the hypothesis density are not
represented in the empirical density. The most reliable grasps
approach the handle of the jug from above; these grasps are
strongly supported in the empirical density.

The left image of Fig. 7 clearly illustrates the correlation
between grasp positions and orientations: moving along the
edge of the paddle, grasp approaches are most often roughly
perpendicular to the local edge tangent. The nonparametric
density representation successfully captures this correlation.

VIII. CONCLUSION AND FUTURE WORK

We presented a framework for representing and learning
object grasp affordances, and linking these to a visual ob-
ject model. The affordance representation is probabilistic and
nonparametric: an affordance is recorded in a continuous
probability density function supported by a set of particles.

Grasp densities are initially learned from visual cues or im-
itation, leading to grasp hypothesis densities. Using the visual
model for pose estimation, an agent is able to execute samples

Fig. 7. Samples drawn from grasp empirical densities.

from a hypothesis density under arbitrary object poses. Ob-
serving the outcomes of these grasps allows the agent to learn
from experience: an importance sampling algorithm is used
to infer faithful object grasp properties from successful grasp
samples. The resulting grasp empirical densities eventually
allow for more robust grasping. The quantitative evaluation of
this improvement will require large scale experiments.

Importance Sampling is a batch learning method, that re-
quires the execution of a large number of grasps before an
empirical density can be built. Learning empirical densities
on-line would be very convenient, which is a path we plan to
explore next.

We currently learn visual and grasp features independently,
and connect them through a single top-level model feature.
Yet, a part-based representation offers an elegant way to
locally encode visuomotor descriptions. One of our goals is to
learn visual parts that share the same grasp properties across
different objects. This way, a grasp feature will be directly and
exclusively connected to the visual evidence that predicts its
applicability, allowing for its generalization across objects.

ACKNOWLEDGMENTS

This work was supported by the Belgian National Fund for
Scientific Research (FNRS) and the EU Cognitive Systems
project PACO-PLUS (IST-FP6-IP-027657). We thank Volker
Krüger and Dennis Herzog for their support during the record-
ing of the human demonstration data.

REFERENCES

[1] Daniel Aarno, Johan Sommerfeld, Danica Kragic, Nicolas Pugeault,
Sinan Kalkan, Florentin Wörgötter, Dirk Kraft, and Norbert Krüger.
Early reactive grasping with second order 3D feature relations. In The
IEEE International Conference on Advanced Robotics, 2007.

[2] A. Bicchi and V. Kumar. Robotic grasping and contact: a review.
Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE Interna-
tional Conference on, 1, 2000.

[3] G. Biegelbauer and M. Vincze. Efficient 3D object detection by fitting
superquadrics to range image data for robot’s object manipulation. In
IEEE International Conference on Robotics and Automation, 2007.

[4] Ch Borst, M. Fischer, and G. Hirzinger. Grasping the dice by dicing
the grasp. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems. (IROS 2003)., volume 4, pages 3692–
3697, 2003.

[5] G. Bouchard and B. Triggs. Hierarchical part-based visual object
categorization. In Computer Vision and Pattern Recognition, volume 1,
pages 710–715, 2005.

2009 IEEE 8TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 7

[6] C. de Granville and A. H. Fagg. Learning grasp affordances through
human demonstration. submitted to the Journal of Autonomous Robots,
2009.

[7] Charles de Granville, Joshua Southerland, and Andrew H. Fagg. Learn-
ing grasp affordances through human demonstration. In Proceedings of
the International Conference on Development and Learning (ICDL’06),
2006.

[8] Renaud Detry and Justus H. Piater. Hierarchical integration of local 3D
features for probabilistic pose recovery. In Robot Manipulation: Sensing
and Adapting to the Real World (Workshop at Robotics, Science and
Systems), 2007.

[9] Renaud Detry, Nicolas Pugeault, and Justus H. Piater. Probabilistic pose
recovery using learned hierarchical object models. In International Cog-
nitive Vision Workshop (Workshop at the 6th International Conference
on Vision Systems), 2008.

[10] A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo
Methods in Practice. Springer, 2001.

[11] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient matching
of pictorial structures. In Conference on Computer Vision and Pattern
Recognition (CVPR 2000), pages 2066–, 2000.

[12] James J. Gibson. The Ecological Approach to Visual Perception.
Lawrence Erlbaum Associates, 1979.

[13] R.I. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, 2000.

[14] D.H. Hubel and T.N. Wiesel. Anatomical demonstration of columns in
the monkey striate cortex. Nature, 221:747–750, 1969.

[15] Kai Huebner, Steffen Ruthotto, and Danica Kragic. Minimum volume
bounding box decomposition for shape approximation in robot grasping.
Technical report, KTH, 2007.

[16] D. Kraft, N. Pugeault, E. Başeski, M. Popović, D. Kragic, S. Kalkan,
F. Wörgötter, and N. Krüger. Birth of the Object: Detection of Objectness
and Extraction of Object Shape through Object Action Complexes.
Special Issue on ”Cognitive Humanoid Robots” of the International
Journal of Humanoid Robotics, 2008. (accepted).

[17] Danica Kragic, Andrew T. Miller, and Peter K. Allen. Real-time
tracking meets online grasp planning. In Proceedings of the 2001 IEEE
International Conference on Robotics and Automation, pages 2460–
2465, 2001.

[18] N. Krüger, M. Lappe, and F. Wörgötter. Biologically Motivated Multi-
modal Processing of Visual Primitives. The Interdisciplinary Journal of
Artificial Intelligence and the Simulation of Behaviour, 1(5):417–428,
2004.

[19] James Kuffner. Effective sampling and distance metrics for 3D rigid
body path planning. In Proc. 2004 IEEE Int’l Conf. on Robotics and
Automation (ICRA 2004). IEEE, May 2004.

[20] T. S. Lee and D. Mumford. Hierarchical Bayesian inference in the visual
cortex. Journal of the Optical Society of America, pages 1434–1448, 7
2003.

[21] K. V. Mardia and P. E. Jupp. Directional Statistics. Wiley Series in
Probability and Statistics. Wiley, 1999.

[22] A. T. Miller, S. Knoop, H. Christensen, and P. K. Allen. Automatic
grasp planning using shape primitives. In Proceedings of the IEEE
International Conference on Robotics and Automation, 2003, volume 2,
pages 1824–1829, 2003.

[23] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference. Morgan Kaufmann, 1988.

[24] Mila Popovic, Dirk Kraft, Leon Bodenhagen, Emre Baseski, Nicolas
Pugeault, Danica Kragic, and Norbert Krüger. A strategy for grasping
unknown objects based on co-planarity and colour information. Submit-
ted to RAS.

[25] Nicolas Pugeault. Early Cognitive Vision: Feedback Mechanisms for the
Disambiguation of Early Visual Representation. Vdm Verlag Dr. Müller,
2008.

[26] Mario Richtsfeld and Markus Vincze. Robotic grasping based on laser
range and stereo data. In International Conference on Robotics and
Automation, 2009.

[27] B. W. Silverman. Density Estimation for Statistics and Data Analysis.
Chapman & Hall/CRC, 1986.

[28] Alexander Stoytchev. Toward learning the binding affordances of
objects: A behavior-grounded approach. In Proceedings of AAAI Sym-
posium on Developmental Robotics, pages 17–22, Stanford University,
Mar 21-23 2005.

[29] Alexander Stoytchev. Learning the affordances of tools using a behavior-
grounded approach. In E. Rome et al., editors, Affordance-Based Robot
Control, volume 4760 of Lecture Notes in Artificial Intelligence (LNAI),
pages 140–158. Springer, Berlin / Heidelberg, 2008.

[30] Erik B. Sudderth, Alexander T. Ihler, William T. Freeman, and Alan S.
Willsky. Nonparametric belief propagation. In Computer Vision and
Pattern Recognition, Los Alamitos, CA, USA, 2003. IEEE Computer
Society.

Refining Grasp Affordance Models by Experience

Renaud Detry, Dirk Kraft, Anders Glent Buch, Norbert Krüger, Justus Piater

Abstract— We present a method for learning object grasp
affordance models in 3D from experience, and demonstrate
its applicability through extensive testing and evaluation on a
realistic and largely autonomous platform. Grasp affordance
refers to relative object-gripper configurations that yield stable
grasps. These affordances are represented probabilistically with
grasp densities, i.e. continuous density functions defined on
the space of 3D positions and orientations. A grasp density
characterizes an object’s grasp affordance; densities are linked
to visual stimuli through registration with a visual model of the
object they characterize. We explore a batch, experience-based
learning paradigm where grasps sampled randomly from a
density are performed, and an importance-sampling algorithm
learns a refined density from the outcomes of these experiences.
The first of such learning cycles is bootstrapped with a grasp
density formed from visual cues. We show that the robot
successfully exploits its actions into downweighting poor grasp
solutions, which is reflected in the higher success rates achieved
in subsequent learning cycles. We quantify the success rate of
our method in a practical scenario where a robot needs to
repeatedly grasp an object lying in an arbitrary pose, where
each pose imposes a specific reaching constraint, and thus forces
the robot to make use of the entire grasp density to select the
most promising grasp within the set of achievable approaches.

I. INTRODUCTION

In cognitive robotics, the concept of affordances [6],
[14] characterizes the relations between an agent and its
environment through the effects of the agent’s actions on the
environment. Affordances have become a popular formaliza-
tion for cognitive control processes, while bringing valuable
insight on how cognitive control can be done. Within the field
of robotic grasping, methods formalized as grasp affordances
have recently emerged [2], [21], [3], [11]. Grasp affordances
generally allow for an assessment of the success (effect) of a
grasp solution (action) on a particular object (environment).

Grasping skills can be programmed into a robot in many
different ways, starting with completely hard-wired kine-
matics, and ranging over a wide variety of methods of in-
creasing autonomy and adaptivity. Amongst these, providing
a robot with the means of learning grasping skills from
experience appears particularly appealing – even beyond the
conveniently autonomous aspect of the process: First, in
performing manipulation tasks, a robot produces valuable
information characterizing its body and its environment, and
making use of that information seems only natural. Secondly,
learning from experience directly involves the body of the

R. Detry and J. Piater are with the University of Liège, Belgium. Email:
Renaud.Detry@ULg.ac.be.

D. Kraft, A. Glent Buch and N. Krüger are with the University of
Southern Denmark.

robot, therefore producing a model intimately adapted to its
morphology.

A generally accepted aspect of the theory of affordances is
that it relates the opportunities provided by the environment
to the abilities of the agent, instead of expressing a property
of the environment alone [17], [14]. Learning from experi-
ence thus appears as a natural way of discovering grasp affor-
dances. The main contribution of this paper is the application
of a method for learning grasp affordances probabilistically
from experience [3] and its thorough evaluation. Evaluation
is conducted on a realistic, largely autonomous platform,
through the collection of a large grasp dataset – more than
2000 grasps tested on a robot.

In this work, affordances express relative object-gripper
configurations that yield stable grasps. They are represented
probabilistically with grasp densities [3], i.e. continuous
density functions defined on the space of 3D positions and
orientations SE(3). A grasp density characterizes an ob-
ject’s grasp affordance; densities are linked to visual stimuli
through registration with a visual model of the object they
characterize.

Grasp densities are learned and refined through experience.
Intuitively, the robot “plays” with an object in a sequence of
grasp-and-drop actions. Grasps are selected randomly from
the object grasp density. After each grasp, the object is
dropped to the floor. When a satisfying quantity of data
has been accumulated, an importance-sampling algorithm [5]
produces a refined grasp density from the outcomes of the
set of executed grasps. Learning is thus organized in cycles
of batches of grasps.

In theory, the grasp density of an object that has never
been grasped could be initialized to a uniform distribution.
Unfortunately, the success rate of completely random grasps
is extremely low and cannot allow for reasonable learning
time. In the experiments presented in this paper, initial grasp
densities are bootstrapped from visual cues. The process that
produces grasp densities from a visual model of an object
is kept simple, limiting the amount of bias introduced in the
system. Throughout the paper, densities that are constructed
from visual cues will be called bootstrap densities. Con-
versely, densities which are the result of experience will be
referred to as empirical densities. Within each learning cycle,
the density used by the robot to produce grasps will be called
hypothesis density. In the first cycle, the hypothesis density
is a bootstrap density. In subsequent cycles, the hypothesis
density will typically correspond to the empirical density
learned during the previous cycle.

Experiments are run on the robotic platform of Fig. 1. A
simple control algorithm drives the grasp-and-drop protocol

Fig. 1: Experiment platform (industrial arm, force-torque
sensor, 2-finger gripper, stereo camera, foam floor).

on the robot. The pose of the object is recovered by visual
pose estimation on the imagery provided by the camera,
using a previously-learned visual model [4]. Path planning
automatically excludes most of the grasps that would pro-
duce a collision with the ground, and some of the grasps
that would collide with the object. Success is assessed by
measuring the distance between the fingers of the gripper
after the arm has been brought up. The resulting system is
largely autonomous and forms a realistic setup. We show that
the robot successfully exploits its actions to downweight poor
grasp solutions, which is reflected in the higher success rates
achieved in subsequent learning cycles. We finally quantify
the success rate of our method in a practical scenario where
a robot needs to repeatedly grasp an object lying in an
arbitrary pose, where each pose imposes specific reaching
constraints, and thus forces the robot to make use of the
entire grasp density to select the most promising grasp within
the achievable region.

II. RELATED WORK

As discussed above, learning grasp affordances from ex-
perience has become an interesting and popular paradigm. In
the work of A. Stoytchev [18], [19], a robot discovers suc-
cessful ways of grasping tools through random exploratory
actions. When subsequently confronted with the same object,
the robot is able to generate a grasp that should present a
high likelihood of success. Montesano et al. [11] learned
2D continuous and probabilistic grasp affordance models
for a set of objects of varying shape and appearance, and
developed means of qualifying the reliability of their grasp
predictions. Detry et al. [3] presented a method for learning
continuous and probabilistic grasp affordance models in 3D
along with preliminary experimental results.

We note that the main problem with learning from ex-
perience is that it is usually slow. The main alternative to
learning from experience is learning from a human teacher
[2], [15], which is typically much faster.

A large body of literature on learning how to grasp focuses
on methods that produce a number of discrete grasping
solutions [15], [1]. A few recent methods instead explicitly
aim at producing a continuous, probabilistic characterization
of the grasping properties of an object [2], [3], [11]. The
latter can naturally be used to produce grasping solutions;
additionally, they allow for ranking grasps, i.e. provide a
likelihood of success for an arbitrary grasp.

In learning a continuous characterization of object grasp-
ing properties probabilistically, one has a choice between
learning success probabilities or learning success-conditional
grasp densities. Denoting by O a random variable encoding
grasp outcomes (success or failure), and by G a random
variable encoding grasp poses, this translates to learning
p(O|G) or learning p(G|O). The former allows one to
directly compute a probability of success; it will generally
be learned through discriminative methods from positive and
negative examples (successful and failed grasps). The latter
allows for grasp sampling, while still providing direct means
of computing relative success probabilities – e.g. grasp a is
twice as likely to succeed as grasp b. Success-conditional
grasp densities are generative models computed from positive
examples only. We note that one can theoretically be com-
puted from the other using Bayes’ rule. However, depending
on the means of function representation, this process may
prove either too costly or too noisy to be feasible in practice.

The learning of success-conditional grasp densities has
been discussed in the work of de Granville et al. [2], where
grasp densities are defined on hand approach orientations.
Instead of considering success-conditional grasp probabil-
ities, Montesano et al. [11] model grasp affordances as
success probabilities. Formally, they learn a representation
of p(O|I), where I is a local image patch. A grasp action
consists in servoing the robot hand to a selected 2D position,
approaching the object from the top until contact is made,
and closing the hand. A robot thus learns a mapping from 2D
image patches to grasp success probabilities, where a grasp
is parametrized by its 2D hand position.

The most important application of grasping research is in
generating a grasping solution from visual percepts of an
object. Grasping research may thus be pertinently classified
on the relationship a method entertains with visual percep-
tions. In the field of robotics, visual perception encompasses
to a wide spectrum of representations: At the lower level,
a scene may be described in terms of a large number of
point elements, such as image pixels or depth maps. At the
other end of the spectrum, a scene may be represented by
instances of object models and their 2D or 3D poses. The gap
between these two extremes is filled, bottom-up, by visual
features of varying size and complexity, and, top-down, by
object models that are recursively formed of visual parts of
decreasing size and complexity. Intuitively, grasping methods
that link to lower-level visual percepts can easily generalize
across objects. These methods typically learn a continuous
mapping from local visual descriptors to the probability of
success of a grasp [11]. Grasp parameters are deduced from
the visual descriptor, e.g. 2D grasping coordinates from the
2D position of the descriptor [11], or 3D grasp position
from stereo matching of 2D grasping points [15]. On the
other hand, methods that link to higher-level visual entities
benefit from an increased geometric robustness. These will
generally allow the encoding of richer grasp parameters
such as 3D relative position and orientation. They typically
learn a mapping from objects to grasp parameters and grasp
probabilities [2], [3]; grasps are registered with the visual

Fig. 2: ECV (accumulated) reconstructions. Each cylinder
corresponds to an ECV descriptor. The axis of a cylinder is
aligned with the direction of the modeled edge. Each cylinder
bears the two colors found on both sides of the edge in 2D
images.

object model. They are aligned to an object pose through
visual pose estimation.

In this paper, we develop and evaluate a method for
learning by experience continuous 3-dimensional success-
conditional grasp densities, initially presented by Detry et al.
[3]. Densities encode object grasps; they are linked to a high-
level object model. The contribution of this paper include
original means of bootstrapping densities, a technique for
exploiting local density maxima, and a thorough evaluation
of the resulting system through a realistic robot setup and
scenario. By that, we can demonstrate the full potential of
the concept of grasp densities in a setting on which a mo-
tion planner interacts with grasp densities. In particular we
show that besides increasing the success rate for physically
executed grasps, the amount of grasps to be tested by the
motion planner reduces by a factor of 10.

III. VISION

This section briefly presents the vision methods used in
this work. We first introduce 3D object-edge reconstructions
which are used in Section V for bootstrapping densities.
These reconstructions also serve as a basis for a hierarchical
object model introduced next.

A. Early Cognitive Vision

ECV descriptors [9], [13] represent short edge segments in
3D space, each ECV descriptor corresponding to a circular
image patch with a 7-pixel diameter. They are computed by
combining 2D edge extraction in image pairs and stereopsis
across the pairs. Each descriptor is defined by a 3D position
and 3D edge orientation, therefore living in R3 × S2

+ where
S2

+ is a 2-hemisphere. Descriptors may be tagged with color
information, extracted from their corresponding 2D patches
(Fig. 2).

ECV reconstructions can further be improved by manip-
ulating objects with a robot arm, and accumulating visual
information across several views through structure-from-
motion techniques [7]. Assuming that the motion adequately
spans the object pose space, a complete 3D reconstruction of
the object can be generated, eliminating self-occlusion issues
[8] (see Fig. 2).

B. Pose Estimation

Visual models have the form of a hierarchy of increasingly
expressive object parts [4], where bottom-level parts corre-
spond to generic ECV descriptors. Visual inference of the
hierarchical model is performed using a belief propagation
algorithm (BP) [12], [20], [4]. BP derives a probabilistic esti-
mate of the object pose, which in turn allows the alignment
of the grasp model to the object. Means of autonomously
learning of the hierarchical model and the underlying accu-
mulated ECV reconstruction are presented in the work of
Detry et al. [4] and Kraft et al. [8].

IV. GRASP DENSITIES

This section explains how grasp densities probabilistically
model grasp affordances, and how importance sampling is
used to learn empirical densities.

A. Mathematical Representation

We are interested in modeling object-relative gripper con-
figurations. The grasps we consider are thus parametrized
by a 6D gripper pose composed of a 3D position and a 3D
orientation, and grasp densities are continuous probability
density functions defined on the 6D pose space SE(3). Their
computational representation is nonparametric: A density is
represented by a large number of weighted samples called
particles. The probabilistic density in a region of space is
given by the local density of the particles in that region. The
underlying continuous density function is accessed through
kernel density estimation [16], by assigning a kernel function
to each particle supporting the density. Density evaluation at
a given pose x is performed by summing the evaluation of
all kernels at x. Sampling from a distribution is performed
by sampling from the kernel of a particle drawn at random.

Grasp densities are defined on the Special Euclidean
group SE(3) = R3 × SO(3), where SO(3) is the Special
Orthogonal group (the group of 3D rotations). We use a
kernel that factorizes into two functions defined on R3 and
SO(3). Denoting the separation of an SE(3) point x into a
translation λ and a rotation θ by

x = (λ, θ), µ = (µt, µr), σ = (σt, σr),

we define our kernel with

K(x;µ, σ) = N(λ;µt, σt)W(θ;µr, σr) (1)

where µ is the kernel mean point, σ is the kernel bandwidth,
N(·) is a trivariate isotropic Gaussian kernel, and W(·) is
the Dimroth-Watson kernel [10], which corresponds to a
Gaussian-like distribution on SO(3). The position bandwidth
σt is fixed to 10mm; the orientation bandwidth σr allows
rotations of about 10◦. For a more detailed mathematical
description and motivation of SE(3) kernels and kernel
density estimation, we refer the reader to the work of
Sudderth et al. [20] and Detry et al. [4]. Fig. 3 illustrates
SE(3) kernels and continuous densities.

Grasp densities are defined in the same reference frame as
visual features. Once visual features have been aligned to an
object pose (Section III-B), the object grasp density can be

(a) (b) (c)

Fig. 3: Grasp density representation. The top image of
Fig. (a) illustrates a particle from a nonparametric grasp
density, and its associated kernel widths: the translucent
sphere shows one position standard deviation, the cone shows
the variance in orientation. The bottom image illustrates how
the schematic rendering used in the top image relates to a
physical gripper. Fig. (b) shows a 3D rendering of the kernels
supporting a grasp density for a toy pan (for clarity, only 10
kernels are rendered). Fig. (c) indicates with a green mask of
varying opacity the values of the location component of the
same grasp density along the plane of the pan (orientations
were ignored to produce this last illustration).

similarly aligned, and one can readily draw grasps from the
density and execute them onto the object. The association
of grasp densities with the visual model is covered in more
detail in Detry et al. [3].

B. Learning Algorithm

Learning is organized in cycles, within each of which
the robot exploits its current grasping knowledge through
importance sampling [5] to produce a refined empirical
density. Importance sampling is a technique that allows
one to draw samples from an unknown target distribution
by properly weighting samples from a preferably similar
proposal distribution. The target distribution t(X) cannot be
sampled from, but it can be evaluated. Therefore, samples are
drawn from the known proposal distribution p(X), and the
difference between the target and the proposal is accounted
for by associating to each sample x a weight given by
t(x) /p(x).

Let us model with g(x) the outcome of grasp x as

g(x) =

{
1 if grasp at x succeeds
0 if grasp at x fails

In the context of this paper, the target distribution corre-
sponds to the object grasp affordance a(X). We would need
to sample from a(X) in order to build a model of it, which
unfortunately cannot be done. However, by approximating
a(x) ' g(x), we can produce binary evaluations of an object
grasp affordance by executing grasps. Importance sampling
thus allows us to indirectly draw samples from a(X); the
importance sampling proposal corresponds to the hypothesis
density h(X), and the weight of each sample x is given
by g(x)/h(x). Fig. 4 illustrates the effect of importance
sampling in a simple 1-dimensional case.

h(x): hypothesis density

x

a(x): grasp affordance

1

1
2

h(x1) = 1

w1 = 1

h(x2) = 1
2

x2x1
w2 = 2

g(x2) = 1

g(x1) = 1

Fig. 4: Importance sampling weight computation. Although
grasps such as x2 are less likely to be executed than grasps
like x1, the weight associated to x2 is twice as large as that
associated to x1.

V. EXPERIMENTS

This section demonstrates the applicability of our method
to learning empirical densities, quantifies the efficacy of
the various learning cycles, and estimates the efficacy of
empirical densities in a typical grasping scenario.

Section V-A explains the process of executing a set of
grasp trials, and details the nature of recorded data. Section
V-B presents the application of this process for both learning
empirical densities and estimating their efficacy in practical
scenarios. Results are discussed in Section V-C.

A. Setup

Our robotic platform is composed of an industrial robotic
arm, a force-torque sensor, a two-finger gripper, and a stereo
camera. The force-torque sensor is mounted between the arm
and the gripper. The arm and the camera are calibrated to
a common world reference frame. The execution of a set of
grasp trials is driven by a finite state machine (FSM), which
instructs the robot to grasp and lift an object, then drop the
object to the floor and start again. The floor around the robot
is covered with foam, which allows objects to lightly bounce
during drop-off. This also allows the gripper to push slightly
into the floor and grasp thin objects lying on the foam surface
(e.g. the knife of Fig. 2). The FSM is initially provided with
an object model, which includes a visual model as described
in Section III-B, and a grasp density registered with the
visual model. The FSM then performs a set of grasp trials,
which involve the following operations:

i. Estimate the pose of the object and align the grasp
density;

ii. Produce a grasp from the aligned grasp density;
iii. Submit the grasp to the path planner;
iv. Servo the gripper to the grasp pose;
v. Close the gripper fingers;

vi. Lift the object;
vii. Drop the object.

Pose estimation (i) is performed by means detailed in
Section III-A and Section III-B. Depending on the purpose,

grasps (ii) are drawn either randomly, or from a local
maximum of the density.

The path planner has a built-in representation of the floor
and robot body. Its representation of the floor is defined
a few centimeters below the foam surface, to allow the
gripper to grasp thin objects as explained above. The planner
is provided with a gripper pose (ii) and the 3D scene
reconstruction extracted during pose estimation (i). Because
the 3D scene reconstruction doesn’t cover self-occluded parts
of the object, a 3D accumulated reconstruction of the object
is also provided (Section III-A). The path planner computes
a collision-free path to the target gripper configuration. It
can avoid self-collisions and most ground-collisions from
its built-in knowledge of the arm and workspace; it can
also avoid some object collisions from the 3D-edge scene
reconstruction and the aligned object reconstruction. When
no path can be found, the path planner is able to produce a
detailed error report.

During servoing (iv) and grasping (v), measures from the
force-torque sensor are compared to a model of the arm
dynamics, allowing for automatic collision detection. Closure
success is verified after grasping (v) by measuring the gap
between the fingers, and after lifting (vi) by checking that
the fingers cannot be brought closer to each other. The object
is finally dropped to the floor from a height of about 50cm
and bounces to an arbitrary pose.

Robot assessments are monitored by a human supervisor.
Pose estimation will sometime fail, e.g. because the object
fell out of the field of view of the camera, or because the
stereo signal from the object is too poor to produce an
ECV reconstruction. Pose estimates are thus visualized in
3D; if pose estimation fails, the trial is aborted and the
supervisor moves the object to another arbitrary pose. After
path planning, the supervisor has a chance to abort a grasp
that should clearly fail. During servo, grasp and lift, he
can notify undetected collisions. Despite this supervision,
the resulting system is largely autonomous: The role of the
supervisor is limited to notifying wrong robot assessments;
pose estimates and grasps are never tuned by hand.

If the robot properly executes the operations mentioned
above and lifts the object, the trial is a success. When an
operation produces an error, the trial is a failure, and the
FSM starts over at step ii, or at step i if the error involved an
object displacement. Errors can come from a pose estimation
failure, no found path, supervisor notification of bound-to-
fail grasp, collision (notified either from the force-torque
sensor or from the supervisor), or empty gripper (v and vi).
We define two mutually-exclusive error classes. The first
class, denoted by Ep, includes errors arising from a path-
planner–predicted collision with the ground or the object.
The second class, Er, correspond to object collisions, ground
collisions, or void grasps, either asserted by the supervisor,
or physically occurring on the robot. Errors Er also include
cases where the object drops off the gripper during lift-up.
The FSM keeps track of errors by counting the number of
occurrences er and ep of errors of class Er and Ep. Pose
estimation failures and cases where the path planner cannot

Fig. 5: Bootstrapping grasp densities from ECV descriptors.

Fig. 6: Particles supporting bootstrap densities.

find an inverse-kinematics solution at all (e.g. object out of
reach) are ignored because these are not intrinsically part of
the concept of grasp densities. Naturally, the number s of
successful grasps is also recorded.

The execution of a complete grasp trial typically takes
40 to 60 seconds. Through the process described above, the
robot will effectively learn grasp affordances offered by an
object lying on a flat surface in a natural pose.

B. Protocol

This section applies the process of the previous section to
learn and evaluate empirical densities. Experiments were run
on the three objects of Fig. 2, selected for their differences in
shape and structure, which offer a large variety of grasping
possibilities. Visual models were acquired by performing
a 3D reconstruction of the object edges (Section III-A),
and organizing the resulting ECV descriptors in a hierarchy
(Section III-B).

Grasp densities were bootstrapped from the ECV recon-
structions of the objects. As explained in Section III-A,
an ECV reconstruction represents object edges with short
3D segments. Object edges appeared as natural candidates
for grasping, and an interesting way to bias grasp learning.
We thus define bootstrap densities as functions yielding a
high value around object edges. Bootstrap densities are, just
like other densities, represented nonparametrically. They are
formed by generating sets of SE(3) particles from ECV
descriptors. Mathematically, ECV descriptors live in R3 ×
S2

+; an ECV descriptor thus cannot fully define an SE(3)
grasp. We thus create a set of SE(3) particles for each ECV
descriptor, effectively covering the ECV orientation degree
of freedom (See Fig. 5 and Fig. 6).

To each object of Fig. 2, we applied two learning cycles.
In the first cycle, the robot uses the object bootstrap density b
as hypothesis to learn an empirical density g1. In the second

Fig. 7: Samples from empirical densities learned during the
first cycle.

Batch s er ep rrp rr

Pan
cycle 1 200 370 1631 0.091 0.351
cycle 2 100 86 114 0.333 0.538
test 75 39 24 0.543 0.658

Knife
cycle 1 100 131 751 0.102 0.433
cycle 2 100 153 157 0.244 0.395
test 63 71 89 0.283 0.470

Basket
cycle 1 151 173 1121 0.104 0.466
cycle 2 100 62 77 0.418 0.617
test 64 26 22 0.571 0.711

TABLE I: Success/error counts and success rates. (See also
Fig. 8.)

cycle, the hypothesis density corresponds to g1, and the robot
learns a second empirical density g2. The purpose of the
second cycle is to provide a quantitative comparison of the
grasping knowledge expressed by bootstrap and empirical
densities through the error statistics of both processes; g2 is
not used thereafter.

We tested the performance of our method in a usage
scenario in which it has to successively allow a robot to
perform the grasp that has the highest likelihood of success
within the robot’s region of reachability. However, expressing
the region of SE(3) that the robot can reach to is not trivial,
and goes beyond the scope of this paper. Our usage scenario
thus implements each grasp trial by randomly drawing a set
of grasps from an empirical density, and sorting these grasps
in decreasing order of likelihood according to that empirical
density. The grasps are sequentially submitted to the path
planner and the first feasible grasp is selected. The empirical
density used in the usage scenario is g1, in order to provide
a direct comparison with the statistics collected during the
second learning cycle.

C. Results and Discussion

The empirical densities produced during the first learning
cycle are shown in Fig. 7. Comprehensive quantitative results
are displayed in Table I. Columns s, er, and ep correspond
to the statistics collected during the experiment. The last two
columns show success rates computed as

rrp =
s

s+ er + ep
, rr =

s

s+ er
.

Rows titled cycle 1 and cycle 2 correspond to the first and
second learning cycles. Rows titled test correspond to the

0.
50

1.
00

Knife BasketPan0.
00

(a) rrp

0.
50

1.
00

Pan Knife Basket0.
00

(b) rr

Fig. 8: Success rates. Red, green, and blue bars respectively
illustrate rates for the first cycle, second cycle, and test.
Numerical rates can be read from Table I.

usage scenario defined above. Fig. 8 shows success rates
graphically.

Fig. 7 shows that the empirical densities learned in the
first cycle are a much better model of grasp affordances
than the bootstrap densities of Fig. 6. The global success
rate rrp (Fig. 8a) for the two learning cycles provides a
quantitative comparison of the grasping knowledge expressed
by bootstrap and empirical densities. The empirical den-
sities produced during the first cycle allow the robot to
collect, during the second cycle, a similar amount of positive
examples with a much smaller number of trials. The red
bars in Fig. 8a show that grasps generated from modes of
an empirical indeed have a higher chance of success than
randomly sampled grasps.

Fig. 8b shows success rates in which planner-detected
errors Ep are ignored. Since planner-detected errors largely
amount to ground-collisions, Fig. 8b shows that a large
portion of the knowledge acquired by the robot models which
side of the object most often faces up, hence encouraging
the robot to produce grasps approaching to that side. This
situation is pushed to the limit with the knife: All grasps
suggested by its bootstrap density would effectively work for
a free-floating knife, i.e. all grasps that do not collide with
the ground have the same chance of success. When ignoring
Ep errors, the success rate for the first and second cycles of
the knife are almost identical.

Our results make a number of issues explicit. For all
objects we can reduce the number of grasps that need to
be considered by the motion planner by an average factor
of 10. This is an important result, since path planning is
generally slow, and ground plane information may not always
be available to the planner. The average success rate of grasps
performed by the robot grows from 42% to 52%. In test
scenarios, the success rate of robot grasps is in average 61%.
These numbers are quite encouraging, given that we tested
our system under realistic settings: Visual models, which are
learned autonomously [4], [8], do not exhaustively encode
relevant object features. During pose estimation, estimates
that are considered successful are nevertheless affected by
errors of the order of 5–10mm in position and a few degrees
in orientation. The path planner approximates obstacles with
box constellations that may often be imprecise and over-
restrictive. Inverse kinematics can perform only up to the

precision of robot-camera calibration. When grasping near
the floor, the force-torque sensor may issue a collision
detection for a grasp that has worked before, because of a
different approach dynamic. For the pan, and in particular
for the knife, we have a very difficult grasping situation,
given the short distance between the object and the ground.
As a consequence, small errors in pose estimates can lead to
collisions even with an optimal grasp. Therefore, the error
counts in Table I do not exclusively reflect issues related
to grasp densities. We showed that complete sets of grasp
affordances can be acquired by largely autonomous learning.
The concept of grasp densities served as a powerful tool to
represent these affordances which can be used to find an
optimal grasp in a concrete context.

VI. CONCLUSION AND FUTURE WORK

We have presented a method for learning 3-dimensional
probabilistic grasp affordance models in the form of grasp
densities, and demonstrated their applicability through exten-
sive testing on a largely autonomous platform.

Grasp densities are learned from experience with an
importance-sampling algorithm: samples from an object af-
fordance are indirectly drawn by properly weighting samples
from an approximating hypothesis density. Densities are
bootstrapped from a 3D object-edge reconstructions, yielding
bias towards edge grasps.

We assembled an experiment setup which efficiently im-
plements a realistic learning environment: The robot handles
objects appearing in arbitrary poses, and deals with the noise
inherent to autonomous processes. We have collected a large
amount of data quantifying the progress made from bootstrap
to empirical densities. We also evaluated empirical densities
in a realistic usage scenario, where the robot effectively
selects the grasp with the highest success likelihood amongst
the grasps that are within its reach. Result are particularly
convincing given the low level of control on the overall
experiment process.

In this paper, grasp densities characterize object grasps;
they are registered with a visual model of the object.
Yet, affordances generally characterize object-robot relations
through a minimal set of properties, which means that object
properties not essential to a relation should be left out.
This in turn allows e.g. for generalization of affordances
between objects that share the same grasp-relevant features.
Ultimately, instead of registering densities with a whole
object, we aim to relate them to visual object parts that
predict their applicability. The part-based model of Section
III-B offers an elegant way of locally encoding visuomotor
descriptions, allowing for generalization of grasps across
objects that share the same parts.

ACKNOWLEDGMENTS

This work was supported by the Belgian National Fund for
Scientific Research (FNRS) and the EU Cognitive Systems
project PACO-PLUS (IST-FP6-IP-027657).

REFERENCES

[1] A. Bicchi and V. Kumar. Robotic grasping and contact: a review.
Robotics and Automation, 2000. Proceedings. ICRA’00. IEEE Inter-
national Conference on, 1, 2000.

[2] Charles de Granville, Joshua Southerland, and Andrew H. Fagg. Learn-
ing grasp affordances through human demonstration. In International
Conference on Development and Learning, 2006.

[3] Renaud Detry, Emre Başeski, Norbert Krüger, Mila Popović, Younes
Touati, Oliver Kroemer, Jan Peters, and Justus Piater. Learning object-
specific grasp affordance densities. In International Conference on
Development and Learning, 2009.

[4] Renaud Detry, Nicolas Pugeault, and Justus Piater. A probabilistic
framework for 3D visual object representation. IEEE Trans. Pattern
Anal. Mach. Intell., 2009.

[5] A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo
Methods in Practice. Springer, 2001.

[6] James J. Gibson. The Ecological Approach to Visual Perception.
Lawrence Erlbaum Associates, 1979.

[7] R.I. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, 2000.

[8] D. Kraft, N. Pugeault, E. Başeski, M. Popović, D. Kragic, S. Kalkan,
F. Wörgötter, and N. Krüger. Birth of the object: Detection of object-
ness and extraction of object shape through object action complexes.
International Journal of Humanoid Robotics, 5:247–265, 2009.

[9] N. Krüger, M. Lappe, and F. Wörgötter. Biologically Motivated Multi-
modal Processing of Visual Primitives. The Interdisciplinary Journal
of Artificial Intelligence and the Simulation of Behaviour, 1(5):417–
428, 2004.

[10] K. V. Mardia and P. E. Jupp. Directional Statistics. Wiley Series in
Probability and Statistics. Wiley, 1999.

[11] L. Montesano and M. Lopes. Learning grasping affordances from
local visual descriptors. In International Conference on Development
and Learning, 2009.

[12] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference. Morgan Kaufmann, 1988.

[13] Nicolas Pugeault. Early Cognitive Vision: Feedback Mechanisms for
the Disambiguation of Early Visual Representation. Vdm Verlag Dr.
Müller, 2008.

[14] Erol Sahin, Maya Cakmak, Mehmet R. Dogar, Emre Ugur, and
Gokturk Ucoluk. To afford or not to afford: A new formalization
of affordances towards affordance-based robot control. Adaptive
Behavior, 2007.

[15] A. Saxena, J. Driemeyer, and A. Y. Ng. Robotic Grasping of Novel
Objects using Vision. The International Journal of Robotics Research,
27(2):157, 2008.

[16] B. W. Silverman. Density Estimation for Statistics and Data Analysis.
Chapman & Hall/CRC, 1986.

[17] T. Stoffregen. Affordances as properties of the animal environment
system. Ecological Psychology, 15(2):115–134, 2003.

[18] Alexander Stoytchev. Toward learning the binding affordances of
objects: A behavior-grounded approach. In Proceedings of AAAI Sym-
posium on Developmental Robotics, pages 17–22, Stanford University,
Mar 21-23 2005.

[19] Alexander Stoytchev. Learning the affordances of tools using a
behavior-grounded approach. In E. Rome et al., editors, Affordance-
Based Robot Control, volume 4760 of Lecture Notes in Artificial
Intelligence (LNAI), pages 140–158. Springer, Berlin / Heidelberg,
2008.

[20] Erik B. Sudderth. Graphical models for visual object recognition
and tracking. PhD thesis, Massachusetts Institute of Technology,
Cambridge, MA, USA, 2006.

[21] J.D. Sweeney and R. Grupen. A model of shared grasp affordances
from demonstration. In International Conference on Humanoid
Robots, 2007.

Learning Objects and Grasp Affordances through
Autonomous Exploration

Dirk Kraft1, Renaud Detry2, Nicolas Pugeault1, Emre Başeski1, Justus Piater2, and
Norbert Krüger1

1 University of Southern Denmark, Denmark.
{kraft,nicolas,emre,norbert}@mmmi.sdu.dk

2 University of Liège, Belgium.
{Renaud.Detry,Justus.Piater}@ULg.ac.be

Abstract. We describe a system for autonomous learning of visual object repre-
sentations and their grasp affordances on a robot-vision system. It segments ob-
jects by grasping and moving 3D scene features, and creates probabilistic visual
representations for object detection, recognition and pose estimation, which are
then augmented by continuous characterizations of grasp affordances generated
through biased, random exploration. Thus, based on a careful balance of generic
prior knowledge encoded in (1) the embodiment of the system, (2) a vision sys-
tem extracting structurally rich information from stereo image sequences as well
as (3) a number of built-in behavioral modules on the one hand, and autonomous
exploration on the other hand, the system is able to generate object and grasping
knowledge through interaction with its environment.

1 Introduction

We describe a robot vision system that is able to autonomously learn visual object rep-
resentations and their grasp affordances. Learning takes place without external super-
vision; rather, the combination of a number of behaviors implements a bootstrapping
process that results in the generation of object and grasping knowledge.

Learning of objects and affordances has to address a number of sub-aspects related
to the object aspect of the problem (O1–O3) and to the action aspect (A1, A2):

O1 What is an object, i.e., what is “objectness”?
O2 How to compute relevant attributes (shape and appearance) to be memorized?
O3 How can the object be recognized and how can its pose determined?
A1 What is the (preferably complete) set of actions it affords?
A2 What action is triggered in a concrete situation?

A satisfactory answer to O1 is given by Gibson [1] as temporal permanence, ma-
nipulability and constrained size in comparison to the agent. Note that manipulability
can only be tested by acting on the potential object, and hence requires an agent with at
least minimal abilities to act upon objects. For O2 there are requirements discussed in
the vision literature. In many systems, in particular in the context of robotics, the object
shape is given a priori by a CAD representation and is then used for object identifica-
tion and pose estimation (see, e.g., Lowe [2]). However, CAD representations are not

2 Kraft et al.

Industrial
robot

Twofinger
gripper

Foam
floor

Stereo
camera
system

6D
Force
torque
sensor

(a) (b)

(c)

Fig. 1. (a) Hardware setup. (b, c) Outcome of the learning process in form of a geometric object
model (b) and a grasp density (c).

available in a general context and hence for a cognitive system, it is important that it is
able to learn object representations from experience. Important issues to be considered
when coding objects are that the information memorized (1) is useful for the tasks to be
performed with the representations (e.g., for matching or grasping), (2) is efficiently ac-
cessible internally, and (3) requires little storage space. O3 has been addressed widely
in the computer vision literature. In particular in the context of grasping, besides the
actual recognition, the determination of the pose is of importance since it allows the
system to associate learned grasps in object coordinates to an observes object instance.

In cognitive robotics, the automatic association of grasping actions to objects (A1,
A2) is referred as learning affordances [3]. For maximum flexibility, it is desirable to
represent the set of grasp affordances to the most complete extent possible A1. There
are attempts to compute such a complete set by analytic means [4] which however in
general require a pre-existing 3D surface model. In addition, analytic modeling of the
interaction between a gripper and an object surface, besides being very time consuming,
is very complex since it involves for example friction parameters that are difficult to
estimate. Hence we decided to achieve such knowledge by letting the robot experiment
in the real world. The decision on the grasp to be performed in a given situation A2
involves additional considerations, in particular work-space constraints.

This paper describes a system that approaches the above problems in a way that
does not require any explicit prior object or affordance knowledge. Instead, the system
generates object and grasping knowledge by pure exploration (see Fig. 1). We present
a robot-vision system driven by a number of basic behaviors that generate object and
grasp-affordance knowledge within two learning cycles. In the first cycle, a multi-modal
visual representation covering geometric as well as appearance information (see Fig. 2)
is extracted by actively manipulating a potential object. In the second cycle, the robot
“plays” with the object by trying out various grasping options. Successful grasp param-
eters are associated to the object model, leading to an increasingly complete description
of the object’s grasp affordance. This is done by largely autonomous exploration with
only very little interaction between robot and humans. Only interaction that puts the
system into a state from which learning can continue is permitted (e.g., putting the ob-

Learning Objects and Grasp Affordances through Autonomous Exploration 3

ject back after playing has pushed it out of the workspace). No high level information
such as object identities or demonstrations of ways to grasp it is given to the system.

However, this is not to imply that the system does not make use of any prior knowl-
edge. Quite to the contrary, the system can only perform the complex learning tasks by
utilizing a large degree of innate knowledge about the world with which it interacts.
However, this knowledge is of rather generic structure. Specifically, the system

– has knowledge about its embodiment and the consequences of its movements in the
three-dimensional world (kinematics and the ability to plan motions),

– has a sophisticated early cognitive vision (ECV) system [5–7] that provides seman-
tically rich and structured 2D and 3D information about the world. This system
contains prior knowledge about image features and their relations.

– has a set of procedural prior knowledge about how to: a) grasp unknown objects
based on visual features, b) create visual object models based on object motion,
c) evaluate a grasping attempt, d) estimate object pose based on a learned visual
model and e) generalize from individual grasps to grasping densities.

This paper describes the various sub-modules and their interaction that lead to the
autonomous learning of objects and associated grasp affordances. We show that, based
on a careful balance of generic prior knowledge and exploratory learning, the system is
able to generate object and grasping knowledge while exploring the world it acts upon.
While the sub-modules have already been described [7–12], the novel part of this work
is the integration of these components into an autonomously learning system.

2 State of the Art

Concerning the aspects O1–O3, the work of Fitzpatrick and Metta [13] is closely related
to our object learning approach since the overall goal as well as the hardware setup are
similar: finding out about the relations of actions and objects by exploration using a
stereo system combined with a grasping device. We see the main distinguishing feature
of this work to our approach in the amount of prior structure we use. For example, we
assume a much more sophisticated vision system. Also, the use of an industrial robot
allows for a precise generation of scene changes exploited for the extraction of the 3D
shape of the object. Similar to this work, we initially assume “reflex-like” actions that
trigger exploration. However, since in our system the robot knows about its body and
about the 3D geometry of the world and since the arm can be controlled more precisely,
we can infer more information from having physical control over the object in terms of
an exact association of visual entities based on proprioceptive information. Therefore,
we can learn a complete 3D representation of the object (instead of 2D appearance
models) that can then be linked to pose estimation. Modayil and Kuipers [14] addressed
the problem of detection of objectness and the extraction of object shape in the context
of a mobile robot using laser. Here also motion information (in terms of the odometry
of the mobile robot) is used to formulate predictions. In this way, they can to extract a
2D cross section of the 3D environment, albeit only in terms of geometric information.

Object grasp affordances (A1, A2) can emerge in different ways. A popular ap-
proach is to compute grasping solutions from the geometric properties of an object,

4 Kraft et al.

typically obtained from a 3D object model. The most popular 3D model for grasp-
ing is probably the 3D mesh [4], obtained e.g. from CAD or superquadric fitting [15].
However, grasping has also successfully been achieved using models consisting of 3D
surface patches [16], 3D edge segments [8,12], or 3D points [17]. When combined with
pose estimation, such methods allow a robot to execute a grasp on a specific object. In
our system, we start with edge-based triggering of grasping actions [8,12] which is then
verified by empirical exploration. This requires a system that is able to perform a large
number of actions (of which many will likely fail) in a relatively unconstrained envi-
ronment, this requires a representation of grasp affordances that translate the grasping
attempts into a probabilistic statement about grasp success likelihoods.

Learning grasp affordances from experience was demonstrated by Stoytchev [18,
19]. In this work, a robot discovers successful grasps through random exploratory ac-
tions on a given object. When subsequently confronted with the same object, the robot
is able to generate a grasp that should present a high likelihood of success.

Means of representing continuous grasp affordances have been discussed by de
Granville et al. [20]. In their work, affordances correspond to object-relative hand ap-
proach orientations, although an extension is underway where object-relative positions
are also modeled [21].

3 The Robot-Vision System

Hardware setup: The hardware setup (see Fig. 1) used for this work consists of a six-
degree-of-freedom industrial robot arm (Stäubli RX60) with a force/torque (FT) sensor
(Schunk FTACL 50-80) and a two-finger-parallel gripper (Schunk PG 70) attached. The
FT sensor is mounted between robot arm and gripper and is used to compute to detect
collision. Together with the foam ground, this permits graceful reactions to collision
situations which might occur because of limited knowledge about the objects in the
scene. In addition, a calibrated stereo camera system is mounted in a fixed position in
the scene. The system also makes use of a path-planning module which allows it to
verify the feasibility of grasps with respect to workspace constraints and 3D structure
discovered by the vision system.

Early cognitive vision system: In this work, we make use of the visual representation
delivered by an early cognitive vision system [5–7]. Sparse 2D and 3D features, so-
called multi-modal primitives, are created along image contours. 2D features represent
a small image patch in terms of position, orientation, phase. These are matched across
two stereo views, and pairs of corresponding 2D features permit the reconstruction of
a 3D equivalent. 2D and 3D primitives are organized into perceptual groups in 2D
and 3D (called 2D and 3D contours in the following). The procedure to create visual
representations is illustrated in Fig. 2 on an example stereo image pair. Note that the
resultant representation not only contains appearance (e.g., color and phase) but also
geometrical information (i.e., 2D and 3D position and orientation).

The sparse and symbolic nature of the multi-modal primitives allows for the cod-
ing of relevant perceptual structures that express relevant spatial relations in 2D and
3D [22]. Similar relations are also defined for 2D and 3D contours to enable more

Learning Objects and Grasp Affordances through Autonomous Exploration 5

Right Image

Left Image

(a)

(b)

(c)

(d)

(e)Right Image

Left Image

(f)

Early Vision Early Cognitive Vision

Fig. 2. An overview of the visual representation. (a) Stereo image pair, (b) Filter responses, (c)
2D primitives, (d) 2D contours, (e) 3D primitives, (f) close-up of (c).

global reasoning processes. In our context, the coplanarity and co-colority relations
(i.e., sharing similar color structure) permit the association of grasps to pairs of con-
tours. Figure 3(c) illustrates the association of grasp affordances to an unknown object
by using appearance and geometrical properties of the visual entities. The formalization
of the visual change of a primitive under a rigid-body motion allows for the accumula-
tion of the primitives belonging to the object (see Sect. 4).

4 The First Learning Cycle: Birth of the Object

Within the first learning cycle, the “objectness” of visually-detected structure in the
scene O1 is first tested by trying to obtain physical control over such detected structure
and then manipulating it. In case the structure changes according to the movement of
the robot arm, a 3D object representation is extracted.

Initial grasping behavior: To gain physical control over unknown objects a heuristic
grasp computation mechanism based on [8, 12] is used. Pairs of 3D contours that share
a common plane and have similar colors suggest a possible grasp; see Fig. 3(a–c). The
grasp location is defined by the position of one of the contours. Grasp orientation is
calculated from the common plane defined by the two features and the orientation of
the contour at the grasp location. Every contour pair fulfilling this criteria generates
multiple possible grasps (see Fig. 3(b) for one such possible grasp definition).

Accumulation: Once the object has been successfully grasped, the system moves it to
present it to the camera from a variety of perspectives to accumulate a full 3D symbolic
model of the object [7]. This process is based on the combination of three components.
First, all primitives are tracked over time and filtered using an Unscented Kalman Filter
based on the combination of prediction, observation and update stages. The prediction
stage uses the system’s knowledge of the arm motion to calculate the poses of all accu-
mulated primitives at the next time step. The observation stage matches the predicted

6 Kraft et al.

(a)

(b) (c) (e)

(d)

Fig. 3. (a–c) Initial grasping behavior: (a) A Scene, (b) Definition of a possible grasp based on
two contours, (c) Representation of the scene with contours generating a grasp. (d) A step in the
accumulation process where features from the previous scene get matched to the new scene. (e)
Model extracted by the accumulation process.

primitives with their newly observed counterparts. The update stage corrects the accu-
mulated primitives according to the associated observations. This allows the encoding
and update of the feature vector. Second, the confidence in each tracked primitive is
updated at each time step according to how precisely the accumulated primitive was
matched with a new observation. The third process takes care of preserving primitives
once their confidences exceed a threshold, even if they later become occluded for a long
period of time. It also ensures that primitives are discarded if their confidence falls be-
low a threshold. New primitives that were not associated to any accumulated primitive
are added to the accumulated representation, allowing the progressive construction of a
full 3D model. Note that the sparse nature of primitives yields a condensed description.

The learning cycle: Figure 4 (top) shows how the two sub-modules described above
interact to generate object models for previously unknown objects. The initial grasping
behavior is used to gain physical control over an unknown object. In case no object has
been grasped in the process (this is determined using haptic feedback i.e. the distance
of the fingers after grasping) another grasping option is executed. After the object has
been grasped, the accumulation process is used to generate an object model which is
then stored in memory. This process can be repeated until all objects in the scene have
been discovered (a naive approach here can be to assume that we have learned all objects
if grasping fails for a certain amount of trials). Results of the first learning cycle can be
seen in Figs. 1(b), 3(e) and [11].

5 The Second Learning Cycle: Learning Grasp Affordances

In the second learning cycle, the object representation extracted in the first learning
cycle is used to determine the pose of the object in case it is present in the scene O3. A
mechanism such as that triggering the grasps in the first learning cycle generates a large
number of grasping options (see Fig. 4 bottom). A random sample of these are then

Learning Objects and Grasp Affordances through Autonomous Exploration 7

Possible

3D Reconstruction

L
e
a
rn

in
g
 G

ra
sp

in
g
 A

ff
o
rd

a
n
c
e
s

Impossible

EGA 3

SuccessfulUnsuccessful

...
O

b
je

c
t

M
e
m

o
ry

B
ir

th
 o

f
th

e
 O

b
je

c
t

Accumulate ECV Features

Insert into Object Memory

Execute A Generic GraspScene

Pose Estimation

Check Grasp Executability

Select a Grasping Hypothesis

Compute a Set of Grasping Hypotheses

Update Emprical Grasping

 Density

Fig. 4. The two learning cycles and the interaction between them. See text.

tested individually. Successful grasps are then turned into a probability density function
that represents a the grasp affordances associated to the object A1 in the form of the
success likelihood of grasp parameters. This grasp density can then be used to compute
the optimal grasp in a specific situation A2 [10]. The second learning cycle is invoked
after the first learning cycle has successfully establish the presence and the shape of an
object.

Pose estimation: In preparation for pose estimation, a structural object model is built
on top of the set of ECV primitives that has been accumulated in the first learning
cycle. An object is modeled with a hierarchy of increasingly expressive object parts
[9]. Parts at the bottom of the hierarchy represent ECV primitives. Higher-level parts
represent geometric configurations of more elementary parts. The single top part of
a hierarchy represents the object. A hierarchy is implemented as a Markov tree, where
parts correspond to hidden nodes, and relative spatial relationships between parts define
compatibility potentials.

An object model can be autonomously built from a segmented ECV reconstruc-
tion [9] as produced by the first learning cycle (Sect. 4). Visual inference of the hier-
archical model is performed using a belief propagation algorithm (BP; see, e.g., [23]).
BP derives a posterior pose density for the top part of the hierarchy, thereby producing
a probabilistic estimate of the object pose.

8 Kraft et al.

(a) (e)(d)(c)

(b)

Fig. 5. Grasp density representation. (a) illustrates a particle from a nonparametric grasp density,
and its associated kernel widths: the translucent sphere shows one position standard deviation,
the cone shows the variance in orientation. (b) illustrates how the schematic rendering used in the
top image relates to a physical gripper. (c) Samples from a grasp hypothesis density. (d) Samples
from an empirical density learned from the hypothesis density in (c). (e) A 3D rendering of the
kernels supporting the empirical grasp density in (d).

Grasp densities: When formalizing object grasp affordances, we mean to organize and
memorize, independently of grasp information sources, the whole knowledge that an
agent has about the grasping of an object. By grasp affordance, we refer to the different
ways of placing a hand or a gripper near an object so that closing the gripper will
produce a stable grip. The grasps we consider are parametrized by a 6D gripper pose
and a grasp (preshape) type. The gripper pose is composed of a 3D position and a 3D
orientation, defined within an object-relative reference frame.

We represent the grasp affordance of an object through a continuous probability
density function defined on the 6D object-relative gripper pose space SE(3) [10]. The
computational encoding is nonparametric: A density is simply represented by the sam-
ples we see from it. The samples supporting a density are called particles and the prob-
abilistic density in a region of space is given by the local density of the particles in that
region. The underlying continuous density is accessed by assigning a kernel function
to each particle – a technique generally known as kernel density estimation [24]. The
kernel functions capture Gaussian-like shapes on the 6D pose space SE(3) (see Fig. 5).

A grasp affordance is attached to the hierarchical model as a new grasp node linked
to the top node of the network. The potential between grasp node and top node is defined
by the grasp density. When an object model is visually aligned to an object instance,
the grasp affordance of the object instance is computed through the same BP process as
used for visual inference. Intuitively, this corresponds to transforming the grasp density
to align it to the current object pose, yet explicitly taking the uncertainty on object pose
into account to produce a posterior grasp density that acknowledges visual noise.

The learning cycle: Affordances can initially be constructed from a grasp generation
method that produces a minimum proportion of successful grasps (e.g., the initial grasp-
ing behavior in Sect. 4). In this work we used an approach where we initially use grasp
hypotheses at random orientations at the position of the ECV primitives of the object
model. We call affordance representations built with any of these weak priors grasp hy-
pothesis densities [10]. These are attached to the object hierarchical model, which will
allow a robotic agent to execute random samples from a grasp hypothesis density under
arbitrary object poses, by using the visual model to estimate the 3D pose of the object.

Learning Objects and Grasp Affordances through Autonomous Exploration 9

Although grasp hypothesis densities already allow grasping, it is clear that physi-
cal experience with an object will add valuable information. We thus use samples from
grasp hypothesis densities that lead to a successful grasp to learn grasp empirical den-
sities, i.e. grasps that have been confirmed through experience [10]. In this way, we
increase grasping performance for the blue pan from 46% to 81%. The process of com-
puting hypothesis densities, pose estimation and execution of random samples from the
grasp hypothesis density through which a empirical density is generated is shown in
Fig. 4 (bottom).

6 Discussion and Conclusions

The descriptions of the presented sub-modules [7–12] include an evaluation. We there-
fore only want to reiterate here a few important points that influence the performance
and restrict the system. Because of the limitations of the robot system, the objects are
limited by size (ca. 5–40 cm) and weight (up to 3 kg). Further restrictions are introduced
by the vision system. The objects need to be describable by line-segment features and
therefore can not be heavily textured. In addition the used stereopsis process can not
reconstruct features on epipolar lines. This can lead to problems for the initial grasping
behavior and the pose estimation process, but not the accumulation process.

Besides the blue pan object shown throughout this work we have successfully tested
the full system on a toy knife and on a toy basket. The individual sub-components have
been tested on more objects.

Autonomous systems benefit from an ability to acquire object and affordance knowl-
edge without external supervision. We have brought together 3D stereo vision, heuristic
grasping, structure from motion, and probabilistic representations combining visual fea-
tures and gripper pose to autonomously segment objects from cluttered scenes and learn
visual and affordance models through exploration. This enables an autonomous robot
— initially equipped only with some generic knowledge about the world and about
itself — to learn about objects and subsequently to detect, recognize and grasp them.

Acknowledgments

This work was supported by the Belgian National Fund for Scientific Research (FNRS)
and the EU Cognitive Systems project PACO-PLUS (IST-FP6-IP-027657).

References

1. Gibson, J.: The Ecological Approach to Visual Perception. Houghton Mifflin (1979)
2. Lowe, D.G.: Fitting parametrized 3D-models to images. IEEE Transactions on Pattern

Analysis and Machine Intelligence 13(5) (1991) 441–450
3. Sahin, E., Cakmak, M., Dogar, M., Ugur, E., Ucoluk, G.: To afford or not to afford: A

new formalization of affordances toward affordance-based robot control. Adaptive Behavior
15(4) (December 2007) 447–472

4. Bicchi, A., Kumar, V.: Robotic grasping and contact: A review. In: IEEE Int. Conf on
Robotics and Automation. (2000) 348–353

10 Kraft et al.

5. Krüger, N., Lappe, M., Wörgötter, F.: Biologically Motivated Multi-modal Processing of
Visual Primitives. The Interdisciplinary Journal of Artificial Intelligence and the Simulation
of Behaviour 1(5) (2004) 417–428

6. Pugeault, N.: Early Cognitive Vision: Feedback Mechanisms for the Disambiguation of Early
Visual Representation. PhD thesis, Informatics Institute, University of Göttingen (2008)

7. Pugeault, N., Wörgötter, F., Krüger, N.: Accumulated Visual Representation for Cognitive
Vision. In Proceedings of the British Machine Vision Conference (BMVC) (2008)

8. Aarno, D., Sommerfeld, J., Kragic, D., Pugeault, N., Kalkan, S., Wörgötter, F., Kraft, D.,
Krüger, N.: Early reactive grasping with second order 3d feature relations. In: Recent
Progress in Robotics: Viable Robotic Service to Human. Springer Berlin / Heidelberg (2008)

9. Detry, R., Pugeault, N., Piater, J.: A probabilistic framework for 3D visual object represen-
tation. IEEE Transactions on Pattern Analysis and Machine Intelligence (2009) (accepted).

10. Detry, R., Başeski, E., Krüger, N., Popović, M., Touati, Y., Kroemer, O., Peters, J., Piater,
J.: Learning object-specific grasp affordance densities. In: International Conference on
Development and Learning. (2009) (to appear).

11. Kraft, D., Pugeault, N., Başeski, E., Popović, M., Kragic, D., Kalkan, S., Wörgötter, F.,
Krüger, N.: Birth of the Object: Detection of Objectness and Extraction of Object Shape
through Object Action Complexes. Special Issue on ”Cognitive Humanoid Robots” of the
International Journal of Humanoid Robotics 5 (2009) 247–265

12. Popović, M.: An early grasping reflex in a cognitive robot vision system. Master’s thesis,
The Maersk Mc-Kinney Moller Institute, University of Southern Denmark (2008)

13. Fitzpatrick, P., Metta, G.: Grounding Vision Through Experimental Manipulation. Philo-
sophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sci-
ences 361 (2003) 2165 – 2185

14. Modayil, J., Kuipers, B.: Bootstrap learning for object discovery. IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) 1 (2004) 742–747

15. Biegelbauer, G., Vincze, M.: Efficient 3D object detection by fitting superquadrics to range
image data for robot’s object manipulation. In: IEEE International Conference on Robotics
and Automation. (2007)

16. Richtsfeld, M., Vincze, M.: Robotic grasping based on laser range and stereo data. In:
International Conference on Robotics and Automation. (2009)

17. Huebner, K., Ruthotto, S., Kragic, D.: Minimum volume bounding box decomposition for
shape approximation in robot grasping. Technical report, KTH (2007)

18. Stoytchev, A.: Toward learning the binding affordances of objects: A behavior-grounded
approach. In: Proceedings of AAAI Symposium on Developmental Robotics. (2005) 17–22

19. Stoytchev, A.: Learning the affordances of tools using a behavior-grounded approach. In:
Affordance-Based Robot Control. Volume 4760 of Lecture Notes in Artificial Intelligence
(LNAI). Springer (2008) 140–158

20. de Granville, C., Southerland, J., Fagg, A.H.: Learning grasp affordances through human
demonstration. In: Proceedings of the International Conference on Development and Learn-
ing (ICDL’06). (2006)

21. de Granville, C., Fagg, A.H.: Learning grasp affordances through human demonstration.
submitted to the Journal of Autonomous Robots (2009)

22. Baseski, E., Pugeault, N., Kalkan, S., Kraft, D., Wörgötter, F., Krüger., N.: A scene repre-
sentation based on multi-modal 2D and 3D features. ICCV Workshop on 3D Representation
for Recognition 3dRR-07 (2007)

23. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann (1988)

24. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman & Hall/CRC
(1986)

Object-Action Complexes:

Grounded Abstractions of Sensorimotor Processes

Norbert Krügera, Justus Piaterb, Christopher Geibc, Ronald Petrickc, Mark
Steedmanc, Florentin Wörgötterd, Aleš Udee, Tamim Asfourf, Dirk Krafta,

Damir Omrčene, Alejandro Agostinig, Rüdiger Dillmannf

aMærsk McKinney Møller Institute, University of Southern Denmark, Odense, Denmark
bMontefiore Institute, Université de Liège, Liège, Belgium

cSchool of Informatics, University of Edinburgh, Edinburgh, Scotland, UK
dBernstein Center for Computational Neuroscience (BCCN), Göttingen, Germany
eJožef Stefan Institute, Department of Automatics, Biocybernetics, and Robotics,

Ljubljana, Slovenia
fInstitute for Anthropomatics (IFA), Humanoids and Intelligence Systems Laboratories

(HIS), Karlsruhe Institute of Technology, Karlsruhe, Germany
gInstitut de Robotica i Informatica Industrial (CSIC-UPC), Barcelona, Spain

Abstract

Autonomous cognitive robots must be able to interact with the world and
reason about their interactions. On the one hand, physical interactions are
inherently continuous, noisy, and require feedback. On the other hand, the
knowledge needed for reasoning about high-level objectives and plans is more
conveniently expressed as symbolic predictions about state changes. Bridg-
ing this gap between control knowledge and abstract reasoning has been a
fundamental concern of autonomous robotics.

This paper proposes a formalism called an Object-Action Complex as
the basis for symbolic representations of sensorimotor experience. OACs are
designed to capture the interaction between objects and associated actions
in artificial cognitive systems. This paper defines a formalism for describing
object action relations and their use for autonomous cognitive robots, and
describes how OACs can be learned. We also demonstrate how OACs in-
teract across different levels of abstraction in the context of two tasks: the
grounding of objects and grasping affordances, and the execution of plans
using grounded representations.

Keywords: Object Action Complexes, Affordances, Cognitive Architecture,
Grounding, Planning.

Preprint submitted to Robotics and Autonomous Systems January 22, 2010

1. Introduction

Autonomous cognitive robots must be able to interact with the world and
reason about the results of those interactions, a problem that requires over-
coming a number of representational challenges. On the one hand, physical
interactions are inherently continuous, noisy, and require feedback (e.g., move
forward by 42.8 centimeters or until the forward pressure sensor is triggered).
On the other hand, the knowledge needed for reasoning about high-level ob-
jectives and plans is more conveniently expressed as symbolic predictions
about state changes (e.g., going into the kitchen enables retrieving the coffee
pot). Bridging this gap between control knowledge and abstract reasoning
has been a fundamental concern of autonomous robotics [1, 2, 3, 4]. However,
the task of providing autonomous robots with the ability to build symbolic
representations of continuous sensorimotor experience de novo has received
much less attention, even though this capability is crucial if robots are ever
to perform at levels comparable to humans.

This paper proposes a formalism called an Object-Action Complex (OAC,
pronounced “oak”) as the basis for symbolic representations of sensorimotor
experience. OACs are designed to capture the interaction between objects
and associated actions in artificial cognitive systems [5, 6]. In particular, this
paper:

• defines a formalism for describing object-action relations and their use
in autonomous cognitive robots,

• describes how OACs can be learned, and

• demonstrates how OACs interact across different levels of abstraction.

We will illustrate this concept using a number of example OACs. These OACs
will interact in a learning system that uses exploration to autonomously
acquire object-dependent grasp affordances, and create plans composed of
action sequences.

2. Motivation

Object-Action Complexes (OACs) are a universal representation enabling
efficient planning and the execution of purposeful action at all levels of a cog-
nitive architecture. OACs combine the representational and computational

2

efficiency of STRIPS rules [7] and the object- and situation-oriented concept
of affordance [8, 9] with the logical clarity of the event calculus [10, 11]. Af-
fordance is the relation between a situation, usually including an object of a
defined type, and the actions that it allows. While affordances have mostly
been analyzed in their purely perceptual aspect, the OAC concept defines
them more generally as state-transition functions suited to prediction. Such
functions can be used for efficiently learning the multiple representations
needed by an embodied agent for symbolic planning, execution, and sensori-
motor control.

2.1. Representational Congruency

To achieve its goals in the real world, an embodied agent must develop
predictive models that capture the dynamics of the world and describe how
its actions affect the world. Building such models, by interacting with the
world, requires overcoming certain representational challenges imposed by

• the continuous nature of the world itself,

• the limitations of the agent’s sensors, and

• the stochastic nature of real world environments.

OACs are proposed as a framework for representing new actions and ob-
jects at all levels of abstraction, from the discrete high-level planning and
reasoning processes all the way down to continuous low-level sensors and ef-
fectors. While multiple representations may be necessary, due to the diversity
of components required in a complex system, building different representa-
tions for the same domain is only helpful if solving the problem at a higher
level of abstraction also solves (or at least informs the solution of) the prob-
lem at a lower level of abstraction. We call this property representational
congruency. That is, high-level plans must be interpreted in terms of low-
level effector commands, and evidence of their success or failure must be
recoverable in real time from the agent’s sensors.

Figure 1 illustrates this idea with an OAC that predicts the behaviour
of a low-level control program CP functioning in the real world to move an
agent’s end effectors. Since the agent’s perception of the world is completely
mediated by its sensors and effectors, any change in the world can only be
observed by the agent through its (possibly faulty) sensors. Thus, executing

3

Model

 Sensed World

OAC

wso wsa

spso

CP Actual World
awsaawso

Figure 1: Graphical representation of an OAC and its relationship to a control program

CP causes the actual state of the world to move from an initial world state
awso (sensed as wso) to some resulting state awsa (sensed as wsa).

For an OAC to be effective for planning, its higher level states must map
to states that are equivalent to those the control program actually produces.
For instance, if wso maps to state so and wsa maps to state sp then all OACs
that model this particular CP must also map so to sp to maintain represen-
tational congruency. Thus, we envision real-time cognitive systems as using
OACs to solve a problem at one level of abstraction such that the resulting
solution can be understood in terms of the lower levels of abstraction, even
down to the level of the agent’s sensors and effectors.

In practice, we can simplify this diagram slightly. Because the available
sensor suite of a given agent is fixed, we can treat the actual world and
the sensed world as a single level, as shown in Figure 2. We will make this
assumption for the remainder of the paper.

2.2. Design Principles

Six design principles underlie and motivate our formalization of OACs.
As motivation for our later formal definitions, we briefly introduce these
principles here.

4

Model

Sensed World

OAC

wso wsa

so

CP

sp

Actual World

Figure 2: Graphical representation of an OAC and its relationship to the sensed world
and a control program

P1 Attributes: Any formalization of actions, observations, and interac-
tions with the world requires the specification of an attribute space
and associated values that our definitions will operate over. An agent’s
expectations and predictions about how the world will change will be
defined over subspaces of this attribute space.

While the attribute spaces for different levels of action representation
may differ, all levels of representation must be downwardly congruent.
That is, higher-level (more abstract) attribute spaces must be related
to lower-level (less abstract) attribute spaces by a (possibly partial)
functional relation that establishes corresponding states. This allows
low-level state information to be used by higher-level OACs and guar-
antees that higher-level OACs reflect actual changes from the lower
levels.

P2 Prediction: A cognitive agent performing an action to achieve some
effect must be able to predict how the world will change as a result of its
actions. That is, it must know which attributes of the world must hold
for an action to be possible (which will typically include the presence
of an object), which attributes will change, and how they will change
as a result of the action. Such representations will typically be partial,

5

i.e., defined over a subspace of the attribute space. Again, predictions
at all levels must be congruent, so that high-level action predictions
can be interpreted at lower levels, and low-level changes in the world
can be captured by high-level features.

P3 Execution: Many previous efforts to produce fully autonomous robotic
agents have been limited by simplifying sensor, action, and effector
models. We instead take the approach that complete robotic systems
must be built with the means to actually perform actions in the world
and evaluate their success. This requires agents to be embodied within
physical systems interacting with the physical world.

P4 Evaluation: In order to improve its performance in a nondeterministic
physical world, an agent must be able to evaluate the effectiveness of
its actions, by recognizing the difference between the states it predicted
would arise from its actions, and the states that actually resulted from
action execution.

P5 Learning: State and action representations are dynamic entities that
can be extended by learning in a number of ways: continuous parame-
ters can be optimized, attribute spaces can be refined or extended, new
control programs can be added, and prediction functions can be im-
proved. Embodied physical experiences with actions, predictions, and
outcomes deliver the input to such processes at all levels of the system.

P6 Reliability: It is not sufficient for an agent merely to have a model
of the changing world. It must also learn the reliability of this model.
Thus, OACs must maintain measurements that capture the accuracy
of their predictions over past executions.

The rest of this paper is organised as follows. Section 3 provides a for-
mal definition of the OAC concept, based on the above design principles.
Section 4 characterizes how OACs learn. Section 5 describes how OACs are
executed within a physical robot system. Section 6 gives examples of OACs
represented at different levels of a cognitive architecture. Section 7 extends
our prior examples to demonstrate the interaction between OACs within the
same system. Section 8 discusses the relationship between OACs and other
existing representations in the literature. Finally, we conclude in Section 9.

6

3. Definitions

Our OAC definition is split into two parts: a symbolic description con-
sisting of a prediction function [P2] that operates on a mental model (i.e.,
attribute space [P1]) of the world, and an execution specification [P3] that
defines how the OAC is executed by the embodied system. This separation is
intended to capture the difference between the knowledge needed for action
applicability and effect reasoning (represented in the symbolic description),
and the procedural knowledge required for execution (encapsulated in the
execution specification). Furthermore, OACs are not limited to continuous
or discrete representations of actions. Instead, our definitions are flexible
enough to accommodate both kinds of representations, as we will see in Sec-
tion 6. In the remainder of this section we will describe an OAC’s formal
description. The execution specification will be discussed in Section 5.

We begin with a set of definitions.

Definition 3.1. An attribute space S is the set of all possible configura-
tions of a world model. A point s ∈ S denotes a state within the space.

Definition 3.2. An Object-Action Complex (OAC) is a triple

(id, T,M) (1)

where:

• id is a unique identifier,

• T : S → S is a prediction function encoding the system’s beliefs as to
how the world (and the robot) will change if the OAC is executed [P2],
and

• M is a statistical measure representing the success of the OAC within
a window over the past [P6].

As notation, we will use range(T) and domain(T) to denote the range
and domain of T respectively. In general, much of S will be irrelevant for
many OACs. Thus, we anticipate that both the range and domain of T will
typically be subsets of S. Since observations are costly in real world systems,
we can often use range(T) and domain(T) to more efficiently allocate system
resources for verifying OAC execution, thereby reducing sensor load.

7

Different OACs within the same agent may be defined on very different
state spaces. For example, consider an OAC defined on an attribute space
that includes an end-effector’s joint space and the location of a ball. Such an
OAC might make predictions, given a particular torque, of the final position
of the end-effector and the trajectory of the ball. In contrast, the same agent
might also have a more abstract OAC that describes the game of basketball.
In this case, the OAC might predict that exerting the same torque will result
in the ball scoring two points.

Given the diversity of state spaces that an OAC can be defined on, M
must be flexible enough to capture the reliability of the OAC’s prediction
function. As a result, we allow each OAC to define M as an appropriate
statistical measure for its needs. Thus, different OACs in a single system
might define M in very different ways. For example:

1. In a simple domain where an OAC is used until it fails and then is
never used again, we might define M as a Boolean flag that indicates
whether the OAC has failed.

2. In a more complex domain where M tracks the accuracy of an OAC’s
prediction function over time, we might also want to know how reliable
the estimate of that accuracy is. If M 〈〉 indicates the expectated value
of the OAC’s performance, and N specifies the reliability of these esti-
mates in terms of the number of past experiences, then we could define
M as a pair that contains these two values.

3. In even more complex domains it might be convenient to store statis-
tical data beyond M 〈〉 and N , e.g., lower-level OACs might maintain
differences in specific attributes.

We will give further examples of OACs and their reliability measures in
Section 6.

In order to discuss how an OAC’s T and M are learned we provide the
following two definitions.

Definition 3.3. Given an attribute space S and an OAC with identifier id

defined on S, an experiment is a tuple

(so, id, sp, sa) (2)

where:

• so ∈ S,

8

• sp ∈ S such that OAC id predicts state sp will result from its execution
in so, i.e., sp = Tid(so), and

• sa ∈ S such that sa is observed as a result of actually executing OAC
id in state so.

Thus, an experiment is an empirical event grounded in sensory experience.
As such, experiments can be used to update OACs in cycles of execution and
learning (see Section 6) based on evaluations of their success [P4].

Definition 3.4. Let execute be a function that maps an OAC id to an ex-
periment, i.e.,

execute : id→ (so, id, sp, sa). (3)

The execute function should be interpreted as an operation that exe-
cutes the control program specified by the OAC in the current world state,
returning an experiment containing: the state so in which execution began,
the OAC id that was executed, the state sp the OAC predicted would result
from its execution in state so, and the state sa that actually resulted from
the OAC’s execution.

We note that there can be significant differences between sp and sa. In
fact, there is no reason why sa must even fall within range(Tid). (E.g.,
range(Tid) may be incorrect and not include attributes that are relevant
to the OAC instance that we want to learn.) More generally, there is no
requirement that the features of an attribute space be relevant to the OAC’s
prediction function. The prediction function need not be defined over the
whole attribute space or make use of all of the attributes in the space. This
means the attribute space can (and in our examples will) contain things that
are not part of the domain or range of the prediction function. However,
it is important to keep in mind that all the features changed by executing
the OAC are reflected in the states returned by an experiment, even if those
states are not within the domain and range of the prediction function.

In the next section we will discuss how an agent’s OACs are learned [P5]
from the information provided by its day to day experiences in the form of
experiments.

4. Learning

Recall from Figure 2 that OACs are symbolic models of control programs
that are executable by an agent in the real world. This characterization

9

Model

Sensed World

T, M

wso wsa

sa

so

CP

sp

wsp

1 1 1

3

2

4

Actual World

Figure 3: Graphical representation of the OAC learning problems

immediately gives rise to a number of learning questions that must be ad-
dressed for OACs to be effective. Figure 3 shows the OAC from Figure 2 and
indicates portions of the model that are related to specific learning tasks. In
particular, we consider four main types of learning:

1. Translation: Learning the mapping from states of the real
world to states of the model (labeled 1) Learning the mapping
from sensed world states to model states goes beyond simply learning
the mapping between existing attributes. It also involves identifying
those properties of the world that are key to effectively predicting state
transitions and, when necessary, building new attributes that define
the domain and range of an OAC’s prediction function. We define the
following procedure to perform this type of learning:

Definition 4.1. Let updateModel be a procedure that takes an exper-
iment on a particular OAC

updateModel : experiment→ void. (4)

updateModel should be interpreted as a procedure that updates an
OAC’s model of the world on the basis of an experiment: the experi-
ment’s outcome is inspected and a decision is made as to whether or

10

not the OAC’s model needs to change. If so, the procedure modifies the
model. Every OAC that addresses this learning problem should define
this procedure. For instance, such learning might be used to create
new attributes for high-level actions from more low-level sensorial (vi-
sual and haptic) information, e.g., the categories “open” and “closed”
used as preconditions for certain grasping or filling actions.

2. Assimilation: Learning the low-level control program (labeled
2) This learning task modifies an OAC’s control program to minimize
the distance between the world state wsp predicted by the OAC and the
actual world state wsa. We define the following procedure to perform
this type of learning:

Definition 4.2. Let updateCP be a procedure that takes an experiment
on a particular OAC and returns true or false,

updateCP : experiment→ void. (5)

updateCP should be interpreted as a procedure that updates an OAC’s
control program on the basis of an experiment, to bring its resulting
states in line with a given OAC. This function considers the experi-
ment’s outcome and modifies the OAC’s control program appropriately.
Every OAC that addresses this learning problem should define this pro-
cedure (see Sections 6.1 and 6.2). For example, suppose an agent knows
it wants to throw a ball into a basket. If the OAC modelling the act of
throwing a ball into a basket is known then the control program must
be modified in order to ensure this effect can be repeatedly caused in
the world.

3. Accommodation: Learning the prediction function (labeled 3)
This learning task modifies the prediction function to minimize the
distance between a predicted model state sp, and the actual resulting
model state sa. We define the following procedure to perform this type
of learning:

Definition 4.3. Let updateT be a procedure that takes an experiment
on a particular OAC

updateT : experiment→ void. (6)

updateT should be interpreted as a procedure that updates an OAC’s
prediction function on the basis of an experiment. It considers the

11

experiment’s outcome and modifies the OAC’s prediction function ap-
propriately. Every OAC that addresses this learning problem should
define this procedure (see, e.g., Section 6.3).

4. Reliability measurement: Learning the prediction function’s
long term statistics (labeled 4) This learning task updates the OAC’s
reliability measure M to reflect the long term success of the OAC. We
define the following procedure to perform this type of learning:

Definition 4.4. Let updateM be a procedure that takes an experiment
on a particular OAC

updateM : experiment→ void. (7)

updateM should be interpreted as a procedure that updates an OAC’s
long term statistics on the basis of an experiment. This procedure
considers the experiment’s outcome and modifies the OAC’s statistics
appropriately. updateM is normally defined for every OAC.

We note that all of these learning problems can be addressed by rec-
ognizing the differences between predicted states and those states actually
achieved, as captured by experiments. We will see further applications of
these learning tasks in Section 6.

5. Execution

In Section 3 we defined an OAC as comprising two components: a sym-
bolic description and an execution specification. In this section we define
an OAC’s execution specification by describing how OACs are anchored to
specific control programs.

5.1. One-to-One OAC Execution

In our discussion up to this point, we have only considered single OACs
modelling single control programs. This simplification makes execution rel-
atively straightforward: the execution specification is the mapping of the
OAC to the control program. Given such a mapping, the OAC’s execute

function can then invoke the specified control program and allow it to run
until it terminates. The control program can then report the result of the
experiment.

For instance, consider an autonomous system equipped with sensors and
reflexive control programs for discovering objects in the world. In such a

12

system, an object may first be recognized through the repeatable and pre-
dictable action of a control program on the object. This “Birth of an Object”
[12] can be extended to a “Birth of an OAC” [13, 14]: a grasping OAC is
acquired for a particular object by incrementally extending grasping affor-
dences associated to the object by playing with it (see Section 7.1). Thus,
the grasping OAC forms a one-to-one execution relationship with the con-
trol program that performs the actual grasping in the world. We will see
examples of this type of execution control in Section 6.1.

We can also consider higher-level OACs that stand in one-to-one corre-
spondence with lower-level OACs. Rather than modelling control programs,
these higher-level OACs model lower-level OACs defined on congruent at-
tribute spaces. In terms of execution, we define the execution specification
of a high-level OAC as simply calling the execute function of the correspond-
ing lower-level OAC. We can also imagine more general “towers” of OACs
where each OAC stands in one-to-one relation with an OAC (or a control
program in the base case) that is beneath it in the tower. In such cases, the
execution specification of each OAC is just the invocation of the next lower
OAC in the tower. Thus, calling execute for the highest OAC results in a
stack of calls to execute, one for each level of the tower, where each OAC
invokes the OAC at the next level down until the process grounds out in the
execution of a single motor program. The experiment that results from this
execution is then returned (and appropriately translated for each attribute
space) as the result of each call. Section 6.4 will discuss the use of high-level
OACs for planning that stand in one-to-one correspondence to lower-level
OACs (see Section 6.2) defined on a different attribute space.

5.2. One-to-Many Execution

The one-to-one mappings we previously discussed are not the only kind
of relationship we can envision for OACs. We can also imagine more complex
scenarios, where an OAC is mapped to a sequence of OACs or motor pro-
grams, or has an execution specification that uses iteration and conditional
invocation of the kind found in dynamic logic [15]. For example, an OAC for
opening a door might be comprised of a sequence of lower-level OACs mod-
elling actions like: approach the door, grasp the door knob, twist the door
knob, pull on the door knob, etc. In order to execute such a higher-level
OAC, each of these actions must be successfully executed in the specified
sequence. Furthermore, a formal definition of this kind of one-to-many exe-
cution specification requires ordering constraints and success criteria for each

13

of the sub-OACs.
This document will not provide a detailed example of such complex one-

to-many OACs. We leave their learning and specification as an area for
future work. However, we note that the correct understanding of the exe-
cution specification for such OACs must, like the one-to-one cases, rest on
recursively calling the execute function and continually monitoring the con-
gruency between the attribute spaces of the underlying OACs. It may also
be necessary for an OAC to interrupt execution and replan its activities in
order to restore congruency lost through error and non-determinism (see,
e.g., [13]). It is the abstraction provided by execute and the congruency re-
lation between attribute spaces that makes OACs a powerful reasoning tool
in these situations.

6. Examples of OACs

In this section we give a number of concrete examples of OACs. These
OACs will be situated within a three-level architecture, as illustrated in Fig-
ure 4 [16]. In this architecture, the lower sensorimotor level provides mul-
tisensory percepts and motor and sensing actions. The mid level stores the
robot’s sensorimotor experiences, makes them available to various learning
processes, and serves as a link between raw sensorimotor and abstract sym-
bolic processing. The high level is responsible for symbolic reasoning, such as
planning. Each level defines its own set of OACs. We also assume there is an
object memory component MO that stores object knowledge, as generated
by the update functions and required by various execute functions.

The OACs discussed in the following sections include low-level actions
for object-agnostic grasping (Section 6.1), mid-level actions for grasping an
object based on previously-learned object models (Section 6.2), and high-level
actions supporting planning (Section 6.4). To demonstrate that object-action
associations beyond grasping can be formalized, we also give an example of
object pushing (Section 6.3).

In each case we provide an informal description of the OAC, followed by
a formal definition and an example of how the OAC can be embedded within
a procedural structure to produce more complex behavioural patterns. In
Section 7 we give examples of how grounding and planning can be realised
by a set of interacting OACs.

14

High Level
Reasoning, Planning

Recognition, Abstraction, Action Synthesis

Mid Level

Low Level
Online Sensorimotor Processing

abstract symbols

sensor data motor commands

processed data behaviors

abstract symbols

Figure 4: The three-level architecture supporting the example OACs in Section 6.

6.1. Grasping without Object Knowledge: oacGenGrasp

6.1.1. Description

In the first example we consider an OAC oacGenGrasp (“GenGrasp” stands
for “grasp generic”) that associates grasping hypotheses to co-planar con-
tour pairs (see Figure 5). This OAC can be applied to any visual structure
containing (1) 3D contours and (2) a co-planarity relation.

oacGenGrasp is a low-level OAC constituting a visual feature/grasp asso-
ciation that can trigger a grasping action on an unknown “something” (see
Figure 5b). Within the Early Cognitive Vision (ECV) system [17], whch pro-
vides ECV features in terms of local multi-modal symbolic visual descriptors,
this OAC can be applied to scenes as well as learned visual object representa-
tions (see [12, 18] for details). It associates to any pair of co-planar contours
(Ci, Cj) ∈ C × C (where C is the space of 3D contours) certain grasping
hypotheses GH(Ci, Cj) which can then be executed by the system.

6.1.2. Definition

The symbolic description of oacGenGrasp is formally defined by the triple

(GenGrasp, T,M)

where the relevant aspects of T are characterized by domain(T) and range(T).
The domain of the predication function, domain(T), is defined by:

{Ω 6= ∅, status(gripper) = empty, C × C} (8)

15

Figure 5: (a) The image of the scene captured by the left camera. (b) A possible grasping
action type defined by using the two coplanar contours C1 and C2 shown in red. (c) A
successful grasping hypothesis. The 3D contours from which the grasp was calculated are
shown. Note that the information displayed is the core of an experiment “experiment”.
(d) Features used in learning process (e.g., distance from the camera, distance between
fingers, etc.). (e) Change of performance as a result of the learning process.

which contains two preconditions and placeholders for two specifically chosen
3D contours. In particular, it requires that (1) there are co-planar contours
Ci, Cj in the scene or object representation, i.e., the set of co-planar contours

Ω = {(Ci, Cj) ∈ C × C | cop(Ci, Cj) > s}
is not empty, (2) the gripper is empty, and (3) a pair of contours Ci, Cj is
concretely chosen with cop(Ci, Cj) being a coplanarity relation defined on
two 3D contours Ci, Cj (see, e.g., [19] for details).

The range of the prediction function, range(T), is characterized by specific
values of a state attribute status(grasp):

range(T) =

{
status(grasp) ∈

{
noplan, collision,
void, unstable, stable

}}
. (9)

Before the execution of oacGenGrasp, a large number of grasping hypotheses
are computed, since in general there are many co-planar contours in a typical

16

scene. After selecting a specific grasping hypothesis, a motion planner tries
to find a collision-free path that allows the arm to reach the pregrasping
pose associated to the grasping hypothesis, which may result in a number
of possible outcomes. If the planner fails to find a suitable trajectory or
decides there is none, execution stops, and the result is noplan. If the hand
unexpectedly enters into a collision, execution stops at that point, and the
result is collision. If the closed gripper is determined to be empty, the
result is void. If the gripper closes further while lifting the object, the result
is unstable. Otherwise, the grasp is deemed successful, and the result is
stable. Thus, the prediction function T for the OAC is simply the attribute
status(grasp) = stable.

During execution, grasping hypotheses from co-planar contour pairs are
computed.1 Thus, the arguments of the OAC’s execute function are given
by

(|Ω| > 0, status(gripper) = empty, (C1, C2)),

where |Ω| is the number of elements in the set Ω, and (C1, C2) is the concrete
pair of extracted contours that was picked earlier.

The computed grasping hypothesis is then performed and the grasp sta-
tus status(grasp)t+1 is sensed after picking up the object, resulting in an
experiment (see Figure 5c):

experiment = {(1, 1, (C1, C2)), GenGrasp, status(grasp)t+1 = stable, status(grasp)t+1}.

Each experiment can either be used directly for on-line learning, as in the
learning cycle in Section 6.1.3, or stored in an episodic memory for off-line
learning at a later stage (see [20] for details).

Learning affects the execution of the control program through updateCP,
and the updating of long-term statistics via updateM (see Figure 5e). The
OAC’s prediction function always remains constant. Learning is applied in
the selecting the most promising grasping hypothes. The optimal choice of
grasps depends on certain parameters (e.g., contour distance, object position
in working space, see Figure 5d). Based on an RBF network (see [20] for de-
tails), a function that estimates the success likelihood for a certain grasp has
been learned in a cycle of experimentation and learning (see Section 6.1.3).

1In practice, multiple hypotheses are computed from each co-planar pair of contours
and one is chosen according to a ranking criterion (see [18, 20] for further details).

17

(In practice, we showed an increase in the success rate from 42% to 51% by
such learning; see [20] for details).2

6.1.3. Simple exploration behaviour

Finally, oacGenGrasp can be applied multiple times to different contour
pairs. Using this OAC, we can easily demonstrate explorative behaviour by
the following loop which realises a simple learning cycle:

while true do
choose pair of contours C1, C2

experiment=execute(GenGrasp);
updateCP(experiment);
updateM(experiment);
drop object

end

This loop also demonstrates how OACs can be embedded in procedural struc-
tures. We will see more examples of such structures in the following sections.

6.2. Grasping Based on Object Knowledge: oacgraspObjo

6.2.1. Description

In this example we consider an OAC oacgraspObjo (“graspObj” stands for
“grasp Object”) which represents a specific object or class of objects o to-
gether with a set of associated grasp affordances specified with respect to the
robot (see figure 7). Object models oi are stored in object memoryMO. (See
Section 7.1 for more information about learning such models.) An object
model includes a learned, structural object model that represents geomet-
ric relations between 3D visual patches (ECV features [21, 22]) as Markov
networks [23]. In addition, it contains a continuous representation of object-
relative gripper positions that lead to successful grasps (grasp densities [24]).
Object detection, pose estimation and the determination of useful gripper
positions for grasping the object are all done simultaneously using proba-
bilistic inference within the Markov network, given a scene reconstruction in
terms of ECV features.

2Note that since oacGenGrasp uses very little prior knowledge, a high performance cannot
be expected except in trivial scenarios.

18

Figure 6: Visualization of grasp densities as used in Figure 7. A (continuous) grasp den-
sity is represented nonparametrically by particles. Each particle represents a 6D gripper
pose (top left). The set of particles is interpreted as a continuous density via kernel den-
sity estimation, using a combination of a 3D isotropic Gaussian kernel for position and
a toroidal isotropic Dimroth-Watson kernel for orientation (bottom left, showing unit-
variance isosurfaces for both kernels). For visualization of grasp densities, gripper poses
are represented as “spatulas” (top left) to reduce clutter (right).

6.2.2. Definition

The symbolic description of oacgraspObjo is formally defined by the triple

(graspObj, T,M)

where the relevant aspects of T are characterized by domain(T) and range(T).
oacgraspObjo is potentially applicable whenever the gripper is empty and an
instance of object o is present in the scene. Thus, domain(T) is defined as a
set of assertions on the attribute space S:

domain(T) = {status(gripper) = empty, targetObj = o, o ∈MO}. (10)

Here, the state description includes an attribute targetObj that specifies
which object model o is to be applied by the execute function.

The execute function performs the following steps (Fig. 7):

1. Access or request a reconstruction of the current scene in terms of ECV
features.

2. Retrieve the object model o from MO, and use it to locate the object
and determine a gripper position.

19

Object
Memory

oac
gObj
o

execute

Model

Sensed World

Figure 7: oacgraspObjo and its interaction with the environment (cf. Figure 2). The pre-
condition (gripper empty) and predicted result (gripper holding an object) are mapped
onto corresponding sensor states. The OAC refers to a specific object model (stored in the
object memoryMO). The execute function instantiates this model within an ECV scene
reconstruction, chooses a grasp according to the object-aligned grasp density (Figure 6),
and triggers its execution.

3. Ask a path planner to generate a plan for maneuvering the gripper to
the intended position.

4. If such a plan is found, execute the computed trajectory, and close the
gripper to grasp the object.

This procedure yields a new state that is characterized by an attribute
status(grasp) that can be assigned specific values similar to those in the
state space of the OAC oacGenGrasp:

range(T) =

{
status(grasp) ∈

{
nopose, noplan, collision,
void, unstable, stable

}}
. (11)

The only addition with respect to oacGenGrasp is the value nopose, which
represents the case where no object instance can be reliably located.

20

Pan Knife Basket
0
.0

0
0
.5

0
1
.0

0

Figure 8: Evolving statistics of status(grasp) = stable for the OACs oacgraspObjPan ,
oacgraspObjKnife , and oacgraspObjBasket over cumulative rounds of grasping trials [25].

The execute function is defined in such a way as to return an experiment

experiment = (so, gObj, sp, sa),

where sp typically contains status(grasp) = stable, and in sa, status(grasp)
takes one of the values listed in Eqn. (11). In addition, the data structures
representing so, sp and sa include further state information such as the ob-
ject model o as well as object and gripper poses. Such information is used,
in particular, by updateCP to update the grasp density by integrating new
experiments, which lead to increasingly reliable performance (Figure 9).

Objects are always located within the currently-sensed part of the scene.
Thus, it is up to other parts of the system to make sure that the scene
reconstruction available to execute contains one and only one instance of
the object o, e.g., by directing sensors accordingly.

As in the previous example, the prediction function T always returns
status(grasp) = stable. M is defined in such a way as to maintain cumula-
tive outcome statistics of executions of this OAC, updated via updateM (see
Figure 8).

6.2.3. Usage Example

The following procedure outlines how a higher-level process might acquire
and refine grasping skills on a variety of objects. In this scenario, the scene
contains up to one instance of each object of interest. The robot “plays”
with the object by repeatingly grasping and dropping the object. This leads
to a learning cycle similar to the one in Section 6.1.3, in which the system

21

Object
Memory

oac
gObj
o

execute

Model

Sensed World

updateCP

Figure 9: The principal learning capability of oacgraspObjo (cf. Figure 3). A grasp density
used for execution can be updated by incorporating new experiments.

generates knowledge about the grasp affordances associated to the object:

while true do
experiment = execute(gObj);
updateCP(experiment);
updateM(experiment);
drop object

end

6.3. Acquiring Pushing Behaviours Based on Simple Motor Primitives: oacGenPush

6.3.1. Description

In this example we define an OAC oacGenPush which encodes how to push
objects in different directions on a planar surface without grasping. Pushing
as a nonprehensile action cannot be learned with sufficient accuracy to ensure
that a given object moves to the desired target in one step, i.e., by applying
one pushing movement. If a planner specifies that an object o should be
pushed to a certain target, oacGenPush needs to be applied iteratively in a
feedback loop until the target location is eventually reached. To achieve this,
the system needs to know how objects move when short pushing actions
are applied (such actions are also called poking). To apply such actions, the

22

object to be pushed needs to be localisable within the workspace of the robot.
Besides the object location, the resulting motion depends on properties such
as shape, mass distribution and friction. (We will focus here on shape.)

Some prior motor knowledge needs to be available before this OAC can
be learned. In particular, we assume that the robot knows how to move the
pusher, e.g., the robot hand or a tool held in its hand, along a straight line
in Cartesian space. The central issue for learning oacGenPush is to acquire a
prediction function that can estimate the object movement in response to
the pusher movement. The resulting control policy encoded by oacGenPush

is neither object nor target dependent. A detailed description of technical
aspects of an earlier realization of the pushing OAC can be found in [26].

6.3.2. Definition

The symbolic description of oacGenPush is formally defined by the triple

(GenPush, T,M).

The prediction function T associated with oacGenPush should say how an
object moves in response to the applied pushing movement. To this end, the
system must have at its disposal information about the object’s shape, its
current location on the planar surface, the duration of the pushing movement,
and its direction. We represent the shape by 2D binarized object images, such
as those shown in Figure 10. Such images are sufficient as shape models (as
opposed to full 3D shape models) because this OAC only encodes the pushing
behavior for objects that do not roll on planar surfaces. We can then predict
the next object location using the transformation

T (bin(o), loc(o), τ, a) = T ′(bin(o), loc(o), a)τ + loc(o). (12)

Here, loc(o) denotes the location of the object o before the application of
the pushing movement, bin(o) is the shape model in the form of a binary
image of the object to be pushed, a denotes the parameters describing the
direction of the movement of the pusher (as realized by the control policy), τ
is the duration of the push, and T ′ is the function predicting the outcome of
the push in terms of the object’s linear and angular velocity. The prediction
function T is thus defined as

T : {bin(o), loc(o), τ, a} −→ {loc(o)}, (13)

where domain(T) = {bin(o), loc(o), τ, a} and range(T) = {loc(o)}.

23

Figure 10: Samples of low resolution object images used as input to the neural network.

Figure 11: Pushing behaviour realized by oacGenPush after learning prediction function T .

The prediction function T returns the expected position and orientation
of the object after being pushed at a given point and angle on the boundary
with constant velocity for a certain amount of time. The angle of push is
defined with respect to the boundary tangent. These two parameters are
fully determined by the object’s binary image and the pusher’s Cartesian
motion, which must therefore be included in domain(T).

An impulse to push an object in a certain direction must be provided by
a higher level cognitive process. The appropriate robot control policy can be
determined based on the available prediction function T . Two possibilities
will be discussed in Section 6.3.3. The execution process execute works in
the following steps: 1) extract the binary image of the object bin(o) and its
location loc(o), 2) acquire the pushing movement parameters a, 3) predict
the outcome of the pushing action by calculating T (bin(o), loc(o), a, τ), 4)
execute the pushing movement by calling the pushing movement primitive
initialized by (a, τ), and 5) localise the object after the push. The result of
a call to the execute function is therefore an experiment of the form

experiment = ((loc(o), bin(o)); push; T (bin(o), loc(o), a, τ); loca(o)).

Here loca(o) is the location of the object after the push. When the task is
to push an object towards a given target location, the robot can solve it by

24

successively applying execute in a feedback loop until the goal is reached.
Note that lower-level motor primitives that realize straight-line motion of
the pusher in Cartesian space are constant and do not need to change while
learning oacGenPush.

The statistical evaluation M measures how close the predicted object
movement is to the real object movement. Here and in what follows we use
loc(o) = (u, θ), loca(o) = (ua, θa), locp(o) = (up, θp) = T (bin(o), loc(o), a, τ)
to respectively denote the current object position and orientation, the posi-
tion and orientation after the push, and the predicted object position and
orientation. We define the following metrics to measure the difference be-
tween the expected and actual object movement on the planar surface

d(loca(o), locp(o)) = w1 ‖ua − up‖+ w2 |θa − θp| , (14)

where w1, w2 > 0. The expectation of the oacGenPush performance after N
experiments is thus given by

M =
1

N

N∑
i=1

d(loca(o)i, locp(o)i). (15)

The learning in oacGenPush affects the prediction function through updateT,
and the long-term statistics via updateM. This learning is realized using a
feedforward neural network with backpropagation. This network represents
a forward model for object movements that have been recorded with each
pushing action. To ensure that oacGenPush can be applied to different objects,
the shape parameters specified in the form of a low resolution binary image
are used as input to the neural network. Function T is updated incremen-
tally based on the observed object movements. Statistical evaluation is also
done incrementally as experiments are performed. Note, however, that since
the prediction function T changes during learning, the statistical evaluation
updateM only converges to the true accuracy of the behaviour once T becomes
stable (see Figure 12).

6.3.3. Incremental learning by exploration

There are two modes of operation in which we consider oacGenPush:

A. Initial learning of the prediction function T , where the pushing direc-
tions encoded by a are randomly selected, and

25

0 200 400 600 800 10000.1

0.2

0.3

0.4

0.5

0.6

Num. of experiments

M
ea

n
er

ro
r a

cr
os

s
al

l m
ea

su
re

m
en

ts

0 200 400 600 800 1000

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Num. of experiments

In
cr

em
en

ta
l m

ea
n

er
ro

r

Figure 12: Mean error of robot pushing. The left figure shows the mean error calculated
using Eqn. (14) and all measurements. The right figure shows the incremental statistical
evaluation as realized by updateM. Four different objects were used in the experiment.

B. Pushing the object towards a given target, where the current pusher
movement a is determined based on the previously learned prediction
function and the given target location.

As described above, the prediction function T is essentially encoded by a
neural network with the binary image of an object and the direction of the
pusher movement a used as input values, and the predicted final position
and orientation of the pushed object as output. In mode B, we calculate
the optimal pusher movement a by first determining the desired Cartesian
movement of o from its current location towards the target location and then
inverting the neural network using nonlinear optimisation. The resulting
behaviour is presented in Figure 11.

The learning process has been implemented using the following explo-
ration behavior:

while true do
a = SelectRandomMotion; bin(o); loc(o);
experiment = execute(push);
if d(loc(o), loca(o)) > ε then

updateM(experiment);
updateT(experiment);

end

end

where constant ε > 0 is used to determine whether the object has moved or
not. In this context, updateT estimates the weights of the neural network.
Note that updateM is always applied to data before it has been used for

26

Properties
clear(X) A predicate indicating no object is stacked in X.
focusOfAttn(X) A predicate indicating that object X is the agent’s focus of

attention.
gripperEmpty A predicate describing whether the robot’s gripper is empty

or not.
inGripper(X) A predicate indicating that the robot is holding object X

in its gripper.
inStack(X,Y) A predicate indicating that object X is in a stack with object Y

at its base.
isIn(X,Y) A predicate indicating that object X is stacked in object Y.
onShelf(X) A predicate indicating that object X is on the shelf.
onTable(X) A predicate indicating that object X is on the table.
open(X) A predicate indicating that object X is open.
pushable(X) A predicate indicating that object X is pushable by the robot.
radius(X) = Y A function indicating that the radius of object X is Y.
reachable(X) A predicate indicating that object X is reachable for grasping

by the gripper.
shelfSpace = X A function indicating that there are X empty shelf spaces.

Table 1: Attribute space for planning-level OACs

learning.

6.4. Planning with OACs

6.4.1. Description

We now turn our attention to high-level OACs usable for planning, and
consider an OAC oacgraspObjPlan that models a grasping action [27]. At an
abstract level, oacgraspObjPlan can be thought of as an action that attempts to
pick up an object from a table. This OAC operates on a discrete attribute
space defined in terms of a set of logical predicate and function symbols that
denote certain properties of the world. Such representations are standard in
AI planning systems and we will structure our OAC so that we can it for
building and executing plans.

6.4.2. Definition

The symbolic descrition of oacgraspObjPlan is formally defined by the triple

(graspObjPlan, T,M).

Table 1 shows the attribute space S for our OAC, defined as a set of logical
symbols. Given this attribute space, we can define the prediction function T

27

Name Initial Conditions Prediction
oacgraspObjPlan focusOfAttn(X) inGripper(X)

reachable(X) not(gripperEmpty)
clear(X) not(onTable(X))
gripperEmpty
onTable(X)

oacpushObjPlan focusOfAttn(X) reachable(X)
not(reachable(X))
pushable(X)
clear(X)
gripperEmpty
onTable(X)

Table 2: Prediction function T for planning-level grasping and pushing OACs.

as the STRIPS-style rule [7, 28] given at the top of Table 2. Such rules require
a description of the initial conditions that must hold for the action to be
applied, and the predicted conditions that result from performing the action.
In this case, both the initial conditions and the predictions are assumed to
be conjunctions of specific attributes, i.e., all of the initial conditions must
be true in the world for the prediction function to be defined, and all of
the predictions are expected to be true in any state that results from the
execution of the OAC. In terms of oacgraspObjPlan, this means that if an object
is the focus of attention, is on the table, is clear, is reachable, and the agent’s
gripper is empty, then after executing this OAC we predict the object will be
in the gripper and not on the table, and the gripper will no longer be empty.
In any other case, the prediction function is undefined.

We must also provide a statistical measure M of the reliability of T . Tak-
ing the simplest possible approach, we define M as the long term probability
of T correctly predicting the resulting state, assuming the OAC’s execution
began from a state for which the OAC was defined. We note that in classical
AI planning systems, the reliability measure for all OACs would be fixed at 1.
Such planners assume a deterministic and totally observable world, thereby
removing all uncertainty from their prediction functions.

More recent work in AI planning has moved beyond these assumptions
(see, e.g., [29]). For instance, there are now a number of planning algorithms
that use probabilistic statements about an action’s long term success to build
plans with probabilistic bounds on the likelihood of achieving their goals. Our
definition of M makes our OACs suitable for use by such planners.

In related work, we have also focused on the problem of implementing

28

an updateT function for learning such representations. To do so we use a
training set of example actions in the world, and corresponding observations
of the world before and after each action. For each example, a reduced world
state consisting of a subset of the propositional features that make up the
entire state is computed and considered by the learning model. The reduced
state is provided as input to the learning model in the form of a vector
where each bit corresponds to the value of a single feature in the world. The
learning problem is then treated as a set of binary classification problems,
with one classifier for each feature, and the model learning the changes to
each feature in the reduced state. Our particular approach uses a kernelised
voted perceptron classifier [30, 31], which is computationally efficient and
can handle noise and partial observability. We refer the reader to [32] for
a detailed account of how this kind of OAC (both the symbolic prediction
function and the associated reliability measure M) can be learned.

The execution specification for oacgraspObjPlan is straightforward. Given
the previous examples in this section, we simply define the execution of
oacgraspObjPlan in terms of the execution of oacgraspObj. In other words, invok-
ing the execution function execute(oacgraspObjPlan) invokes execute(oacgraspObj).

Table 2 also shows an example of a second planning level OAC, oacpushObjPlan.
In this case, oacpushObjPlan models an action that pushes an object into a po-
sition so that it can be grasped using oacgraspObjPlan. oacpushObjPlan operates
over the same attribute space S as oacgraspObjPlan, and is defined in a similar
way. The OAC’s execution specification is also defined in a likewise manner:
execute(oacpushObjPlan) is defined as execute(oacGenPush). In the next section
we will use these two planning level OACs together in a single architecture.

7. Interacting OACs

In this section, we describe two examples of OACs interacting in a sin-
gle architecture. The first example, described in Section 7.1, addresses the
grounding of objects and object-related grasp affordances. The second ex-
ample, in Section 7.2, describes how such grounded representations can be
used to execute plans.

7.1. Grounding Grasping OACs

The grounding of objects and object-related grasping affordances is based
on two learning cycles involving the OACs oacGenGrasp and oacgraspObjo (see

29

Figure 13). This process has been previously described in [14], however, we
give a brief description of it here in a procedural OAC notation:

First learning cycle
while status(grasp) 6= stable do

experiment = execute(GenGrasp);
updateCP(experiment);
updateM(experiment);
open gripper

end
Accumulate object representation oi
if accumulation successful then

transfer oi into object memory MO

initialise oacgraspObjoi
in MOAC

Second learning cycle
while instance of object oi in scene do

state.targetObj = oi
experiment = execute(graspObjoi

);
updateCP(experiment);
updateM(experiment);
open gripper

end

end

In this process, object knowledge and grasp knowledge is built up and
stored as part of the internal representation (i.e., the object and grasp mem-
ory). Furthermore, certain characteristics of our OACs play an important
role in this process:

• Although the purpose of the first learning cycle is not to learn the OAC
oacGenGrasp (the aim is to attain physical control over an object), learn-
ing is nevertheless taking place by calls to the updateCP(experiment)
and updateM(experiment) functions, as a process parallel to those pro-
cesses steered by, e.g., intentions or automised behaviours.

• OACs can be chained to create complex behaviours that are not nec-
essarily driven by planning. For instance, innate processes such as
those used for tasks like bootstrapping a system can also modelled by
interacting OACs.

30

Figure 13: Grounding the OAC oacgraspObjo in two learning cycles. Within the first learn-
ing cycle, physical control over a potential object is obtained by the use of oacGenGrasp.
Once control over the object is achieved and the visual structure changes according to
the movement of the robot arm, a 3D object representation is extracted and stored in the
memory. In the second learning cycle oacgraspObjo is established and refined. First, the
object representation extracted in the first learning cycle is used to determine the pose of
the object in case it is present in the scene. Random samples of these are then tested indi-
vidually. Successful grasps are turned into a probability density function that represents
the grasp affordances associated to the object, in the form of the success likelihood of the
grasp parameters.

• The interaction of multiple OACs, as demonstrated in the two learn-
ing cycles, can result in the grounding of symbolic entities usable for
planning (see Section 7.2).

7.2. Performing Plans

We now demonstrate how higher-level OACs can be executed by calling
lower-level OACs, in the context of performing a plan. To do this, we consider
an agent that is given the high-level goal of achieving inGripper(o) in a
world initially described by the predicate set:

{focusOfAttn(o), gripperEmpty,¬reachable(o),
pushable(o), onTable(o), clear(o)}.

31

Given the fact that o is not reachable in the initial state, a high-level planner
might build a plan that first involves pushing o in order to make it reachable,
followed by an action that picks o up. This results in the following plan
consisting of two high-level OACs:3

oacpushObjPlan

oacgraspObjPlan.

Recall from Section 6.4 that the execution of our higher-level OACs rests
on the execution of lower-level OACs, with one OAC effectively calling an-
other OAC as a subroutine, i.e.,

execute(oacgraspObjPlan) −→ execute(oacgraspObj),
execute(oacpushObjPlan) −→ execute(oacGenPush).

To understand the execution of the above plan, we must consider the ordering
relation of the respective execution calls and returns of the component OACs
in the plan. If we assume that the world and the agent act as predicted and
planned, without plan or execution failures, then the following is an example
of what a hypothetical “call stack” of an OAC-based agent would look like
when executing this plan:4

experimenttopLev=execute(oacpushObjPlan)

experimentmidLev=execute(oacGenPush)

updateT(experimentmidLev)
updateM(experimentmidLev)

updateT(experimenttopLev)
updateM(experimenttopLev)
experimenttopLev=execute(oacgraspObjPlan)

experimentmidLev=execute(oacgraspObjo)

updateCP(experimentmidLev)
updateM(experimentmidLev)

updateT(experimenttopLev)
updateM(experimenttopLev)

This simple procedure hides many of the processes actually required for

3We refer the reader to [27, 29] for more details on how such a plan is built.
4We refer the reader to [28] for an initial discussion of plan execution in the face of

plan failure, which is beyond the scope of this paper.

32

plan execution. For instance, many additional steps are performed during
the execution of the above plan:

1. The execution of oacpushObjPlan is defined in terms of the execution of
oacGenPush. Thus, information must be translated from the high-level
representation into oacGenPush’s model. Based on focusOfAttn(o), a
process must be invoked to acquire bin(o) and extract loc(o) from the
environment. Second, a process must identify τ and a for the desired
push operation.

2. As we described in Section 6.3, executing oacGenPush invokes a low-level
control program that performs the actual pushing of o, making use of
the agent’s end effector.

3. Executing oacGenPush returns the experiment experimentmidLev:

({(loc(o), bin(o))}, push, {T (bin(o), loc(o), a, τ)}, {loc(o)′})
(see Section 6.3). loc(o)′ can then be translated to determine the truth
value of the high-level predicate reachable(o) which is used in the ex-
periment returned by oacpushObjPlan. In addition, updateT(experimentmidLev)
and updateM(experimentmidLev) use experimentmidLev to update the
prediction function and long-term statistics M of oacGenPush.

4. Executing oacpushObjPlan returns the experiment experimenttopLev:

({¬reachable(o), pushable(o), clear(o), gripperEmpty, onTable(o)},
oacpushObjPlan,
{reachable(o)},
{reachable(o)}?)

indicating that reachable(o) is now true in the actual world, and
the agent can update its model with this information. Additional
learning is performed by the procedures updateT(experimenttopLev) and
updateM(experimenttopLev).

5. A plan execution monitor of the kind described in [27] can now verify
at the high level that pushing the object has in fact resulted in a state
where it can now be grasped, i.e., reachable(o) is now true. This is
indicated by ’?’ in the expression ’{reachable(o)}?’.

6. The execution of oacgraspObjPlan is defined in terms of the execution of
oacgraspObjo . However, as with oacpushObjPlan, information must be trans-
lated from the high-level representation into oacGenPush’s model. Since

33

focusOfAttn(o) is true in the world, the translation process ensures
that targetObj = o.

7. As we described in Section 6.2, executing oacgraspObjo invokes a low-level
control program that performs the actual grasping of o, making use of
the agent’s end effector.

8. Executing oacgraspObjo returns the experiment experimentmidLev:

({status(gripper) = empty, targetObj = o},
gObj,
{status(grasp) = stable},
{status(grasp) = stable}?)

(see Section 6.2). status(grasp) = stable can then be translated to
determine the truth value of the high-level predicate inGripper(o),
which is used in the experiment returned by oacgraspObjPlan. In addi-
tion, learning based on experimentmidLev is performed for oacgraspObjo :
updateM revises the long-term statistics M , and updateCP updates the
control program associated with oacgraspObjo .

9. Executing oacgraspObjPlan returns the experiment experimenttopLev:

({reachable(o), clear(o), gripperEmpty, onTable(o)},
oacgraspObjPlan,
{inGripper(o),¬gripperEmpty,¬onTable(o)},
{inGripper(o),¬gripperEmpty,¬onTable(o)}?)

indicating that inGripper(o) is now true in the world and, as before,
the agent can update its high-level model to reflect this fact. Again,
learning based on experimenttopLev takes place at the high level.

10. The plan execution monitor can now verify that inGripper(o) is now
true, and end plan execution.

Thus, as illustrated in the above example, the successful execution of a
plan may typically require invoking OACs at multiple levels of abstraction,
translating the calls between different models, and monitoring the results to
confirm the success of the actions involved.

8. Relation to Other Approaches

In this section we briefly discuss the relationship between OACs and other
existing representations in the literature. In particular, OACs combine sev-
eral known and novel concepts into one conjoint formalism.

34

Attributes and Expected Change: The representation of world states
in terms of discrete attribute spaces, and the representation of actions as
expected changes to the values of these attributes, can be directly linked to
STRIPS [7] and other classical formalisms, including [33, 34, 35]. However,
OACs go beyond such classical representations in permitting both continuous
and discrete attribute spaces, making it possible to use OACs at different
levels of a processing hierarchy: from low-level sensory-motor processes for
robot perception and control, to high-level symbolic units for planning and
language. Thus, OACs can be viewed as containers enabling sub-symbolic as
well as symbolic representations, and models of both symbolic cognition and
emergent cognition can be formalized using OACs (see [36]). For example,
the Birth of the Object process [12, 37]—whereby a rich object description
and a representation of grasping affordances emerges through interaction
with the world—can be understood as the concatenation of several low-level
perception-action interactions that are formulated in terms of OACs (see
section 7.1), leading to processes in which symbolic entities emerge on the
planning level.

Grounding and Situatedness: OACs reflect a growing consensus concern-
ing the importance of grounding behavior in sensory-motor experience. Such
grounding has been stressed in the context of embodied cognition research
(see, e.g., [38, 39, 40, 41]). To build a truly cognitive system, it is neces-
sary to have the system’s representations grounded by interacting with the
physical world in a closed perception-action loop [40]. OACs are necessarily
grounded by their execution functions (Section 5), and are learned from the
sensory-motor experiences of the robot (Section 4).

Modularity: The principle of modularity is widespread in cognitive process
modelling (e.g., vision [42] and motor control [43, 44, 45]). As we demon-
strated in Section 6, this concept is also inherent in the structure of OACs:
OACs often operate at increasing levels of abstraction, each with a particular
representation of situations and contexts. For instance, consider our three
examples of OACs for grasping objects. On the lowest level, continuous
grasp affordance densities code individual end-effectors poses for grasping
completely unknown objects. At the mid level, these affordance densities are
used to hypothesize possible grasps when the agent has some object knowl-
edge. Finally, the highest level plans effective grasps to move objects.

Learning is also modularised through the OAC concept, and in our ex-
ample OACs: the lowest level learns the difference between successful and

35

unsuccessful grasps, the mid level learns alternative object-specific ways of
posing the hand, and the highest level learns the abstract preconditions and
effects of grasping. Maintaining representational congruency between the
attribute spaces of the different OACs allows systems to benefit from the
modularity of the information learned for each OAC.

Predictivity: Predictability of cause and effect (or the lack of it) is impor-
tant for cognitive agents and has been treated in a large body of work [46,
47, 48, 49, 50, 6]. OACs go beyond existing action representations by de-
scribing a common predictive formalism for cognitive processes, usable at
multiple levels of abstraction. The prediction function itself can be seen as
a dynamic entity, changing under the influence of ongoing learning processes
in the cognitive system.

Learning, Evaluation, and Memorization: Cognitive agents must learn
from past experiences in order to improve their own development, a task that
typically requires a form of memory as a means of tracking prior interactions.
While memory itself is not often a problem, such processes must ensure effi-
cient representation, with properties like associative completion and content
addressability, to enable machine learning from stored instances presented
over a period of time.

We have seen numerous examples of OAC learning throughout this paper.
Since our OAC definition allows various types of learning algorithms to be
applied, individual OACs can tailor such learning to their specific needs.
Most notably, OACs can learn their prediction functions, an idea which is
closely related to statistical structure learning as discussed in [51, 52, 53, 54,
55, 32, 48].

OACs can also learn how successful their executions are over particular
time windows. In particular in early development, when actions are likely to
be unsuccessful, it is important to ensure that such execution uncertainties
can be reasoned about. The storage of statistical data concerning execu-
tion reliability also has important applications to probabilistic planning [56],
where an OAC’s probability of success can be utilized to compute optimal
plans. Consistently successful plans can then be memorized for future refer-
ence.

9. Conclusion

OACs are a dynamic, learnable, refinable, and grounded representation
that binds objects, actions, and attributes in a causal model. OACs have

36

the ability to carry low-level (sensory-motor) as well as high-level (symbolic)
information and can therefore be used to join the perception-action space
of an agent with its planning-reasoning space. In addition, OACs can be
combined to produce more complex behaviours, and sequenced as part of a
plan generation process. As a consequence, the OAC concept can be used
to bridge the gap between low-level sensory-motor representations, required
for robot perception and control, and high-level representations supporting
abstract reasoning and planning.

10. Acknowledgments

This work was supported by the EU Cognitive Systems project PACO-
PLUS (IST-FP6-IP-027657).

[1] R. A. Brooks, A robust layered control system for a mobile robot, IEEE
Journal of Robotics and Automation 2 (1986) 14–23.

[2] R. A. Brooks, C. Breazeal, M. Marjanovic, B. Scassellati, M. M.
Williamson, The Cog project: Building a humanoid robot, Lecture
Notes in Computer Science 1562 (1999) 52–87.

[3] V. Braitenberg, Vehicles: Experiments in Synthetic Psychology, The
MIT Press, 1986.
URL http://www.amazon.com/exec/obidos/redirect?tag=

citeulike07-20&path=ASIN/0262521121

[4] M. Huber, A hybrid architecture for adaptive robot control.
URL http://scholarworks.umass.edu/dissertations/AAI9988799

[5] C. Geib, K. Mourão, R. Petrick, N. Pugeault, M. Steedman, N. Krüger,
F. Wörgötter, Object action complexes as an interface for planning and
robot control, in: Workshop ‘Toward Cognitive Humanoid Robots’ at
IEEE-RAS International Conference on Humanoid Robots, 2006.

[6] F. Wörgötter, A. Agostini, N. Krüger, N. Shyloa, B. Porr, Cognitive
agents — a procedural perspective relying on the predictability of object-
action-complexes (OACs), Robotics and Autonomous Systems 57 (4)
(2009) 420–432.

37

[7] R. E. Fikes, N. J. Nilsson, STRIPS: A new approach to the application
of theorem proving to problem solving, Artificial Intelligence 2 (3-4)
(1971) 189–208.

[8] J. J. Gibson, The Perception of the Visual World, Houghton Mifflin,
Boston, 1950.

[9] E. Sahin, M. Çakmak, M. R. Doǧar, E. Uǧur, G. Ücoluk, To afford or not
to afford: A new formalization of affordances toward affordance-based
robot control, Adaptive Behavior 15 (4) (2007) 447–472.

[10] R. Kowalski, M. Sergot, A logic-based calculus of events, New Genera-
tion Computing 4 (1986) 67–95.

[11] M. Steedman, Plans, affordances, and combinatory grammar, Linguis-
tics and Philosophy 25 (5-6) (2002) 723–53.

[12] D. Kraft, N. Pugeault, E. Başeski, M. Popović, D. Kragic, S. Kalkan,
F. Wörgötter, N. Krüger, Birth of the Object: Detection of Objectness
and Extraction of Object Shape through Object Action Complexes, Spe-
cial Issue on “Cognitive Humanoid Robots” of the International Journal
of Humanoid Robotics 5 (2009) 247–265.

[13] R. P. A. Petrick, D. Kraft, N. Krüger, M. Steedman, Combining cogni-
tive vision, knowledge-level planning with sensing, and execution mon-
itoring for effective robot control, in: Proceedings of the Fourth Work-
shop on Planning and Plan Execution for Real-World Systems at ICAPS
2009, Thessaloniki, Greece, 2009, pp. 58–65.

[14] D. Kraft, R. Detry, N. Pugeault, E. Başeski, J. Piater, N. Krüger, Learn-
ing objects and grasp affordances through autonomous exploration, in:
International Conference on Computer Vision Systems (ICVS), 2009.

[15] D. Harel, Dynamic logic, in: D. Gabbay, F. Guenthner (Eds.), Handbook
of Philosophical Logic, Vol. II, Reidel, Dordrecht, 1984, pp. 497–604.

[16] D. Kraft, E. Başeski, M. Popović, A. M. Batog, A. Kjær-Nielsen,
N. Krüger, R. Petrick, C. Geib, N. Pugeault, M. Steedman, T. Asfour,
R. Dillmann, S. Kalkan, F. Wörgötter, B. Hommel, R. Detry, J. Pi-
ater, Exploration and planning in a three level cognitive architecture,
in: International Conference on Cognitive Systems (CogSys), 2008.

38

[17] N. Krüger, M. Lappe, F. Wörgötter, Biologically Motivated Multi-modal
Processing of Visual Primitives, Interdisciplinary Journal of Artificial
Intelligence & the Simulation of Behaviour, AISB Journal 1 (5) (2004)
417–427.

[18] M. Popović, D. Kraft, L. Bodenhagen, E. Başeski, N. Pugeault,
D. Kragic, N. Krüger, A strategy for grasping unknown objects based
on co-planarity and colour information, submitted to RAS.

[19] D. Aarno, J. Sommerfeld, D. Kragic, N. Pugeault, S. Kalkan,
F. Wörgötter, D. Kraft, N. Krüger, Early reactive grasping with sec-
ond order 3d feature relations, in: The IEEE International Conference
on Advanced Robotics, Jeju Island, Korea, 2007.

[20] L. Bodenhagen, D. Kraft, M. Popović, E. Başeski, P. E. Hotz, N. Krüger,
Learning to grasp unknown objects based on 3d edge information,
in: IEEE International Symposium on Computational Intellegience in
Robotics and Automation, 2009.

[21] N. Krüger, M. Lappe, F. Wörgötter, Biologically Motivated Multi-modal
Processing of Visual Primitives, The Interdisciplinary Journal of Artifi-
cial Intelligence and the Simulation of Behaviour 1 (5) (2004) 417–428.

[22] N. Pugeault, Early Cognitive Vision: Feedback Mechanisms for the Dis-
ambiguation of Early Visual Representation, Vdm Verlag Dr. Müller,
2008.

[23] R. Detry, N. Pugeault, J. Piater, A probabilistic framework for 3d vi-
sual object representation, IEEE transactions on Pattern Analysis and
Machine Intelligence 31 (10) (2009) 1790–1803.

[24] R. Detry, E. Başeski, N. Krüger, M. Popović, Y. Touati, O. Kroemer,
J. Peters, J. Piater, Learning object-specific grasp affordance densities,
in: International Conference on Development and Learning, 2009.

[25] R. Detry, D. Kraft, A. G. Buch, N. Krüger, J. Piater, Refining grasp
affordance models by experience, international Conference on Robotics
and Automation (2010).

39

[26] D. Omrčen, A. Ude, , A. Kos, Learning primitive actions through ob-
ject exploration, in: International Conference on Humanoid Robots,
Daejeon, Korea, 2008, pp. 306–311.

[27] R. Petrick, D. Kraft, K. Mourão, C. Geib, N. Pugeault, N. Krüger,
M. Steedman, Representation and integration: Combining robot con-
trol, high-level planning, and action learning, in: Proceedings of the
6th International Cognitive Robotics Workshop (CogRob 2008), Patras,
Greece, July 21-22, 2008.

[28] S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, 2nd
Edition, Prentice Hall, Upper Saddle River, NJ, 2003.

[29] R. P. A. Petrick, F. Bacchus, A knowledge-based approach to planning
with incomplete information and sensing, in: Proceedings of the Interna-
tional Conference on Artificial Intelligence Planning Systems (AIPS-02),
2002, pp. 212–221.

[30] Y. Freund, R. Schapire, Large margin classification using the percep-
tron algorithm, Machine Learning 37 (1999) 277–96. doi:10.1023/A:

1007662407062.
URL http://dx.doi.org/10.1023/A:1007662407062

[31] R. Khardon, G. M. Wachman, Noise tolerant variants of the perceptron
algorithm, Journal of Machine Learning Research 8 (2007) 227–248.
URL http://www.cs.tufts.edu/tr/techreps/TR-2005-8

[32] K. Mourão, R. P. A. Petrick, M. Steedman, Using kernel perceptrons to
learn action effects for planning, in: International Conference on Cogni-
tive Systems (CogSys 2008), 2008, pp. 45–50.

[33] A. Newell, H. Simon, GPS, a program that simulates human thought,
in: E. A. Feigenbaum, J. Feldman (Eds.), Computers and Thought,
McGraw-Hill, NY, 1963, pp. 279–293.

[34] C. Green, Application of theorem proving to problem solving, in: Pro-
ceedings of the First International Joint Conference on Artificial Intel-
ligence, Morgan Kaufmann, 1969, pp. 741–747.

40

[35] E. D. Sacerdoti, The nonlinear nature of plans, in: Proceedings of the
Fourth International Joint Conference on Artificial Intelligence, Morgan
Kaufmann, 1975, pp. 206–214.

[36] D. Vernon, G. G. Metta, G. Sandini, A survey of artificial cognitive
systems: implications for the autonomous development of mental ca-
pabilities in computational agents, IEEE Transactions on Evolutionary
Computation 11 (2007) 151–180.

[37] R. Detry, M. Popović, Y. P. Touati, E. Başeski, N. Krüger, J. Piater,
Autonomuous learning of object-specific grasp affordance densities, sub-
mitted to the ICRA Workshop on Approaches to Sensorimotor Learning
on Humanoid Robots (2009).

[38] S. Harnad, The symbol grounding problem, Physica D (42) (1990) 335–
346.

[39] R. Brooks, Intelligence without reason, in: Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence, 1991, pp. 569–595.

[40] R. Brooks, Elephants don’t play chess, Robotics and Autonomous Sys-
tems (1990) 3–15.

[41] R. Pfeifer, M. Lungarella, F. Iida, Self-organization, embodiment, and
biologically inspired robotics, Science 318 (2007) 1088–1093.

[42] R. Jacobs, M. Jordan, A. Barto, Task decomposition through competi-
tion in a modular connectionist architecture: The what and where vision
tasks, Cognitive Science 15 (2) (1991) 219–250.

[43] K. Narendra, J. Balakrishnan, Adaptive control using multiple models,
IEEE Transaction on Automatic Control 42 (2) (1997) 171–187.

[44] M. Haruno, D. Wolpert, M. Kawato, MOSAIC model for sensorimotor
learning and control, Neural Computation 13 (2001) 2201–2220.

[45] C. Miall, Modular motor learning, Trends in Cognitive Sciences 6 (1)
(2002) 1–3.

[46] A. Samuel, Some studies in machine learning using the game of checkers,
IBM Journal of Research and Development 3 (3) (1959) 210–229.

41

[47] N. J. Nilsson, Learning Machines, McGraw-Hill, 1965.

[48] L. P. Kaelbling, Learning functions in k-DNF from reinforcement, in:
Proceedings of the Seventh International Workshop on Machine Learn-
ing, Morgan Kaufmann, 1990, pp. 162–169.

[49] T. Mitchel, Machine Learning, WCB McGraw Hill, 1997.

[50] H. Pasula, L. Zettlemoyer, L. P. Kaelbling, Learning symbolic models of
stochastic domains, Journal of Artificial Intelligence 29 (2007) 309–352.

[51] J. Pearl, Probabilistic Reaasoning in Intelligent Systems: Networks of
Plausible Inference, Morgan Kaufmann, 1988.

[52] A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum likehood from
incomplete data via the EM algorithm, Journal of the Royal Statistical
Society (Series B) 39 (1) (1977) 1–38.

[53] D. Spiegelhalter, P. Dawid, S. Lauritzen, R. Cowell, Bayesian analysis
in expert systems, Statistical Science 8 (1993) 219–283.

[54] S. Kok, P. Domingos, Learning the structure of Markov logic networks,
in: Proceedings of the Twenty-Second International Conference on Ma-
chine Learing, ACM Press, 2005, pp. 441–448.

[55] E. Amir, A. Chang, Learning partially observable deterministic action
models, Journal of Artificial Intelligence Research 33 (2008) 349–402.

[56] M. Ghallab, D. Nau, P. Traverso, Automated Planning: Theory and
Practice, Morgan Kaufman, San Francisco, CA, 2004.

42

9th IEEE-RAS International Conference on Humanoid Robots
December 7-10, 2009 Paris, France

Autonomous acquisition of pushing actions to
support object grasping with a humanoid robot

Damir Omrčen, Christian Böge, Tamim Asfour, Aleš Ude, and Rüdiger Dillmann
Jožef Stefan Institute, Slovenia, damir.omrcen@ijs.si, ales.ude@ijs.si

University of Karlsruhe, Germany, asfour@ira.uka.de, c.boege@gmx.de, dillmann@ira.uka.de

Abstract— There are many situations in which an object that
needs to be grasped is not graspable, but could be grasped if it
was situated at a different location. By applying nonprehensile
manipulation actions such as poking, the object can be moved to
a new location without first being grasped. We consider these
issues in the context of an artificial cognitive system. The goal of
the paper is twofold; firstly, we study how the robot can acquire
nonprehensile manipulation knowledge by observing the
outcomes of exploratory movements on objects. We propose a
learning process that enables the robot to acquire a general
pushing rule describing the relationship between the direction of
poke and the observed object motion for a class of objects. In this
way the robot acquires new action knowledge without having any
specialized prior model about the action. Secondly, we investigate
how the acquired action knowledge can be used to realize
grasping in complex situations where the robot could not grasp
the object without moving it to a new location. Here the learned
poking behavior serves as a support action for robot grasping.
The proposed approach has been implemented and tested on a
humanoid robot Armar III.

I. INTRODUCTION
Autonomous robots should explore their environment

actively, persistently, and systematically as most animals and
humans do [16]. To study and develop intelligent humanoid
robots, we therefore pursue a developmental approach.
Cognitive abilities should develop by refining the knowledge
acquired in previous stages of the development [8]. In the
context of this paper, the first stage involves learning to
distinguish the robot body from the rest of the world.
Afterwards, the robot can move on to the second stage, that is
interaction with external objects. The next stage involves
interpreting object-object interactions. In this paper we focus
on the second stage – interaction with external objects.

In a cognitive system objects and actions cannot be
separated because objects can induce actions (cup → drink),
while actions can redefine objects. Objects and actions are
inseparably intertwined and higher-level categories are
therefore determined (and also limited) by the action an agent
can perform and by the attributes of the world it can perceive;
the resulting, so-called Object-Action Complexes (OACs) are
the entities on which cognition develops (action-centered
cognition) [17]. While this paper is concerned with OACs at
the level of early perception-action events, our research strives
to provide a continuous path from such events to complex
cognitive processes, where OACs are used as basic building
blocks.

One approach towards the acquisition of new object-action
knowledge is that such information can be obtained by
performing exploratory primitive actions on a number of
different objects. By observing the changes in the
environment caused by the applied actions, the robot can
associate the applied actions with the resulting object behavior
and thus gain understanding of causes and effects. As a
representative example we study the acquisition of
nonprehensile manipulation knowledge, i.e. object
manipulation without a grasp. This kind of manipulation is
used when it is difficult or impossible to grasp an object, e.g.
when an object is too wide, too large or too heavy. As an
example of nonprehensile manipulation, we focus on poking,
which is defined as a short term pushing action. Poking can
also be used in order to identify and segment the objects from
the background [4].

Our aim is to obtain a general pushing rule rather than an
object specific one. Humans are good at generalization,
especially when their experiences are very diverse. The same
generalization capabilities need to be achieved in autonomous
robots. To achieve a reasonably high level of generalization,
some authors use recurrent neural networks with parametric
bias [10][14], where static images of objects are linked to
dynamic features of objects. In this paper we achieve
generalization of the pushing rule by using object images as
input to the system, which provides appropriate data to
extrapolate the pushing rule.

When poking an object, the object motion depends on the
object’s shape, weight distribution and on the support friction
forces. A lot of work has already been done in the field of
mechanics on the controllability and planning for poking [7]
[6]. Obviously, poking could easily be implemented by
assuming a proper representation for the physics of the task,
but such an approach relies on a priori knowledge about the
action and therefore does not solve the complete learning
problem. Additionally, it is sometimes difficult to obtain the
model parameters using available sensors (e.g. it is very
difficult to obtain friction between the object and the pusher
using vision). If the physical model of the object and the
action is not available like in our work, the robot has to
experiment with different poking actions on the object. In this
way the robot acquires new knowledge from exploration and
human demonstration in the same way as infants learn their
actions – performing actions on objects means playing with
toys.

978-1-4244-4588-2/09/$25.00 ©2009 IEEE 277

While poking has been used to study cognitive processes
before [5], our work focuses on different issue, which is
learning generalized pushing rules with the application to
grasping. After learning, the robot can use the newly acquired
knowledge to push an object towards a specified location. On
the other hand, Fitzpatrick et al. [5] were primarily concerned
with using poking actions to extract the associated object
properties. Pushing has often been used as an example when
learning affordances [13], but this type of research normally
focuses on higher-level knowledge such as “this ball affords
pushing”. Instead, our work focuses on acquiring fine-grained
controller that can be used to move a range of different objects
in any specified direction.

Only objects in proximal space are graspable and only
objects of a certain size and shape can be grasped. There are
many studies on graspability of objects [18] and how to
generate grasp hypothesis. Even if the object is graspable in
free space, it might not be possible to grasp it when other
objects, e.g a surface on which it lies, are taken into
consideration. In this paper we study how such problems can
be resolved by pushing.

II. SCENARIO DESCRIPTION
The experiment has been designed as follows (see Fig. 1).

The robot stands at a table and needs to grasp an object that
lies on the table. After detecting that the object is not
graspable at a given configuration because it is too wide, the
robot has to bring the object to the table boundary, where the
object becomes graspable due to its flatness. The robot uses its
hand to push the object. The part of the hand that has been
used for pushing will be termed as a pusher. Once the object
is pushed to the table boundary, it becomes graspable and the
robot grasps it (see also the attached video).

The work is conducted under the following hypothesizes:
objects are flat with homogenous mass distribution, the
surface is flat, the friction is uniform, maximal size of object
is limited.

To learn a general pushing rule, the robot starts by
experimenting with different primitive poking actions1 applied
to different objects and at different locations on the objects’
boundaries. With this process the robot builds a knowledge
base, which describes the relationship between the point and
angle of push on one side and the actual object movement on
the other side. Based on this data, a neural network is learned,
which maps the performed pushing action and shape of the
pushed object to the resulting object movement.

Afterwards the robot can use the acquired knowledge to
find the right poking action in order to move the object as
desired (i.e. the robot should push an object to a graspable
position). The final goal of the object is defined by a higher-
level motion planer, which is not described in this work. The
objects used in experiments are planar polygonal objects as
shown in Fig. 7.

1 We implemented the primitive poking actions are straight line movements
of a pusher in a given direction. Regarding pushing, this is the only prior
knowledge available to the system.

For object pose estimation, a stereo-based approach
presented in [3] has been applied. Textured object are
recognized and localized using 2-D feature point
correspondences between the current object snapshots and the
off-line learned views, which are stored as part of the object
representation in an object database. The pose is computed on
the basis of triangulated subpixel-accurate stereo
correspondences within the estimated 2-D area of the object,
yielding 3-D to 3-D point correspondences with a training
view. On the other hand, recognition and localization of
single-colored objects combines model-based view generation
with stereo-based position estimation. Orientation information
is retrieved from the matched views and an accurate pose is
calculated by a pose correction procedure, as presented in [3].

The proposed techniques were implemented on a humanoid
robot Armar III [1] (see Fig. 1) and industrial arm Mitsubishi
Pa-10. Grasping has been implemented only on the humanoid
robot using visual servoing techniques as presented in [15].
Given the object position, a collision-free motion is generated
to reach a pre-grasp position of the arm using inverse
kinematics. To estimate the hand position, an artificial marker
is attached to the wrist of the robot and tracked visually while
moving the hand to the grasp pose. The required orientation of
the hand is computed using the forward kinematics.

Fig. 1: Humanoid robot Armar III during pushing action

III. LEARNING OF THE PUSHING RULE
The pushing rule is learned using an exploratory process

introduced in the previous section. The task of the robot is to
learn the relationship between the point and angle of push on
the object’s boundary and the actual object movement after
the pushing action is performed (see Fig. 2). We call the
problem of learning the movement of the object being pushed
the direct pushing problem.

In our previous work [11], the robot learned the response of
only one object after the push has been performed. Thus for
each new object, the robot had to learn everything from
scratch. There was no prediction and no generalization to

278

other objects. Here we propose an approach that can
generalize the pushing rule to objects that differ in shape and
size, including objects whose response to pushes was not
observed during learning. The set of objects used in the
experiment is shown in Fig. 7.

In the learning phase the robot experiments with a number
of different poking actions. The robot has to poke an object
from different sides and at various angles (see Fig. 2).
Additionally, it has to experiment with different objects to
achieve generalization. In the beginning of the process the
robot has no knowledge about how objects respond to the
primitive poking actions, thus initially the robot experiments
with different poking actions randomly.

direction
of push

actual object
movement

(xvel, yvel, Φvel)

xworld

yworld

point of
contact

xobj

yobj

Fig. 2: Schematics of a poking action

After a poking action has been applied to an object, the
object accelerates and changes its position and orientation.
Since the objects are relatively light and the friction between
the object and the table is relatively high, we can neglect the
dynamic properties of motion. Typical response of the object
is shown in Fig. 3. The object velocity settles in less that 200
ms. The object velocity estimated by vision is noisy, but since
learning takes place after the push is completed, the data can
be filtered and processed well before the use.

Since the object settles its motion in a very short time, the
response of the object to the poking action is determined with
sufficient accuracy by simply observing the displacements of
the pusher and the object. The displacement of the pusher is
expressed by two parameters: the point and the angle of
contact on the object boundary, which define the direction of
push. The primitive poking actions keep the velocity of the
pusher constant while performing the action. The point of
contact is expressed as the angle between the line segment
connecting the point of contact and the centre of the object
and the x-axis of the object’s coordinate system. Similarly, the
angle of a contact is expressed as the angle between the
pushing direction and the tangent at the point of contact (see
Fig. 2).

Fig. 3: Typical response (velocity) of an object after applying a poking action

Fig. 4: Agent view of a scene during learning

The response of an object is represented by three
parameters, i.e. the planar velocity of the object centre and the
rotational velocity about the centre point on the object. The
abstract robot’s view of the experiment is shown in Fig. 4.

Humans can predict the motion of an object to be pushed
based on the acquired object images, which are used as input
to the neural networks in the brain. The application of retina
images as an input to control the robot behavior has already
been studied in robotics. For example, Oztop et al. have used
retina images and Hopfield networks to realize hand posture
imitation [12]. Inspired by these findings, we utilized the
binarized object images as an input to the system. To limit the
search space that needs to be explored, we normalized the
binarized images with respect to the pushing direction in the
retina image. Before each primitive poking action is applied,
the observed scene is mapped in such a way that the pushing
direction is always at the same position on the retina (see Fig.
5). This normalization process ensures that the acquired
knowledge is invariant against object position and orientation
as long as the pusher is able to apply the primitive poking
actions at the given configuration.

The original resolution of the camera images was 640 x 480
pixels. Due to the computational complexity and to achieve
faster convergence and better generalization, we reduced the
resolution of the input image to 20 x 15 pixels. Translated and
rotated retina images of reduced resolution served as input to
the neural network, which is used to represent the pushing rule.
The network has three outputs to represent the predicted
velocity of an object in all three directions.

279

We applied a two-layer backpropagation network with 300
input neurons, 10 neurons in the hidden layer, and 3 output
neurons. Each input neuron corresponds to a pixel of the
object’s reduced resolution image. The value of the pixel is in
the range from 0 to 1, where 0 means that no object is present
at the pixel, while 1 means that the pixel is covered by the
object. The three output neurons correspond to the object’s
linear and rotational velocity on the support surface. The
output velocities have been normalized to the range from -1 to
1. The hidden layer as well as the output layer use the tan-
sigmoid transfer function. To train the network we employed
the Levenberg-Marquardt training function.

Original image Transl. and rotated image

Fig. 5: The binarized object image is rotated and translated to ensure the same

pushing position and direction on the retina

IV. APPLYING THE PUSHING RULE
After the learning phase is completed, the robot can

generate a poking action to move an object in the desired
direction. We call this process the inverse pushing problem.
The inverse problem deals with where and how the object has
to be pushed to achieve motion close to the desired one.

The aim of the robot in this phase is to perform a set of
poking actions in order to bring the object to the desired
location. Here, a higher-level motion planner should provide
the desired movement of the object, whereas the lower-level
controller needs to solve the inverse problem. The agent view
of the poking scene is shown in Fig. 6.

Note that the robot cannot always achieve the desired
velocity due to the physical limitations of the action (this is
still a nonprehensile action). In many cases it happens that an
object cannot be moved in the desired direction because the
pusher slides from the object boundary or it even moves away
from the boundary. Such events cannot happen when the
object is firmly grasped.

To solve the inverse pushing problem, i.e. to achieve an
optimal pusher motion for the desired pushing direction, the
agent needs to optimize a criterion function with respect to the
point and angle of push, e. g. the weighted square error
between the desired motion and the predicted one. Thus we
need to find a global minimum of the following function:

 2(()) ,des prede X X= −W (1)
where Xdes represents the desired motion in all three DOFs and
Xpred represents the motion of the object which is predicted by
the neural network, respectively. W is the weight specifying
the importance of each direction.

To solve the inverse problem by finding the minimum of
Eq. (1), we use classical optimization techniques. For an
initially selected point and angle of push on the object
boundary, the acquired binarized image is transformed as
described in the previous section. Based on the generated
object image, we predict the movement of the object using the
learned neural network. The predicted velocity is compared to
the desired one and a new point and angle of push are
determined by the optimization method. The process is
repeated until an appropriate point and angle on the object’s
boundary are found. We believe that this process is similar to
how humans visualize their action before doing it.

Pushing is a nonprehensile action and it is therefore
difficult to ensure that an object will move exactly in the
desired direction, both because of the inaccuracies in the
learned model and because the optimization process might not
find an optimal solution, e.g. because it is stuck in a local
minimum. We therefore realized the “pushing to a desired
location” behavior as a feedback process, where the robot
repeatedly pushes the object until the final position is reached.

The computational complexity of the optimization process
is relatively high. However, the pushing point and angle has to
be updated with a relatively low frequency (every second in
the current implementation). And the computational
complexity is still low enough to be easily calculated in the
available time. If this is not the case the robot can wait with
action execution until the update is available. On the other
hand the low-level robot joint control loop runs at much
higher sample rate.

280

Fig. 6: Agent view of a scene while controlling object movement

V. PUSHING FOR GRASPING
In our previous work [2], we presented a framework for

object grasping and manipulation, which incorporates the
described vision system for object localization, a path planner
for the generation of collision-free trajectories and an offline
grasp analyzer that provides the most feasible grasp
configurations for each object. The results provided by the
system’s components are stored and used by the control
system of the robot for the execution of a grasp of a particular
object. The central assumption of this framework is the
existence of a database with 3-D models of all objects
encountered in the robot’s workspace and a 3-D model of the
robot hand. Grasp hypotheses for each object are generated in
simulation using the grasping simulation environment GraspIt!
(see [9]) and stored as part of the object representation in the
database.

The graspability of the object depends on the support
surface, object properties and the available hand. In order to
determine whether an object can be grasped with the available
robotic hand, we use the simulator to validate the grasp
hypotheses associated with the object. A hypothesis is rejected
if its execution (in simulation) causes collision with the
surface on which the object is placed. If the system generates
some hypotheses but none of them leads to a successful grasp,
the object must be first relocated before being grasped. One
possible way is to push the object to the rim of the table to
make it graspable. For this purpose we select one of the
hypotheses and compute the pose of the object at the edge of
the table so that the object surface associated with the grasp
hypothesis lies beyond the rim of the table.

While the grasping part of the system is implemented in a
classic way, we are currently working towards a system that
can learn to generate a set of grasp hypotheses based on the
general properties of the object and test grasp executions.

VI. RESULTS
Our humanoid robot uses whole body manipulation to

manipulate the object. Here, the mobile platform has three
DOFs, the hip has 1 DOF and there are additional 7 DOFs in
the arms. Depending on the reachability of the desired point,
the robot can use the right or the left arm. Technically, to
achieve a pushing action with a cylinder shaped pusher, five

DOFs are necessary. Three DOFs are needed to control the
position of the pusher and two DOF are needed to control the
rotations. One DOF of rotation about the cylinder axis is not
important and therefore does not need to be considered in the
controller. To control the robot we used a velocity based task
controller with null space joint limit avoidance.

A poke or a short time push is a pushing action which last 2
sec in the current implementation. The controller is defined is
such a way that the pusher moves at a constant predefined
speed to a pushing direction which is defined in the object
frame.

We performed the learning process on a set of different
planar objects shown in Fig. 7. The white polygonal objects
were used for learning while the chocolate box was used to
validate the learning process, i.e. to validate the generality of
the pushing rule.

The real robot generated a hand-guided movement around
the object (see Fig. 8, green line), which resulted in several
randomly distributed pushes of the object. The experiment
took about 2 minutes for each object. After the
experimentation the data was filtered, velocities and positions
of the object were calculated, and learning instances were
generated. Among all the measurement samples we used only
those that resulted in significant object movements. For all
five objects we collected 867 instances, which were used for
training of the neural network. The sample learning instances
are shown in Fig. 9.

Fig. 7: A set of objects that were used for learning

Fig. 8: Green line shows the movement of the pusher during the 2 minute

experiment. Red patch represents an object at the initial position.

281

To validate the proposed approach, we compared the
predicted and the actual velocity of the object. We evaluated
the differences in the direction of object’s movement.
Experiments showed that the object movement prediction gets
better as the number of instances gets larger. Fig. 10 shows the
mean error of all measurements. The x-axis represents the
number of instances used for training of the neural network.
When the number of instances used for training is very small,
e.g. up to 50 instances, the mean error is about 0.5 rad.
However, already when using a set of 200 instances, the mean
error in prediction gets better and is about 0.2 rad. The error
drops further as more data is collected. Considering unknown
friction, low resolution of the image, and the generalization
property of the pushing rule, we consider this as a very good
result.

The learning process would converge faster and the error
would be smaller if we provided more initial knowledge to the
system. However, our goal was to develop a system which
acquires new knowledge by its own actions, so that a robot
could evolve into a more intelligent machine. Therefore, as
little as possible was hardcoded to learn the pushing rule. Note
that the primitive poking movements could also be learned.

The acquired pushing rule has been applied to push an
object to a graspable position. Fig. 11 (see also the attached
video) shows the robot during pushing and grasping. The
object was not graspable at its initial location. The robot thus
generated a plan to move the object to a position where the
robot could grasp it. After a few pushes, the object was
brought to a graspable position, where the robot could
successfully grasp it.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
Fig. 9: Sample learning instances. The cyan line indicates the actual object

movement, while the red line indicates the pushing direction. The object is
shown in black.

Fig. 10: The error in velocity direction prediction decreases as the number of

learning samples increases

VII. DISCUSSION AND FUTURE WORK
In summary, we realized the process of associating object-

action cause-effects through an explorative, self-emergent
process. Such processes are of great importance for the early
cognition. No specialized knowledge about the pushing action
was provided to the robot. We only provided rules about how
to explore the environment and the robot associated the
applied actions to object responses independently. We believe
that such an explorative learning process, possibly combined
with imitation, is one of the keys to natural sensorimotor
learning.

While precise learning of pushing actions can take a long
time, the agent can learn a rough but reasonable
approximation of the behavior already after a few explorative
pushes. This initial knowledge can already be used for a rather
rough control of the object movement.

While controlling the motion, the robot can update its
knowledge base by observing the actual movement of the
object. Thus the relationship between the desired and the
actual object motion gradually becomes more accurate and the
control of the object movement direction improves.
Additionally, to make the learning of poking actions more
optimal, human instructor can demonstrate the most
representative pokes (e.g. perpendicular pokes from a few
different sides). Incremental learning combined with imitation
is the next important topics of our research.

One could argue that the experiments on the real robot do
not guaranty the success of the proposed approach.
Reproducibility could be a problem due to inaccuracies in
pushing point and direction and the strong friction
nonlinearity between the object and table. The same problem
occurs in human learning, but we still use the pushing action
very successfully. In the robot case the learning should only
provide a rough model of the action. However, the action
execution should be strongly supported by online closed loop
control, which solves the problem of incomplete model. And
that is our future work.

Additionally it is crucial to update the robot’s knowledge
base by observing the actual movement of the object. That
would improve the accuracy of the pushing model.

282

Fig. 11: A sequence of robot pushes that bring the object to a graspable position

REFERENCES
[1] T. Asfour, K. Regenstein, P. Azad, J. Schröder,

A. Bierbaum, N. Vahrenkamp, and R. Dillmann. ARMAR-III:
An integrated humanoid platform for sensory-motor control
In Proc. IEEE-RAS Int. Conf. on Humanoid Robots, pp. 169-
175, Genoa, Italy, 2006.

[2] T. Asfour, P. Azad, N. Vahrenkamp, K. Regenstein,
A. Bierbaum, K. Welke, J. Schröder, R. Dillmann, Toward
humanoid manipulation in human-centred environments.
Robotics and Autonomous Systems, 56(1):54-65, 2008.

[3] P. Azad, T. Asfour, and R. Dillmann, Stereo-based
6D object localization for grasping with humanoid robot
systems. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, pp. 919–924, San Diego, USA, 2007.

[4] P. Fitzpatrick and G. Metta. Grounding vision
through experimental manipulation. Royal Society of London
Transactions Series A, 361(1811):2165–2185, 2003.

[5] P. Fitzpatrick, G. Metta, L. Natale, S. Rao, and
G. Sandini. Learning about objects through action - initial
steps towards artificial cognition. In Proc. IEEE Int. Conf.
Robotics and Automation, pp. 3140–3145, Taipei, Taiwan,
2003.

[6] Q. Li and S. Payandeh. Manipulation of convex
objects via two-agent point-contact push. The International
Journal of Robotics Research, 26(4):377–403, 2007.

[7] K. M. Lynch and M. T. Mason. Stable pushing:
mechanics, controllability, and planning. The International
Journal of Robotics Research, 15(6):533–556, 1996.

[8] G. Metta, G. Sandini, L. Natale, Manzotti R., and
F. Panerai. Development in artificial systems. In Proc. EDEC
Symposium at the Int. Conf. on Cognitive Science, Beijing,
China, 2001.

[9] A. T. Miller and P. K. Allen. GraspIt! a versatile
simulator for robotic grasping. IEEE Robotics & Automation
Magazine, 11(4):110-122, 2004.

[10] S. Nishide, T. Ogata, J. Tani, K. Komatani, and H. G.
Okuno. Predicting object dynamics from visual images
through active sensing experiences. In Proc. IEEE Int. Conf.
on Robotics and Automation, pp. 2501–2506, Rome, Italy,
2007.

[11] D. Omrčen, A. Ude, and A. Kos. Learning primitive
actions through object exploration. In Proc. IEEE-RAS Int.
Conf. on Humanoid Robots, pp. 306-311, Daejeon, Korea,
2008.

[12] E. Oztop, T. Chaminade, G. Cheng, and M. Kawato.
Imitation bootstrapping: Experiments on a robotic hand. In
Proc. IEEE-RAS Int. Conf. on Humanoid Robots, pp. 189–195,
Tsukuba, Japan, 2005.

[13] E. Sahin, M. Cakmak, M. R. Dogar, E. Ugur, and G.
Ucoluk. To afford or not to afford: A new formalization of
affordances towards affordance-based robot control. Adaptive
Behavior, 15(4):447-472, 2007.

[14] J. Tani and M. Ito. Self-organization of behavioral
primitives as multiple attractor dynamics: A robot experiment.
IEEE Trans. on SMC, Part A, 33(4):481–488, 2003.

[15] N. Vahrenkamp, S. Wieland, P. Azad, D. Gonzalez,
T. Asfour and R. Dillmann. Visual servoing for humanoid
grasping skills. In Proc. IEEE-RAS Int. Conf. on Humanoid
Robots, pp. 406-412, Daejeon, Korea, 2008.

[16] W. G. Walter. An imitation of life. Scientific
American, 182(5):42–45, 1950.

[17] F. Wörgötter, A. Agostini, N. Krüger, N. Shylo, B.
Porr. Cognitive agents — a procedural perspective relying on
the predictability of Object-Action-Complexes (OACs),
Robotics and Autonomous Systems, 57:420-432, 2009.

[18] X. Zhu, H. Ding, and M. Y. Wang, A numerical test
for the closure properties of 3-D grasps, IEEE Trans. Robotics
and Automation, 20(3):543-549, 2004.

283

Combining Cognitive Vision, Knowledge-Level Planning with Sensing, and
Execution Monitoring for Effective Robot Control

Ronald P. A. Petrick
School of Informatics

University of Edinburgh
Edinburgh EH8 9AB, Scotland, UK
rpetrick@inf.ed.ac.uk

Dirk Kraft Norbert Krüger
The Maersk Mc-Kinney Moller Institute

University of Southern Denmark
DK-5230 Odense M, Denmark
{kraft,norbert}@mmmi.sdu.dk

Mark Steedman
School of Informatics

University of Edinburgh
Edinburgh EH8 9AB, Scotland, UK
steedman@inf.ed.ac.uk

Abstract

We describe an approach to robot control in real-world en-
vironments that integrates a cognitive vision system with a
knowledge-level planner and plan execution monitor. Our
approach makes use of a formalism called an Object-Action
Complex (OAC) to overcome some of the representational
differences that arise between the low-level control mecha-
nisms and high-level reasoning components of the system.
We are particularly interested in using OACs as a formalism
that enables us to induce certain aspects of the representation,
suitable for planning, through the robot’s interaction with the
world. Although this work is at a preliminary stage, we have
implemented our ideas in a framework that supports object
discovery, planning with sensing, action execution, and fail-
ure recovery, with the long term goal of designing a system
that can be transferred to other robot platforms and planners.

Introduction and Motivation
A robot operating in a real-world domain must typically rely
on a range of mechanisms that combine both reactive and
planned behaviour, and operate at different levels of repre-
sentational abstraction. Building a system that can effec-
tively perform these tasks requires overcoming a number of
theoretical and practical challenges that arise from integrat-
ing such diverse components within a single framework.

One of the crucial aspects of the integration task is repre-
sentation: the requirements of robot controllers differ from
those of traditional planning systems, and neither represen-
tation is usually sufficient to accommodate the needs of an
integrated system. For instance, robot systems often use
real-valued representations to model features like 3D spa-
tial coordinates and joint angles, allowing robot behaviours
to be specified as continuous transforms of vectors over time
(Murray, Li, and Sastry 1994). On the other hand, planning
systems tend to use representations based on discrete, sym-
bolic models of objects, properties, and actions, described in
languages like STRIPS (Fikes and Nilsson 1971) or PDDL
(McDermott 1998). Overcoming these differences is essen-
tial for building a system that can act in the real world.

In this paper we describe an approach that combines a
cognitive vision system with a knowledge-level planner and
plan execution monitor, on a robot platform that can manip-
ulate objects in a restricted, but uncertain, environment. Our
system uses a multi-level architecture that mixes a low-level

robot/vision controller for object manipulation and scene
interpretation, with high-level components for reasoning,
planning, and action failure recovery. To overcome the mod-
elling differences between the different system components,
we use a representational unit called an Object-Action Com-
plex (OAC) (Geib et al. 2006; Krüger et al. 2009), which
arises naturally from the robot’s interaction with the world.
OACs provide an object/situation-oriented notion of affor-
dance in a universal formalism for describing state change.

Although the idea of combining a robot/vision system
with an automated planner is not new, the particular com-
ponents we use each bring their own strengths to this work.
For instance, the cognitive vision system (Krüger, Lappe,
and Wörgötter 2004; Pugeault 2008) provides a powerful
object discovery mechanism that lets us induce certain as-
pects of the representation, suitable for planning, from the
robot’s basic “reflex” actions. The high-level planner, PKS
(Petrick and Bacchus 2002; 2004), is effective at construct-
ing plans under conditions of incomplete information, with
both ordinary physical actions and sensing actions. More-
over, OACs occur at all levels of the system and, we believe,
provide a novel solution to some of the integration problems
that arise in our architecture.

This paper reports on work currently in progress, cen-
tred around OACs and their role in object discovery, plan-
ning with sensing, action execution, and failure recovery in
uncertain domains. This work also forms part of a larger
project investigating perception, action, and cognition, and
combines multiple robot platforms with symbolic represen-
tations and reasoning mechanisms. We have therefore ap-
proached this work with a great deal of generality, in order
to facilitate the transfer of our ideas to robot platforms and
planners with capabilities other than those we describe here.

Hardware Setup and Testing Domain
The hardware setup used in this work (see Figure 1) con-
sists of a six-degree-of-freedom industrial robot arm (Stäubli
RX60) with a force/torque (FT) sensor (Schunk FTACL 50-
80) and a two-finger-parallel gripper (Schunk PG 70) at-
tached. The FT sensor is mounted between the robot arm
and gripper and is used to detect collisions which might oc-
cur due to limited knowledge about the objects in the world.
In addition, a calibrated stereo camera system is mounted in
a fixed position. The AVT Pike cameras have a resolution

Industrial
robot

Twofinger
gripper

Foam
floor

Stereo
camera
system

6D
Force
torque
sensor

Figure 1: Hardware setup.

of up to 2048x2048 pixels and can produce high-resolution
images for particular regions of interest.

To test our approach, we use a Blocksworld-like object
manipulation scenario. This domain consists of a table with
a number of objects on it and a “shelf” (a special region of
the table). The robot can view the objects in the world but,
initially, does not have any knowledge about those objects.
Instead, world knowledge must be provided by the vision
system, the robot’s sensors, and the primitive actions built
into the robot controller. The robot is given the task of clear-
ing the objects from the table by placing them onto the shelf.
The shelf has limited space so the objects must be stacked in
order to successfully complete the task. For simplicity, each
object has a radius which provides an estimate of its size. An
object A can be stacked into an object B provided the radius
of A is less than that of B, and B is “open.” Unlike standard
Blocksworld, the robot does not have complete information
about the state of the world. Instead, we consider scenarios
where the robot does not know whether an object is open or
not and must perform a test to determine an object’s “open-
ness”. The robot also has a choice of four different grasping
types for manipulating objects in the world. Not all grasp
types can be used on every object, and certain grasp types
are further restricted by the position of an object relative to
other objects in the world. Finally, actions can fail during
execution and the robot’s sensors may return noisy data.

Basic Representations and OACs
At the robot/vision level, the system has a set Σ of sensors,
Σ = {σ1, σ2, . . . , σn}, where each sensor σi returns an ob-
servation obs(σi) about some feature of the world, repre-
sented as a real-valued vector. The execution of a robot-level
action, called a motor program, may cause changes to the
world which can be observed through subsequent sensing.
Each motor program is typically executed with respect to
particular objects in the world. We assume that initially the
robot/vision system does not know about any objects and,
therefore, can’t execute many motor programs. Instead, the
robot has a set of object-independent basic reflex actions
which it can use in conjunction with the vision system for
early exploration and object discovery.

At the planning level, the underlying representation is

based on a set of fluents, f1, f2, . . . , fm: first-order predicates
and functions that denote particular qualities of the world,
robot, and objects. Fluents typically represent high-level
versions of some of the world-level properties the robot is
capable of sensing, where the value of a fluent is a function
Γi of a set of observations returned by the sensor set, i.e.,
fi = Γi(Σ). However, in general, not every sensor need map
to some fluent, and we allow for the possibility of fluents
with no direct mapping to robot-level sensors.

Fluents may be parametrized and instantiated by high-
level counterparts of the objects discovered at the robot
level. In particular, for each robot-level object objr we de-
note a corresponding high-level object by objp. A state is
a snapshot of the values of all instantiated fluents at some
point during the execution of the system, i.e., { f1, f2, . . . , fm}.
States represent an intersection between the low-level and
high-level representations and are induced from the sensor
observations (the Γi functions) and the object set.

The planning level representation also includes a set of
high-level actions, α1, α2, . . . , αp, which are viewed as ab-
stract versions of some of the robot’s motor programs. Since
all actions must ultimately be executed by the robot, each ac-
tion is decomposable to a fixed set of motor programs Π(αi),
where Π(αi) = {mp1,mp2, . . . ,mpl}, and each mp j is a mo-
tor program. As with fluents, not every robot-level motor
program need map to a high-level action.

Although the robot/vision and planning levels use quite
different representations (i.e., real-valued vectors versus log-
ical fluents), the notions of “action” and “state change” are
common among these components. To capture these simi-
larities, we model our actions and motor programs using a
structure called an Object-Action Complex (OAC) (Geib et
al. 2006; Krüger et al. 2009). Formally, an OAC is a tu-
ple
〈
I,T S ,M

〉
, where I is an identifier label for the OAC,

T : S → S is a transition function over a state space S , and
M is a statistic measure of the accuracy of the transition.
OACs provide a universal “container” for encapsulating the
relationship between actions (operating over objects) and the
changes they make to their state spaces. Each OAC also
has an identical set of predefined operations (e.g., compo-
sition, update, etc.), providing a common interface to these
structures. Since robot systems may have many components,
OACs are meant to provide a standard language for describ-
ing action-like processes (including continuous processes)
within these components, and to simplify the exchange of
information between different components.

OACs exist at each level of our system. We encode each
motor program on the robot/vision level and each action at
the planning level as a separate OAC, with OACs at each
level having a different underlying state space. By assigning
an accuracy metric to each OAC we also capture the non-
deterministic nature of our actions in the real world. Fur-
thermore, since every interaction of the robot with the world
provides the robot with an opportunity to observe a small
portion of the world’s state space (interpreted with respect
to the state space of a particular OAC), we can make use
of this information to refine or improve the accuracy of the
OACs at all levels of our system.

Typically, we consider OACs that are formed from partial
state descriptions, which may have low reliability. Such de-
scriptions arise since the robot cannot always sense the sta-
tus of all objects and properties in the world (e.g., occluded
or undiscovered objects). Furthermore, the robot’s sensors
may be noisy and, thus, there is no guarantee that sensor ob-
servations are always correct. Certain sensors also have as-
sociated resource costs (e.g., time, energy, etc.) which limit
their execution. For instance, our robot can perform a test to
determine whether an object is open by “poking” the object
to check its concavity. Such operations are only initiated on
demand at the discretion of the high-level planning system.

Finally, our system includes a middle level component
that mediates between the robot and planning levels. This
component is responsible for mapping between OACs at dif-
ferent levels of the system (i.e., implementing the Γi and Π
functions) in order to ensure that observation/state and motor
program/action information passing between levels is trans-
lated into a form that the destination level understands.

In the remainder of this paper we will look at the main
components of our system in greater detail, and describe the
current (and future) role of OACs in our framework.

Vision-Based Object Discovery
The visual representation used by the lower level of our sys-
tem is delivered by an early cognitive vision system (Krüger,
Lappe, and Wörgötter 2004; Pugeault 2008) which creates
sparse 2D and 3D features, so-called multi-modal primitives,
along image contours from stereo images. 2D features rep-
resent a small image patch in terms of position, orientation,
phase, colour and optical flow. These are matched across
two stereo views, and pairs of corresponding 2D features
permit the reconstruction of an equivalent 3D feature. 2D
and 3D primitives are then organized into perceptual groups
in 2D and 3D. The procedure to create visual representations
is illustrated in Figure 2. We note that the resulting represen-
tation not only contains appearance information (e.g., colour
and phase) but also geometrical information (i.e., 2D and 3D
position and orientation).

Initially, the system lacks knowledge of the objects in a
scene and so the visual representation is unsegmented: de-
scriptors that belong to one object are not explicitly dis-
tinct from the ones that belong to other objects, or the back-
ground. To aid in the discovery of new objects, the robot is
equipped with a basic reflex action (Aarno et al. 2007) that
is elicited by specific visual feature combinations in the un-
segmented world representation (e.g., see Figure 3(a)–(c)).
The outcome of these reflexes allows the system to gather
knowledge about the scene, which is used to segment the vi-
sual world into objects and identify basic affordances. We
consider a reflex where the robot tries to grasp a planar sur-
face in the scene. Each time the robot executes such a re-
flex, haptic information allows the system to evaluate the
outcome: either the grasp was successful and the gripper is
holding something, or it failed and the gripper simply closed.

With physical control, the system visually inspects an ob-
ject from a variety of viewpoints and builds a 3D represen-
tation (Kraft et al. 2008). Features on the object are tracked
over multiple frames, between which the object moves with

Right Image

Left Image

(a)

(b)

(c)

(d)

(e)Right Image

Left Image

Early Vision Early Cognitive Vision

Figure 2: An overview of the visual representation. (a)
Stereo image pair, (b) Filter responses, (c) 2D primitives,
(d) 2D contours, (e) 3D primitives.

a known motion. If features are constant over a series of
frames they become included in the object’s representation;
otherwise they are assumed to not belong to the object. (See
Figure 3(d)–(f) and (Kraft et al. 2008) for a more detailed
explanation.) The final description is labelled and recorded
as an identifier for a new object class, along with the success-
ful reflex (now a motor program). Using this new knowl-
edge, the system then reconsiders its interpretation of the
scene: using a representation-specific pose estimation algo-
rithm (Detry, Pugeault, and Piater 2009) all other instances
of the same object class are identified and labelled. By re-
peating this process, the system constructs a representation
of the world objects, as instances of symbolic classes that
carry basic affordances, i.e., particular reflex actions that
have been successfully applied to objects of this class.1 This
relationship can also be interpreted as a new low-level OAC.

The object-centric nature of the robot’s world exploration
process has immediate consequences for the high-level rep-
resentation. First, newly discovered objects are reported to
the planning level and added to its representation. At this
level, objects are simply labels that act as indices to the ob-
ject information stored at the robot level. Such a represen-
tation means that the planner can avoid reasoning about cer-
tain types of real-valued information (e.g., 3D coordinates,
orientation vectors, etc.) and instead refer to objects by their
labels (e.g., obj1p may denote a particular red cup on the ta-
ble). Second, the planner can immediately use such objects
during plan generation. Since we assume that object names
do not change over time, plans with object references will be
understandable to the lower system levels. Finally, the iden-
tification of new objects will cause the robot/vision system
to start sending regular updates about the state of objects and
their properties to the planning level. In particular, low-level
observations resulting from subsequent interactions with the
world will contain state information about these objects, pro-

1We have recently completed the technical implementation of
the pose estimation algorithm. Prior to this, a circle detection algo-
rithm was developed (Başeski, Kraft, and Krüger 2009) to recog-
nise cylindrical objects. Four grasp templates were used to define
the primitive reflex actions in an object-centric way (where con-
crete grasps were generated based on the object pose). Although
this approach negates the need for the general pose estimation al-
gorithm, the conclusions drawn from experiments in this limited
scenario are still easily transferable to the general case.

(a)

(b) (c) (g)

(d) (e)

(f)

Figure 3: (a)–(c) Initial grasping behaviour: (a) A Scene, (b) Definition of a possible grasp based on two contours, (c) Repre-
sentation of the scene with contours generating a grasp. (d)–(f) Accumulation process (“birth of the object”): (d) One step in
the process. The dots on the image show the predicted structures. Both spurious primitives, parts of the background that are not
confirmed by the image, and the confirmed predictions are shown, (e) Images of objects, (f),(g) Extracted models.

vided they can be sensed by the robot.

Knowledge-Level Planning with Sensing
The high-level planner constructs plans that direct the be-
haviour of the robot to achieve a set of goals. Plans are built
using PKS (“Planning with Knowledge and Sensing”) (Pet-
rick and Bacchus 2002; 2004), a conditional planner that can
operate with incomplete information and sensing actions.
Like other symbolic planners, PKS requires a goal, a de-
scription of the initial state, and a list of the available actions.
Unlike classical planners, PKS operates at the knowledge
level by explicitly modelling what the planner knows and
does not know about the state of the world. PKS can reason
efficiently about certain restricted types of knowledge, and
make effective use of features like functions, which often
arise in real-world scenarios.

PKS is based on a generalization of STRIPS (Fikes and
Nilsson 1971). In STRIPS, a single database represents the
world state; actions update this database in a way that cor-
responds to their effects on the world. In PKS, the plan-
ner’s knowledge state is represented by five databases, each
of which stores a particular type of knowledge. Actions de-
scribe the changes they make to the database set and, thus,
to the underlying knowledge state. PKS also supports ADL-
style conditional action effects (Pednault 1989), numerical
reasoning, and a set of program-like control structures.

Table 1 shows an example of some of the PKS ac-
tions available in the testing domain. As in standard plan-
ning representations, like PDDL, actions in PKS are de-
scribed by their preconditions and effects. Actions may be
parametrized (e.g., graspA(x)), with an action’s parameters
replaced with references to specific world objects when an
action is instantiated in a plan. As we described above, ob-
jects at the planning level are labels to actual objects identi-
fied by the robot/vision system.

Preconditions and effects are specified in terms of a set of
high-level predicates and functions, i.e., fluents that model

particular qualities of the world, robot, and objects. For in-
stance, the actions in Table 1 include references to fluents:
• open(x): object x is open,
• gripperEmpty: the robot’s gripper is empty,
• onTable(x): object x is on the table,
• isIn(x, y): object x is stacked in object y,
• radius(x) = y: the radius of object x is y, and
• reachableX(x): object x is reachable using grasp type X,
among others. While most high-level properties abstract
the information returned by the robot-level sensors (e.g.,
onTable requires data from a set of visual sensors con-
cerning object positions), some properties correspond more
closely to individual sensors (e.g., gripperEmpty closely
models a low-level sensor that detects whether the robot’s
gripper can be closed without contact).

One significant difference between PKS and other plan-
ners is that all actions in PKS are modelled at the knowledge
level: preconditions denote conditions that must be true of
the planner’s knowledge state while effects describe changes
to what the planner knows. For instance, precondition ex-
pressions of the form K(φ) denote a knowledge-level query
that asks “does the planner know φ to be true?” while an ex-
pression like Kw(φ) asks “does the planner know whether φ is
true or not?” Effect expressions of the form add(D, φ) assert
that φ should be added to database D, while del(D, φ) means
that φ should be removed from database D. In Table 1, Kf
refers to a database that models the planner’s definite knowl-
edge of facts, while Kw is a specialized database that stores
the results of sensing actions that return binary information.

In our robot scenario, high-level actions represent coun-
terparts to some of the motor programs available at the robot
level. For instance, the planner has access to actions like:
• graspA(x): grasp x from the table using grasp type A,
• graspD(x): grasp x from the table using grasp type D,
• putInto(x, y): put x into y on the table,

Action Preconditions Effects
graspA(x) K(reachableA(x)) add(Kf , inGripper(x))

K(gripperEmpty) add(Kf ,¬gripperEmpty)
K(onTable(x)) add(Kf ,¬onTable(x))
K(clear(x))
K(radius(x) ≥ minA)
K(radius(x) ≤ maxA)

graspD(x) K(reachableD(x)) add(Kf , inGripper(x))
K(gripperEmpty) add(Kf ,¬gripperEmpty)
K(onTable(x)) add(Kf ,¬onTable(x))
K(radius(x) ≤ maxD)

putInto(x, y) K(x , y) add(Kf , gripperEmpty)
K(inGripper(x)) add(Kf , isIn(x, y))
K(open(y)) add(Kf , clear(y))
K(clear(y)) add(Kf ,¬inGripper(x))
K(onTable(y))
K(radius(y) > radius(x))

putAway(x) K(inGripper(x)) add(Kf , onShelf(x))
K(shelfSpace > 0) add(Kf , gripperEmpty)

add(Kf ,¬inGripper(x))
add(Kf , shelfSpace –= 1)

findout-open(x) ¬Kw(open(x)) add(Kw, open(x))
K(onTable(x))

Table 1: PKS actions in the testing domain.

• putAway(x): put x away onto a shelf space, and

• findout-open(x): determine whether x is open or not,

among others. Some actions like “grasp” are divided into
multiple actions (e.g., graspA, graspD, plus actions for grasp
types B and C). The object-centric nature of these actions
means they do not require 3D coordinates, joint angles, or
similar real values but, instead, include parameters that can
be instantiated with specific objects. Actions like putInto
and putAway account for different object/location configura-
tions, although the motor programs that implement these ac-
tions do not necessarily make such distinctions. (The com-
plete action list has a larger set of such actions.) The findout-
open action is an example of a high-level sensing action that
directs the robot to gather information about the world state
that is not normally provided as part of its regular sensing
cycle. From the planner’s point of view, an action’s sensory
effects are assumed to only change the planner’s knowledge
state, while leaving the world state unchanged.

Each planning level action is treated as an individual OAC
with its own identifier and transition function corresponding
to the action’s preconditions and effects. All planning level
OACs share a common state space consisting of the high-
level predicates and functions. Each OAC also maintains a
measure, M, of its reliability, which is updated by the plan
execution monitor (see below). Currently, PKS does not use
this information (or any probabilistic measures) during plan
generation, but instead relies on its ability to reason about
incomplete information and replan from action failure.

As an example, consider the situation in the testing do-
main where two unstacked and open objects obj1p and obj2p

are on a table, the planner can construct the following plan

for clearing all open objects from the table:
graspD(obj2p),
putInto(obj2p, obj1p),
graspD(obj1p),
putAway(obj1p).

In this plan, obj2p is grasped from the table using grasp type
D (an overhand grasp) and put into obj1p, before the stacked
objects are grasped and removed to the shelf.

The planner can also build more complex plans using
sensing actions. For instance, if the planner is given the goal
of removing the open objects from the table in the example
scenario, but does not know whether object obj3p is open or
not, then it might construct the conditional plan:

findout-open(obj3p),
branch(open(obj3p))
K+ :

graspA(obj3p),
putAway(obj3p)

K− :
nil.

This plan senses the truth value of the predicate open(obj3p)
using findout-open and reasons about the possible outcome
of this action. As a result, two branches are included in the
plan denoting potential execution paths: if open(obj3p) is
true (the K+ branch) then obj3p is grasped and put away; if
open(obj3p) is false (the K− branch) then no action is taken.

State Generation and OAC Interaction
From an integration point of view, the robot/vision system is
linked to the planning level through a component which me-
diates between the state spaces and OACs used by the two
levels of the system. Since the planner is not able to han-
dle raw sensor data as a state description, or directly con-
trol the robot, the low-level observations generated by the
robot/vision system must be abstracted into a language the
planner understands, and planned actions must be converted
into appropriate robot-level motor programs.

For state space information, sensor data is “wrapped” and
reported to the planner in the form of a fluent-based sym-
bolic state representation that includes predicates and func-
tions. Currently, the mappings between certain sensor com-
binations and the corresponding high-level fluents (i.e., the
Γi functions) are simply hardcoded. For example:
• inGripper, gripperEmpty: Initially the gripper is empty

and the predicate gripperEmpty is formed. As soon as the
robot grasps an object (objXr), and confirms that the grasp
is successful by means of the gripper not closing up to
mechanical limits, the system knows that it has the object
in its hand and can form a predicate inGripper(objXp).
Releasing the object returns the gripper to an empty state.

• reachableX : Based on the position of a circle forming the
top of a cylindrical object in the scene we can compute
possible grasp positions (for the different grasp types) for
each object. Using standard robotics path planning meth-
ods we then compute whether or not there is a collision-
free path between the start position and the gripper pose
needed to reach the object for a particular grasp.

• open: Objects are not assumed to be “open.” Unlike the
above properties which are determined directly from or-
dinary sensor data, the robot must perform an explicit test
to determine an object’s openness. In this case, the robot
attempts to use its gripper to “poke” inside the potential
opening of an object. If the robot encounters a collision
(determined by the FT sensor), the object is assumed to
be closed. Otherwise, we assume the object is open.

To compute these predicates, the mediator interacts with
the robot/vision system to maintain a snapshot of the cur-
rent world state which, besides the state information neces-
sary for the planner, also contains information needed for
consistency and action computations. In particular, object
positions are represented here. To cope with sensor noise
(especially the vision-based information about the number
and location of circles) a simple mechanism to avoid spuri-
ous object disappearance and appearance is employed.

From the planner’s point of view, it begins operation with-
out any information about the state of the world. After an
initial exploration of the environment, the robot/vision sys-
tem begins to gather observations and generate (partial) state
reports about the current set of objects it believes to be in the
world, along with the properties it senses for those objects.
This observation set (converted into a fluent-based represen-
tation) is then sent to the planner and used as its initial (in-
complete) knowledge state: the predicate and function in-
stances are treated as known state information, with all other
state information considered to be unknown. Subsequent
state reports are interpreted by the plan monitor (see below)
and used to update the reliability of high-level OACs.

High-level planning actions, in the form of OACs, must
also be mapped to their appropriate low-level counterparts,
for execution by the robot system in the real world. We cur-
rently assume that the set of action schema is supplied to the
planner as part of its input, as are the mappings from plan-
ning actions to robot motor programs (the Π function).

For instance, the high-level OAC graspD is realised on the
lowest level as a mapping to an object-independent OAC,
graspDr.2 This low-level OAC requires the object position
(retrieved using the object label as an index) as an input to
computing suitable grasping positions. The preconditions
of this OAC require that there be a grasping position on
the brim of the object for which a collision free path from
the current position to the grasp position exists. The mo-
tor program associated with this OAC is a motion sequence
that first completely opens the gripper’s fingers, followed
by a movement of the arm along the joint trajectory and,
lastly, closes the fingers and lifts the arm. After the motor
program has been executed the expected outcome state ex-
presses that the fingers should no longer be totally open nor
totally closed. In this case, closed fingers indicate that the
action failed and no object has been grasped.

Plan Execution and Failure Recovery
Once a plan is generated, the planning level interacts with
the robot/vision level (through the mid-level mediator) to ex-

2In general, a high-level OAC may be realised by multiple
robot-level OACs.

(a) graspD(obj2p) (b) putInto(obj2p, obj1p)

(c) graspD(obj1p) (d) putAway(obj1p)

Figure 4: Executing a high-level plan to clear a table.

ecute the plan. Actions are sent to the robot one at a time,
where they are converted into motor programs and executed
in the world. A stream of observations is also generated,
arising from the executed motor programs, and processed
into high-level state information. Upon action completion
the robot/vision level returns this information to the higher
reasoning levels, along with an indication of the success or
failure of the action which are used to update the reliabil-
ity measure M of the high-level OACs. The execution cycle
then continues. For instance, Figure 4 shows the execution
of the four step plan described above for clearing a table.

An essential component in this process is the plan execu-
tion monitor, which assesses action failure and unexpected
state information resulting from feedback provided to the
planner from the execution of planned actions at the robot
level. The execution monitor operates in conjunction with
the planner and mid-level mediator, and is responsible for
controlling replanning and resensing activities in the system.
In particular, the difference between predicted and observed
states are used to decide between (i) continuing the execu-
tion of an existing plan, (ii) asking the vision system to re-
sense a portion of a scene at a higher resolution in the hope
of producing a more detailed state report, and (iii) replan-
ning from an unexpected state using the current state report
as a new initial planning state. The plan execution moni-
tor also has the important task of managing the execution of
plans with conditional branches, resulting from the inclusion
of high-level sensing actions. In each case, the decision of
the monitor depends on the type of action being processed
and the state information returned by the robot.
Continuing a plan’s execution During plan execution, ac-
tions are delivered to the lower control levels for execution
on the robot. After the execution of each action, a state re-
port representing the observed state of the world is returned
to the plan monitor and compared against the planner’s pre-
dicted state as constructed during planning, to determine
if plan execution should continue or resensing/replanning

(a) Object is not open (b) Object is open

Figure 5: Testing the openness of an object.

should be activated. Since states in our testing domain tend
to be partial, we currently use a limited horizon lookahead
method, that attempts to verify that the preconditions for the
next n actions in the plan are satisfied in the current (partial)
state, and the states that follow when the predicted effects
of those actions are applied. (In our testing domain n = 1
is often sufficient to ensure good performance.) This means
that it is possible for an action to only achieve some of its
effects and for the plan to continue, provided the action did
not report that it outright failed, and the state is sufficiently
correct to ensure the execution of the next action in the plan.
(Thus, we defer possible replanning over plan continuation
if possible.) If a state match is successful, the monitor then
proceeds with the current plan. Otherwise, resensing is con-
sidered as a secondary test before replanning (see below).

Sensing actions and conditional plan execution The plan
execution monitor also has the added task of managing the
execution of plans with sensing actions and associated con-
ditional plan branches. When a high-level sensing action is
encountered in a plan it is sent to the robot/vision level like
any other action and executed on the robot (as determined
by the Π mappings). The actual execution of a sensing ac-
tion is left to the lower control level which can make more
informed decisions about motor program execution. For in-
stance, the findout-open action in our example domain is
executed at the robot level as a combination of “physical”
action (e.g., “poking” an object to determine its openness)
and “observational” action (i.e., observing the result); as far
as the planner is concerned, the action is executed under the
assumption that it is knowledge producing and will return an
expected piece of information. (Figure 5 shows the execu-
tion of findout-open by the robot in the case where (a) an
object is not open and (b) an object is open.) The sensing re-
sult will subsequently be observed by the robot system and
returned to the planner as part of the state update cycle.

Plans may also have conditional branch points resulting
from sensing actions. When faced with a branch in a plan,
the plan execution monitor makes a decision as to the correct
plan branch it should execute, based on its current knowl-
edge state. If only partial state information is available, but
the required information needed for branch determination is
missing (e.g., due to a failure at the robot/vision level), re-
sensing or replanning is triggered. For instance, the exam-
ple conditional plan given above includes the branch point
branch(open(obj3p)), i.e., branch on the truth of the fluent
open(obj3p). If open(obj3p) is true according to the plan-
ner’s knowledge state then the “positive” (K+) branch of
the plan is followed and the next action is considered; if

(a) (b)

Figure 6: Resensing the scene using the region of interest
capabilities of the high resolution cameras.

¬open(obj3p) is true then the “negative” (K−) branch is fol-
lowed. If the planner has no information about open(obj3p)
then replanning or resensing is activated. It is important
to note that the robot/vision system will never be aware of
the conditional nature of a plan, and will never receive a
“branch” action. From the point of view of the robot, it will
only receive a sequential stream of actions.

Resensing at the monitoring level Sensing also plays a role
during plan monitoring as a strategy for improving the moni-
tor’s accuracy. When the monitor has determined an action’s
predicted effects do not match the observed state, resensing
is considered. At this point, the accuracy of the action’s pre-
dictions are checked by comparing the M component of the
high-level OAC, weighted together with the M components
of the OACs of the underlying motor programs which imple-
ment this action (the Π mapping), against a threshold value.
If the accuracy measure falls below the threshold (i.e., the
predictions are considered too spurious), then replanning is
activated; otherwise, resensing is performed.

When resensing is required, the plan monitor provides the
vision system with a list of the objects considered relevant
to the execution of the action that is reported to have failed,
based on the parameters in the high-level action description.
This information lets the vision system use its high reso-
lution camera to target particular regions of interest in the
scene with greater resolution, to reevaluate the sensors that
provide information about these objects. New state informa-
tion returned by this operation may help the monitor decide
between continuing a plan’s execution and replanning.

For instance, Figure 6(a) shows the state of the world be-
fore the graspD(obj2p) action in our example plan for clear-
ing a table is executed and obj2p is grasped; both objects in
the scene are correctly detected and identified. After ex-
ecuting graspD(obj2p), however, it is possible that obj1p

may no longer be detected, leading the monitor to resense
both obj1p and obj2p since the next action in the plan,
putInto(obj2p, obj1p), depends on these two objects. In Fig-
ure 6(b), the old position of obj1p is resensed, leading to a
rediscovery of the object. The old position of obj2p is also
resensed to confirm that it is no longer on the table. In this
case, the conditions in the state are sufficient for the monitor
to decide that the next action in the plan can be executed.

Replanning When the monitor determines that an action
has failed based on the available (resensed) state informa-
tion, a new plan is constructed for the given goal using the
current state as the planner’s new initial knowledge state. We
use rapid replanning techniques, rather than plan repair, due

to the success of planners like FF-Replan (Yoon, Fern, and
Givan 2007). This technique also provides a way of over-
coming PKS’s inability to work with probabilistic represen-
tations: if a plan fails we direct PKS to construct an alternate
plan for achieving the goal. So far this technique has proven
to be effective during testing in our example domain.

Discussion and Conclusions
We believe OACs provide a useful tool for overcoming some
of the challenges surrounding the representation of affor-
dances, actions, and state change in real-world robot sys-
tems: OACs facilitate the description of different system
components in terms of a common representation and com-
mon set of interfaces. Although we have grounded many of
our system components in terms of the OAC concept, and
can describe processes like object discovery and action ex-
ecution in terms of OACs, our work is preliminary and we
have not used this representation to its full potential.

For instance, while our OACs maintain a measure of re-
liability (i.e., the M measure), this property is not signifi-
cantly used in our system. We are currently exploring how
to improve the reliability of lower-level OACs based on state
observations, which could in turn “refine” related higher-
level OACs. Closely related to OAC update is the idea of
learning completely new OACs. To this end, we are inves-
tigating how high-level action schema (i.e., planning level
OACs) can be learned directly from (partial) state snapshots
provided by the robot level (Mourão, Petrick, and Steedman
2008). Furthermore, we would also like to automatically in-
duce the mapping between OACs at different levels. Thus,
the OACs in this paper are not as fully featured as those of
(Krüger et al. 2009) and implementing the full set of OAC
properties remains a future goal of this work.

The robot/vision components of our system are also be-
ing improved. After a recent significant increase in the fre-
quency at which the robot/vision level can provide state up-
dates, we are exploring a more sophisticated mechanism to
cope with the sensor noise using multiple consecutive up-
dates. In the future we will also investigate whether a prob-
abilistic framework can increase the reliability of the infor-
mation provided to the planning level. More work is also
needed to properly compare our approach to other existing
architectures in the literature.

Although this work is preliminary, we have implemented
a framework with all the control mechanisms described here.
This has enabled us to test our system in a domain similar to
the one described in the paper, but with more actions, more
objects, and more complex plans. While the results of our
initial experiments look promising, we are also in the pro-
cess of transferring some of our ideas to a humanoid robot
that can operate in a real-world kitchen with real-world ob-
jects and appliances. This will provide us with a challenging
environment to test the scalability of our system and, in par-
ticular, our approach to planning and plan execution.

Acknowledgements
This work was partly funded by the European Commission
through the PACO-PLUS project (FP6-2004-IST-4-27657).

References
Aarno, D.; Sommerfeld, J.; Kragic, D.; Pugeault, N.; Kalkan, S.;
Wörgötter, F.; Kraft, D.; and Krüger, N. 2007. Early reactive
grasping with second order 3D feature relations. In The IEEE
International Conference on Advanced Robotics.
Başeski, E.; Kraft, D.; and Krüger, N. 2009. A hierarchical 3d
circle detection algorithm applied in a grasping scenario. In Proc.
of VISAPP-09, 496–502.
Detry, R.; Pugeault, N.; and Piater, J. 2009. A probabilistic frame-
work for 3D visual object representation. IEEE Transactions on
Pattern Analysis and Machine Intelligence. To appear.
Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A new approach to
the application of theorem proving to problem solving. Artificial
Intelligence 2:189–208.
Geib, C.; Mourão, K.; Petrick, R.; Pugeault, N.; Steedman, M.;
Krueger, N.; and Wörgötter, F. 2006. Object action complexes
as an interface for planning and robot control. In IEEE-RAS
Humanoids-06 Workshop: Towards Cognitive Humanoid Robots.
Kraft, D.; Pugeault, N.; Başeski, E.; Popović, M.; Kragic, D.;
Kalkan, S.; Wörgötter, F.; and Krüger, N. 2008. Birth of the
Object: Detection of Objectness and Extraction of Object Shape
through Object Action Complexes. Special Issue on ”Cogni-
tive Humanoid Robots” of the International Journal of Humanoid
Robotics 5:247–265.
Krüger, N.; Piater, J.; Wörgötter, F.; Geib, C.; Petrick, R.; Steed-
man, M.; Ude, A.; Asfour, T.; Kraft, D.; Omrčen, D.; Hommel,
B.; Agostini, A.; Kragic, D.; Eklundh, J.-O.; Krüger, V.; Tor-
ras, C.; and Dillmann, R. 2009. A formal definition of object-
action complexes and examples at different levels of the process-
ing hierarchy. PACO-PLUS Technical Report, available from
http://www.paco-plus.org/.
Krüger, N.; Lappe, M.; and Wörgötter, F. 2004. Biologically Mo-
tivated Multi-modal Processing of Visual Primitives. The Inter-
disciplinary Journal of Artificial Intelligence and the Simulation
of Behaviour 1(5):417–428.
McDermott, D. 1998. PDDL – The Planning Domain Definition
Language. Technical Report CVC TR-98-003/DCS TR-1165,
Yale Center for Computational Vision and Control.
Mourão, K.; Petrick, R. P. A.; and Steedman, M. 2008. Using
kernel perceptrons to learn action effects for planning. In Proc. of
CogSys 2008, 45–50.
Murray, R.; Li, Z.; and Sastry, S. 1994. A mathematical introduc-
tion to Robotic Manipulation. CRC Press.
Pednault, E. P. D. 1989. ADL: Exploring the middle ground
between STRIPS and the situation calculus. In Proc. of KR-89,
324–332. Morgan Kaufmann.
Petrick, R. P. A., and Bacchus, F. 2002. A knowledge-based
approach to planning with incomplete information and sensing.
In Proc. of AIPS-2002, 212–221.
Petrick, R. P. A., and Bacchus, F. 2004. Extending the knowledge-
based approach to planning with incomplete information and
sensing. In Proc. of ICAPS-04, 2–11.
Pugeault, N. 2008. Early Cognitive Vision: Feedback Mech-
anisms for the Disambiguation of Early Visual Representation.
Ph.D. Dissertation, Informatics Institute, University of Göttingen.
Yoon, S.; Fern, A.; and Givan, R. 2007. FF-Replan: A baseline
for probabilistic planning. In Proc. of ICAPS-07, 352–359.

