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This deliverable consists of 8 manuscripts [1, 2, 3, 4, 5, 6, 7, 8], appearing in or submitted to internationally
recognized peer-reviewed journals and conferences.

The objective of WP3 is to define representations of human activity involving objects in the surrounding
world in terms of Object-Action Complexes (OACs). For a formal definition of OACs, see the report1, found
at http://www.paco-plus.org/.

The representations should be such that a robot can observe the activity being performed by a human,
represent it in terms of a sequence of OACs, map this sequence to its own embodiment, and perform the
corresponding sequence of OACs. The application of this in the PACO-PLUS project is visual robot learning
from human demonstration.

The following aspects of an OAC are relevant to consider for learning from demonstration purposes:

• An OAC is associated with a set of attributes with associated values. The attributes are aspects of
the scene in which the action takes place, relevant to the action; the most obvious attribute is the
presence/non-presence of a certain object class in the scene. Certain attribute values are prerequisites
for the OAC to take place, e.g., the scene presence of a certain object class. Others can be changed
during the execution of the OAC, e.g., the filling level of a container during pouring from that con-
tainer.

• An OAC is associated with a prediction function with which it is possible to estimate how the state
of the scene – or rather, those aspects of the scene associated with the OAC’s attributes – will change
during the execution of the OAC. The prediction function can also encode the range of initial attribute
values that make execution of the OAC possible.

Apart from this, the OAC representation1 comprises functionality for evaluating the actual outcome of the
OAC when executed, compared to the belief encoded in the prediction function. This makes it possible
for a robot (or an embodied agent in general) to refine its OAC representation through exploration, after
learning an initial model from a human (or other agent). However, this aspect of the learning of OACs from
demonstration is not discussed in this deliverable.

In the following, the different contributions are described in Sections 1 (relating to Tasks 3.1.1, 3.2.1), 2
(relating to Tasks 3.1.2, 3.2.2), and 3 (relating to Tasks 3.1.3, 3.2.3), respectively.

1. Object Centered Action Representation

In the work [2] we discuss our novel approach Tracking in Action Space (TAS). The TAS concept is com-
pletely dependent on the OAC concept without which it would not be possible. Many action recognition
approaches rely on a functioning 3D human body tracking methods approach. Here, the action recognition
is considered as a two step bottom-up process of first tracking the human 3D pose and then recognition the
action based on the recovered 3D poses. The TAS concept, on the other hand, is a top-down approach. The
computation is embedded into a particle filtering concept: First, the TAS approach makes a guess about an
action by sampling from a prior density over the set of possible actions (action prior) . Then, the guessed
action gives rise to a pose which can be cross-checked with the input image. The guessed action random
variable from the action prior is multi-dimensional and contains information on a) which action it is, b) the
timing /phase in that action and c) the parameters of that action (e.g. where to point at or where to reach and

1N. Krüger, J. Piater, C. Geib, R. Petrick, M. Steedman, F. Wörgötter, A. Ude, T. Asfour, D. Kraft, D. Omrcen, A. Agostini,
R. Dillmann, Object-action complexes: Grounded abstractions of sensorimotor processes, submitted to Robotics and Autonomous
Systems, 2010
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grasp). Apart from several computational advantages (such as decreased dimensionality of the parameter
space), the TAS concept requires a good action prior. This prior is conditioned by

• the objects on which the actions are being executed: The object affordances constrain which action
can be executed on it, and the object state (location, size, orientation, weight, etc.) constraints the
parameters of that action

• the action that was executed earlier: As actions are often executed in a certain ordered sequence (see
also [4, 8]) the previously executed action and its parameters also conditions the action prior.

The article [3] presents a method to object categorization according to function, i.e., learning the affordances
of objects from human demonstration. Affordances as a concept is closely linked to OACs, and the method
could also be descried as a means to learn OACs from human demonstration. Object affordances (function-
ality) is inferred from observations of humans using the objects in different types of actions. The method is
able to simultaneously segment (in time) and classify human hand actions, and detect (in space) and classify
the objects involved in the action.

The scene attributes considered in the system are the presence/non-presence of a number of object classes in
the vicinity of the human. Different OACs, i.e., different combinations of human actions and objects present
near the human, have different prediction functions. The prediction functions are represented as conditional
probabilities over OAC class, conditioned on the human motion and object presence during the execution of
the OAC.

2. Learning Grammars for Manipulation Actions

In the works [4, 8] we discuss two different approaches on learning action grammars for manipulative actions
on objects. In the earlier work [8] we developed a statistical framework along the line of hidden Markov
models that allows to cluster observed trajectories (e.g. as they come from the human body parts) and cluster
them into their common parts. This way the common parts become the alphabet of action primitives and
the rules that govern how these primitives are used to form the actions are modeled with grammars. One
observation we made in [8] was that the analysis of trajectories does not usually lead to the desired results
due to the lack of a proper metric between the trajectories. When using an Euclidean distance measure in
the space of trajectories (Cartesian space of 3D locations or space of joint angles were investigated) then
the observation was that different locations of the human actor or the involved object results in completely
different trajectories for the same action. This means that if either the human actor or the object moves,
we lose the possibility of comparing the trajectories in a sensible way. As a solution, we propose in [4]
to approach the problem of finding the action alphabet in a different space. In [4] we start from observing
that human actions can be interpreted from two different (but possibly equivalent) perspectives: a) from the
perspective of the space of trajectories of the human body parts (as done in [8]) and b) from the perspective
of the effect that an action has on the scenario. For example a push action on some object A has the effect
that the location of object A changes. Consequently, in [4] we identify the set of action primitives based on
the effects that are common across the different training actions. Using the clustering in the effect space and
propagating it to the space of trajectories, we are able to identify equivalence classes of trajectory pieces
where each equivalence class contains trajectories that have the same effect on the objects in the context. In
other words, we use the effect of the actions trajectories on the scene as the metric between the trajectories.
This means, while we failed to identify the action primitives based solely on the observed trajectories, the
use of objects and their state provides us with a very good solution for action primitive detection. Indeed,
considering the effect of the action primitives, one is tempted identify this effect with the semantics of the
corresponding primitive.
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3. 3D Articulated Hand and Upper Body Tracking

The work presented in [5, 6, 7] concerns a method for vision based estimation of the pose of human hands
in interaction with objects. Despite the fact that most robotics applications of human hand tracking involve
grasping and manipulation of objects, the majority of methods in the literature assume a free hand, isolated
from the surrounding environment. Grasping hand reconstruction is a more challenging problem than the
reconstruction of hands in isolation, since the object often occludes large parts of the hand. However, for our
applications where objects are manipulated by the human, it is necessary to handle severe object occlusion.
This hand tracking system functions in real time, and is a prerequisite for the OAC recognition system [3]
described in Section 1.

The hand tracking system was integrated with the upper body tracking system developed at the University of
Karlsruhe; the integration is described in [1]. Experiments demonstrated the possibility to map the grasping
actions of a human to the Armar III robot using the two integrated tracking systems. These grasping actions
are highly dependent on the type and functionality of the grasped object. They can thus be regarded as OACs
with attributes corresponding to object shape.
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Grasp Recognition and Mapping on Humanoid Robots

Martin Do, Javier Romero, Hedvig Kjellström, Pedram Azad,
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Abstract— In this paper, we present a system for vision-based
grasp recognition, mapping and execution on a humanoid robot
to provide an intuitive and natural communication channel
between humans and humanoids. This channel enables a human
user to teach a robot how to grasp an object. The system com-
prises three components: human upper body motion capture
system which provides the approaching direction towards an
object, hand pose estimation and grasp recognition system,
which provides the grasp type performed by the human as
well as a grasp mapping and execution system for grasp
reproduction on a humanoid robot with five-fingered hands.
All three components are real-time and markerless. Once an
object is reached, the hand posture is estimated, including
hand orientation and grasp type. For the execution on a
robot, hand posture and approach movement are mapped and
optimized according to the kinematic limitations of the robot.
Experimental results are performed on the humanoid robot
ARMAR-IIIb.

I. INTRODUCTION

A humanoid robot’s capability of autonomously adapting
and acting in new and unstructured environments is very
limited. In the majority of cases, a skilled and experienced
user is needed for the programming in order to adapt an
existing action to a new situation. To enable teaching of
a robot by non-expert users, a natural intuitive interface
is needed. Since imitation presents an obvious solution for
tackling this problem, this field has received great interest in
humanoid robotics. The benefit of exploiting demonstration
is clearly revealed in [1], where an anthropomorphic arm is
capable of balancing a pole in the first trial after observing
a human.

A challenging problem where a robot could greatly benefit
from a human demonstration is an object grasping task. Such
a task involves the control of several degrees of freedom,
visual servoing, tactile feedback, etc., turning it to a highly
complex task. About the grasp action, a grasp can be divided
in two stages: an approach stage and final grasp stage. Due
to high object variety concerning shape, size, and mass,
determining an adequate approach movement and selecting
a suitable grasp type increase the chances that an object is
successfully grasped. Instead of telling the robot explicitly
which approach movement and which grasp type shall be
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used, it is desirable to have a system which enables the robot
to observe a human during grasp execution and to imitate
the demonstration. For the implementation of such a system,
various problems have to be tackled, like observation of the
human performing the grasp, the mapping of the grasp, and
the final execution on the robot.

An important part of the grasp imitation system is the
block in charge of getting information about the arm and
hand movements. In order to provide this information, the
approach movement of the arm as well as the hand pose have
to be recognized. Aiming towards ease of use, markerless
systems seem to be the most obvious solution for the
observation of human grasps since, besides vision sensors,
additional equipment is avoided and the preparation effort
is kept to a minimum. However, markerless 3D motion
capturing and reconstruction of hand pose based on image
data are extremely difficult problems due to unstructured
environments, the large self-occlusion, high dimensionality
and non-linear motion of the arm and the fingers.

Besides the perception modules, another crucial part of an
imitation system consists of the mapping and the execution of
an observed human grasp on a humanoid robot. Due to severe
constraints of mechanical systems and differences between
the human and the robot’s embodiment, a large number of
requirements arise, which are difficult to be satisfied at once.
Towards enabling a humanoid to imitate a human grasp,
our system integrates several subsystems and methods. First,
using a stereo camera setup human observation is initiated
by capturing upper body motion and scanning the scene for
known objects to attain information on the approach stage.
Subsequently, grasp classification and hand orientation are
provided through the estimation of the full hand pose in a
non-parametric fashion. Finally, the motion data is gathered
and mapped onto the robot for execution. The mapping is
accomplished via a standardized interface and the ensuing
execution is achieved by means of non-linear optimization.

II. RELATED WORK

Several approaches have been made to create a markerless
human motion capture system for humanoid robots. Espe-
cially, image-based approaches have been a major focus of
this field. These approaches are either search-based ([2], [3]),
utilize an optimization approach based on 2D-3D correspon-
dences [4], [5], or are based on particle filtering. In [6], it
was shown that human motion can be successfully tracked
with particle filtering, using three cameras positioned around
the scene of interest.

978-1-4244-4588-2/09/$25.00 ©2009 IEEE 465



Towards imitation of human motion by a robot, the map-
ping and execution of motion capture data are issues whereas
possible solutions pursue strategies which either make use of
artificial markers and landmarks or which are based on the
transfer and post-processing of joint angles. Marker-based
approaches are presented in [7] and [8] where methods based
on minimization of the mismatch between robot and human
markers are introduced. However, in [9] and [10], joint angles
of a demonstrators posture are determined and transferred to
the robot for execution. Due to joint and velocity constraints,
a scaling and transformation process must be performed in
order to obtain a feasible joint angle configuration for the
robot.

Analysis of human hand pose for the purpose of learning
by demonstration (LbD), see [11] has been thoroughly inves-
tigated, almost exclusively with the help of markers and/or
3D sensors attached to the human hand. In the work by
Oztop [12] motion capture, color segmentation with artifi-
cially colored hands, and active-marker capture systems were
compared. Magnetic gloves have also been used extensively
because of their accuracy [13]. Another input source for LbD
systems is the passive joint measurements of the robot itself
[14]. However, the methods shown above all use invasive
devices. We envision a LbD scenario where the teaching
process can be initiated without calibration and where the
robot-user interaction is as natural as possible. For this
reason, we want to reconstruct the hand posture in a visual
markerless fashion.

Methods for hand pose estimation that are not constrained
to a limited set of poses can largely be classified into
two groups [15]: I) model based tracking and II) single
frame pose estimation. Methods of type I) usually employ
generative articulated models [16], [17], [18], [19]. Since the
state space of a human hand is extremely high-dimensional,
they are generally very computationally demanding, which
currently makes this approach intractable for a robotics
application. Methods of type II) are usually non-parametric
[20], [21]. They are less computationally demanding and
more suited for a real-time system, but also more brittle
and sensitive to image noise, since there is no averaging
over time. The method presented here falls into the second
approach. However, it takes temporal continuity into account
and it can be used for online real-time reconstruction.

III. GRASP OBSERVATION

As mentioned before, we assume that a grasp consists of
an approaching stage and a final grasp stage. The observation
of the whole grasping process involves recognition of the
grasp type, estimation of the approach arm movement and
object detection. Following the target of having an intuitive
and natural programming interface for robots, we use a
markerless human motion capture system for the observation
of human motion using the stereo vision system of the robot’s
head [22]. The head has two eyes and each eye is equipped
with two cameras, one with a wide-angle lens for peripheral
vision and one with a narrow-angle lens for foveal vision.

First, the robot recognizes known objects in the scene and
starts capturing human motion. The hand pose estimation
system is triggered as soon as the human hand is in the
vicinity of the object. To obtain a close-up of the hand, the
foveal cameras are used. The grasp observation is finished
with the classification of the observed human grasp.

A. Hand Pose Estimation
The input to the method is a sequence [It], t = 1, . . . , n

of monocular images of the human hand [21].
In each frame It, the hand is segmented using skin color

segmentation based on color thresholding in HSV space. The
result is a segmented hand image Ht.

The shape information contained in Ht is represented with
a Histogram of Oriented Gradients (HOG). This feature has
been frequently used for representation of human and hand
shape [23], [24], [25]. It has the advantage of being robust
to small differences in spatial location and proportions of
the depicted hand, while capturing the shape information
effectively.

1) Non-parametric Pose Reconstruction: In this section,
we omit the time index and regard the problem of recon-
structing a single pose p from a single HOG x.

Our goal is to obtain the grasp class and orientation of the
human hand. We can infer this information from the pose
p of the hand, since all this information is stored for each
entry of the database. Therefore, we want to find the mapping
p̂ = M(x), where p̂ is the estimated 31D hand pose in terms
of global orientation (lower arm yaw, pitch, roll) and joint
angles (3 wrist joint angles, 5 joint angles per finger) , and x
is the observed 512D HOG representation of the hand view,
described in Section III-A.

The mapping function M can be expected to be highly
non-linear in the HOG space, with large discontinuities. Fol-
lowing [21], M is therefore represented non-parametrically,
i.e., as a database of example tuples {〈xi,pi〉}, i ∈ [1, N ].
Due to the high dimensionality of both the HOG space
(512D) and the state space (hereafter denoted JOINT space,
31D), the database needs to be of a considerable size to cover
all hand poses to be expected; in our current implementation,
N = 90000. This has two implications for our mapping
method, as outlined in the subsections below.

2) Generation of Database Examples: Generating a
database of 105 examples from real images is intractable.

(a) HOG x, JOINT p (b) HOG x1, JOINT p1 (c) HOG x2, JOINT p2

Fig. 1. Ambiguity in mapping from HOG space to JOINT space. Even
though it is visually apparent that ‖p−p2‖ # ‖p−p1‖ in JOINT space,
database instance 1 will be regarded as the nearest neighbor as ‖x−x1‖ <
‖x−x2‖. Note that the object in the hand just contributes with occlusion of
the hand in HOG extraction, as it is then colored uniformly with background
color.
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Instead, we used the graphics software Poser 7 to generate
synthetic views Hsynth

i of different poses. The database
examples are chosen as frames from short sequences of
different grasp types from different view points, different
grasped objects, and different illuminations.

The grasp types are selected according to the taxonomy
developed in the GRASP project1, which integrates the
Cutkosky [26], Kamakura [27], and Kang [28] taxonomies.
The whole database is also available at the same place.

From each example view Hsynth
i , the tuple 〈xi,pi〉 is

extracted, where xi is generated from Hsynth
i as described in

Section III-A, and pi is the pose used to generate the view
Hsynth

i in Poser 7.
3) Approximate Nearest Neighbor Extraction: Given an

observed HOG x, the goal is to find an estimated pose
p̂ = M(x). With the non-parametric mapping approach, the
mapping task p̂ = M(x) is one of searching the database
for examples 〈xi,pi〉 such that xi ≈ x. More formally, Xk,
the set of k nearest neighbors to x in terms of Euclidean
distance in HOG space, di = ‖x− xi‖ are retrieved.

As an exact kNN search would put serious limitations on
the size of the database, an approximate kNN search method,
Locality Sensitive Hashing (LSH) [29] is employed. LSH is a
method for efficient ε-nearest neighbor (εNN) search, i.e. the
problem of finding a neighbor xεNN for a query x such that

‖x− xεNN‖ ≤ (1 + ε)‖x− xNN‖ (1)

where xNN is the true nearest neighbor of x. The com-
putational complexity of εNN retrieval with LSH [29] is
O(DN

1
1+ε ) which gives sublinear performance for any ε >

0.
4) The Mapping M is Ambiguous: The database retrieval

described above constitutes an approximation to the true
mapping p̂ = M(x), robust to singularities and disconti-
nuities in the mapping function M.

However, it can be shown empirically that M is inherently
ambiguous (one-to-many); substantially different poses p can
give rise to the similar HOGs x [23]. An example of this is
shown in Figure 1.

Thus, the true pose p can not be fully estimated from a
single HOG x (using any regression or mapping method);
additional information is needed. In the next section, we de-
scribe how temporal continuity assumptions can be employed
to disambiguate the mapping from HOG to hand pose.

5) Time Continuity Enforcement in JOINT Space: We
now describe how temporal smoothness in hand motion can
be exploited to disambiguate the mapping M.

Consider a sequence of hand poses [pt], t = 1, . . . , n,
that have given rise to a sequence of views, represented
as HOGs [xt], t = 1, . . . , n. Since the mapping M is
ambiguous, the k nearest neighbors to xt in the database,
i.e. the members of the set Xk, are all similar to xt but
not necessarily corresponding to hand poses similar to pt.
An important implication of this is that a sequence of hand
poses [pt], t = 1, . . . , n does not necessarily give rise to a

1www.grasp-project.eu.

TRIPOD P. SPHERE P. SPHERE

P. SPHERE

MAX

HOG

HOG
space

JOINT
space

Fig. 2. Grasp Classification with continuity enforcement in JOINT space

sequence of HOGs [xt], t = 1, . . . , n continuous in the HOG
space.

However, due to the physics of the human body, the speed
of the hand articulation change is limited. Thus, the sequence
of hand poses [pt], t = 1, . . . , n, i.e. the hidden variables,
display a certain continuity in the JOINT space. This is
illustrated in Figure 2.

The hand pose recognition for a certain frame t is therefore
divided into two stages; I) retrieval of a set of k nearest
neighbors Xk using single frame non-parametric mapping,
as described in Section III-A.1; II) weighting of the members
of Xk according to their time continuity in the JOINT space.

Let Pk be the set of poses corresponding to the kNN set
Xk found in stage I). Moreover, let p̂t−1 be the estimated
pose in the previous time step. In stage II), the members
pj , j ∈ [1, k] of Pk are weighted as

ωj = e−
‖pj−p̂t−1‖

2σ2 . (2)

where σ2 is the variance of the distance from each entry pose
pj to the previous estimated pose pt−1.

The pose estimate at time t is computed as the weighted
mean of Pk:

p̂t = (
k∑

j=1

ωjpj)/(
k∑

j=1

ωj) . (3)

The grasp class estimation Gt is obtained through a
majority voting process within the Np poses with the highest
weight ωj (for our experiments Np = 15). Gt is then
smoothed temporally taking the majority vote in a temporal
window of Nf frames (Nf = 10 in our experiments). This
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can be seen in Figure 2. The whole system runs at 10 Hz on
a 1.8 GHz single core CPU.

B. Object Recognition

For the robust recognition and accurate 6D pose estimation
of single-colored objects, in our previous work, we have
developed a model-based approach based on a combination
of stereo triangulation, matching of global object views and
online projection of a 3D model of the object [30]. The
requirement for the approach is global segmentation of the
objects, which is accomplished by color segmentation. For
training, a 3D model of the object is used to generate views
with different object orientations in simulation. Each view is
stored along with its corresponding orientation. For recog-
nition, each region candidate obtained by the segmentation
routine is matched against the database. An initial orientation
estimate is given by the stored orientation information with
the matched view. An initial position estimate is given by
the stereo triangulation result of the segmented regions in
the left and right camera image. The triangulation result of
the centroids depends on the view of the object and thus
cannot serve as a constant reference point. In order to solve
these problems, a pose correction algorithm is applied, which
make use of online projection of the 3D model. This pose
correction algorithm is an iterative procedure, which in each
iteration corrects the position vector by computing the tri-
angulation error in simulation and correcting the orientation
estimate on the basis of the updated position estimate.

C. Markerless Motion Capture

In the following, our real-time stereo-based human mo-
tion capture system presented in [31] will be summarized
briefly. The input to the system is a stereo color image
sequence, captured with the built-in wide-angle stereo pair
of the humanoid robot ARMAR-IIIb, which can be seen
in Figure 5. The input images are preprocessed, generating
output for an edge cue and a so-called distance cue, as
introduced in [32]. The image processing pipeline for this
purpose is illustrated in Figure 3. Based on the output of
the image processing pipeline, a particle filter is used for
tracking the movements in joint angle space. For tracking
the movements, a 3D upper body model with 14 DoF (6
DoF for the base transformation, 2·3 for the shoulders, and
2·1 for the elbows) consisting of rigid body parts is used,
which provides a simplified description of the kinematic
structure of the human upper body. The model configuration
is determined by the body properties like the limbs length of
the observed human subject. The core of the particle filter
is the likelihood function that evaluates how well a given
model configuration matches the current observations, i.e.
stereo image pair. For this purpose, an edge cue compares
the projected model contours to the edges in the image. On
the basis of an additional 3D hand/head tracker, the distance
cue evaluates the distance between the measured positions
and the corresponding positions inferred by the forward
kinematics of the model. Various extensions are necessary
for robust real-time application such as a prioritized fusion

segmented shirt color gradient map

segmented skin color

input image

Fig. 3. Illustration of the image processing pipeline.

method, adaptive shoulder positions, and the incorporation of
the solutions of the redundant arm kinematics. The system
is capable of online tracking of upper body movements with
a frame rate of 15 Hz on a 3 GHz single core CPU. Details
are given in [31].

IV. GRASP MAPPING

Before the execution on the robot, the approach movement
in the form of joint angle configurations and the recognized
grasp type are mapped onto the robot. In order to map
motion onto the robot, we proposed in our previous work
(see [33]) the Master Motor Map (MMM), a standardized
interface which features a high level of flexibility and
compatibility, since it allows mapping from various motion
capture systems to different robot embodiments. The MMM
provides a reference kinematic model of the human body
by defining the maximum number of DoF, currently 58, that
can be used by a human motion capture module and a robot.
Trajectories in the MMM file format can be represented in
joint angle space as well as in Cartesian space. Concerning
movements in Cartesian space, in order to enable grasping
and manipulation tasks, the MMM provides mapping of the
desired 6D pose and the grasp type on the robot’s end
effector. A proper connection via the MMM of a motion
capture module to a robot requires the implementation of a
conversion module which transforms module specific data
into the MMM file format and vice versa for overcoming
different Euler conventions, active joint sets and orders of
the joint angle values between the modules. As depicted in
Figure 4, in the current system one conversion module has
been implemented for each human motion capture system,
converting the motion capture data to the MMM format. A
third conversion module is implemented for mapping the
MMM data to the kinematics of ARMAR-IIIb.

Along with the approach movement in the form of joint
angle values the grasp type and the estimated hand orien-
tation are passed from the hand pose estimation system to
the robot through the MMM interface. According this data,
from a set of preimplemented grasp the corresponding one is
selected to be executed. To complete the grasp mapping, the
grasp type to be performed is adjusted regarding the extent
of the object shape. For this purpose, a rudimentary grasp
type adjustment is implemented, which projects the object
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Fig. 4. Structure of the entire framework.

shape onto the thumbs position such that the thumbs tip lies
on the shapes margin. The aperture of the fingers is scaled
in a way that the positions of the remaining finger tips also
approximately meet the margin of the shape. This method
works on objects with simple shape properties.

A. Grasp Execution

The grasp reproduction of ARMAR-IIIb is performed in
three different stages. The first stage describes the approach
movement of the end effector towards the object based on
the observed movement, while in the second stage the end
effector is placed at the final grasp pose. The reproduction
concludes with the execution of the recognized grasp type.
Regarding the approach stage, by mapping these joint angle
movements onto the robot, through forward kinematics one
obtains a trajectory of the TCP in Cartesian space. The
resulting trajectory is not sufficient for a goal-directed repro-
duction due to differences in the kinematic structure between
the embodiments of the robot and a human e.g. mechanical
joint constraints, differing joints and limb measurements.
Therefore, the TCP trajectory for movements such as grasp-
ing is stretched and directed towards the object position to
be reached. In order to attain a goal-directed reproduction,
which additionally should feature a high similarity to the
demonstrated human movement, in each frame, joint angles
as well as desired TCP position of the modified trajectory
have to be considered during execution. In [34], we devel-
oped an approach, which supports reproduction of observed
human motion on the robot using non-linear optimization
methods. In order to formulate an optimization problem
which comprises displacements in Cartesian space regarding
the TCP position as well as in joint angle space, a similarity
measure is defined as follows:

S(σ) = 2−

1
n

n∑
i=1

(
σ̂i

t − σi

)2

π2
−

1
3

3∑
k=1

(
p̂k

t − pk

)2

(2 · larm)2
(4)

with n representing the number of joints, σi, σ̂i
t ∈ [0, π]

and pk, p̂k
t ∈ [−larm, larm], whereas larm describes the

robot’s arm length. The reference joint angle configuration
is denoted by σ̂ ∈ Rn, while p̂ ∈ R3 stands for the desired
TCP position. The current TCP position p can be determined
by applying the forward kinematics of the robot to the joint
angle configuration σ. Based on Equation 4 and the joint
constraints {(Cmin, Cmax)} of a robot with n joints, one
obtains following constrained optimization problem:

minS′(σ) = 2− S(σ) (5)
subject to Cimin ≤ σ̂i ≤ Cimax (6)

For solving Equation 5, we apply the Levenberg-Marquardt
algorithm, since it features numerical stability and more ro-
bust convergence compared to other optimization algorithms
such as the Gauss-Newton and the steepest descent method.
Following this optimization approach a trade-off is attained,
which on the one hand results in an accurate TCP positioning
with small displacement error while it provides on the other
hand a feasible robot joint angle configuration resembling
the observed human configuration. This way goal-directed
imitation of the approach movement is achieved. For further
details, the reader is referred to [34]. For the execution
of the final grasp phase, due to errors and inaccuracies
originating from the object localization and the robot’s
mechanical elements, a displacement error arises between
the TCP and the object that has to be diminished. To achieve
exact alignment of the end effector and the robot, we make
use of visual servoing methods as presented in [35]. Within
this approach the hand and object are tracked. The resulting
distance between both is reduced and the hand orientation is
controlled. The hand orientation estimate coming from the
grasp recognition module is used to determine if the grasp
should be executed from the top or from the side. Therefore,
the hand is placed over the object if the palm orientation was
similar to the table plane, or next to the object otherwise.

V. EXPERIMENTS

A. Experimental Setup
The humanoid platform ARMAR-IIIb, a copy the hu-

manoid robot ARMAR-IIIa [36], serves as the experimental
platform in this work. From the kinematics point of view, the
robot consists of seven subsystems: head, left arm, right arm,
left hand, right hand, torso, and a mobile platform. The head
has seven DoF and is equipped with two eyes, which have
a common tilt and independent pan. Each eye is equipped
with two digital color cameras, one with a wide-angle lens
for peripheral vision and one with a narrow-angle lens for
foveal vision. The upper body of the robot provides 33 DoF:
2·7 DoF for the arms and three DoF for the torso. The arms
are designed in an anthropomorphic way: three DoF for each
shoulder, two DoF in each elbow and two DoF in each wrist.
Each arm is equipped with a five-fingered hand with eight
DoF. The locomotion of the robot is realized using a wheel-
based holonomic platform.

The proposed approach was integrated on the humanoid
platform ARMAR-IIIb and was successfully applied. For
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Fig. 5. Left: The humanoid robot ARMAR-IIIb. Right: Position-controlled
right hand with 8 DoF.

the experiments, objects were used which can be easily
identified such as single-colored cups. The experimental
setup stipulates that demonstration of the grasp is performed
in front of the robot. Observation is initiated by scanning the
scene for known objects. Once an object is found, tracking of
the human upper body is triggered leading to the capturing
process of movements in the approach stage. This process
is finished once the hand is positioned within a tolerated
distance to a specific object. At this point, observation is
switched to the hand pose estimation whereby its classifica-
tion and the outcoming orientation complete the motion data
of the grasp. As described in Section IV, the data is mapped
onto robot, optimized to its embodiment and executed. In the
execution phase, the robot searches for the same object which
was grasped in the demonstration and approaches it. Based
on the classification of the grasp type, an adequate instance
is selected from the set of implemented grasp on the robot
which is modified to the objects appearance. The hand pose
recognition system was running on an external computer,
while the rest of the system was running on ARMAR-IIIb.
The communication between the two systems was performed
through UDP sockets. It is possible to run the whole system
on the robot, but this setup was more preferable for debug-
ging purposes. Two sets of experiments were performed: in
the first one, the whole system (grasp observation, mapping
and execution) was tested with a reduced set of grasps:
power grasp from top, power grasp from side, and pinch
grasp(see Figure 6). In the second one, the set of grasps
was extended to five of them (power sphere, prismatic wrap,
parallel extension, tripod, and pinch). However, the execution
of the grasp was reduced to the hand pose, keeping the arm
still (see Figure 7).

B. Experimental Results

As depicted in Figures 6 and 7 the robot successfully
imitated the demonstrated grasp including approach and
grasp type. Since a non-linear optimization method is ap-
plied during approaching, we attained a trade-off between
the similarity of the reproduced movement concerning the
demonstration and accuracy in terms of positioning of the
end effector regarding goal-directed tasks. Furthermore, the
applied method provided a unique solution in terms of joint
angles, which standard inverse kinematics methods fail to

do due to singularities and redundancies. Nevertheless, in the
approach phase, we experienced a displacement error of max
65mm caused by kinematic inaccuracies which varies de-
pending on the cups distance regarding the end effector. The
displacement could be recovered by using visual servoing.
In order to test the grasp classification module, each grasp
was executed 20 times for the Experiment 2. The results
are shown in Table I. An overall classification accuracy
of 72% was achieved, clearly over the human baseline for
grasp recognition with similar grasps [21], with four out of
five grasp types with accuracies over 80%. The differences
between human model and synthetic had a stronger effect
in the parallel extension grasp, lowering the accuracy for
that particular grasp. Results of the grasp recognition, map-
ping and execution on the humanoids robot ARMAR-IIIb
are shown in the accompanying video submission, which
is also available under wwwiaim.ira.uka.de/users/
do/GraspRecognitionDivx.avi.

Grasp Type Illustration
Correct

Classification
Rate

Power Sphere 80 %

Prismatic Wrap 95 %

Parallel extension 50 %

Tripod 85 %

Pinch 80 %

TABLE I
GRASP TYPE CLASSIFICATION RESULTS.

VI. CONCLUSIONS

In this paper, we presented a system for grasp recognition,
mapping and execution on a humanoid robot. Human grasp-
ing activities are captured using markerless motion capture
system and mapped to the humanoid robot ARMAR-IIIb.
Human upper body tracking, object tracking and hand pose
estimation techniques are applied to perceive human object
grasping movements. The recognized grasps are mapped and
executed on a humanoid robot with a five-fingered hand.
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Abstract

To recognize human actions such as pointing at objects
(“Give me that...”), is difficult because they ought to be rec-
ognized independent of scene parameters such as viewing
direction. Furthermore, the parameters of the action, such
as pointing direction, are important pieces of information.
One common way to achieve recognition is by using 3D hu-
man body tracking followed by action recognition based
on the captured tracking data. General 3D body track-
ing is, however, still a difficult problem. But furthermore,
we would like to argue that a) 3D body tracking and ac-
tion recognition should be seen as an intertwined problem
rather than a 2 step process and b) general 3D body track-
ing for action recognition neglects one important piece of
information that can often be used to simplify it: the con-
text in which the action takes place constraints which ac-
tions are most likely to happen and which parametrization
they will have. In this paper, we are looking at human body
tracking for action recognition from a context-driven per-
spective. Instead of the space of human body poses, we con-
sider the space of possible actions of a given context and
argue that 3D body tracking reduces to action tracking in
the parameter space in which the actions live. This reduces
the high-dimensional problem to a low-dimensional one. In
our approach, we use parametric hidden Markov models to
represent parametric movements; particle filtering is used
to track in the space of action parameters. Our approach is
content with monocular video data and we demonstrate its
effectiveness on synthetic and on real image sequences. In
the experiments we focus on human arm movements.

1. Introduction
Human communicative actions such as pointing (“Give

me this”) or object grasping are typical examples of hu-
man actions in a human-to-human communication problem
[1, 15]. These actions are usually context-dependent and
their parametrization defines an important piece of their in-
formation [27, 1]. To capture these communicative actions

is challenging because a) the capturing should be indepen-
dent of scene parameters such as viewing direction or view-
ing distance and b) one needs complex action models that
allow to recover what action is performed and which pa-
rameters it has. The observation that the parameters of an
action carry important information about the meaning of the
action was already earlier pointed out by Wilson and Bobick
in [27] using the example “The Fish was this big”.

One strategy for recognizing such actions [27, 20] is to
first track the human movements using, e.g., a 3D body
tracker and to then in a second step feed these tracks
into an action recognition engine, such as, e.g., HMMs
[17, 28] or even parametric HMMs (PHMMs) [27]. Con-
sidering the first ingredient of the above outlined strategy,
it was pointed out recently again [16] that 3D tracking and
pose estimation, especially from monocular views, is non-
trivial. Common approaches are model-based generative
ones [3, 23, 24], that compare a synthesized candidate pose
with the image data.

In this paper, we would like to argue that such a 2 step ap-
proach as the above is un-necessary complication. Human
actions are usually goal-directed and are performed within
a certain context (eating, cooking etc.). Furthermore, ac-
tions are often performed on objects [8, 14] which leads to
the observation that the objects can prime the actions per-
formed on them (e.g. reaching, pointing, grasping, pushing-
forward) [10, 2]. Thus, we would like to suggest to look at
3D human body tracking from an object and context-driven
perspective: Instead of asking “What is the set of joint an-
gles that make a human model fit to the observation” we
ask “What action causes a pose that fits to the observa-
tion”. By replacing in a particle filter approach the prop-
agation model for joint angles [3] with a propagation model
for human actions we become able to re-formulate the 3D
tracking problem instead as a problem of recognizing the
action itself (incl. its parameters). In other words, instead
of having to estimate the high-dimensional parameter vec-
tor of the human body model, we sample the action and its
parameters in the low-dimensional action space. By using
a generative model for the action representation we can de-
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duce the appropriate 3D body pose from the sampled action
parameters and compare it to the input data. We call this ap-
proach Tracking in Action Space. In our work we use para-
metric hidden Markov models (PHMMs) [27] as the gener-
ative action model. While classical HMMs can recognize
essentially only a specific trajectory or movement, PHMMs
are able to model different parametrizations of a particular
movement. For example, while a common HMMs would
be able to recognize only one specific pointing action, PH-
MMs are able to recognize pointing action into different di-
rections [27]. Furthermore, (P)HMMs are generative mod-
els which means that for recognizing an observation they
compare it with a model of the expected observation. In the
experiments in this paper, our action space spans over the
human arm actions pointing, reaching, pushing, the corre-
sponding 2D coordinates of where to point at or reach to,
plus a timing parameter. One might argue that such an ap-
proach cannot be used for general 3D body tracking because
the action space will always be too limited. However, fol-
lowing the arguments in [22, 21, 6, 13, 7] that human actions
are composed out of motor primitives similarly to human
speech being composed out of phonemes, we believe that
the limited action space considered here can be generalized
to the space spanned by the action primitives. Stochastic ac-
tion grammars could be used as in [12, 6, 7] to model more
complex actions. Furthermore, [7] explains how a language
for human actions can be generated based on grounded con-
cepts, kinetology, morphology and syntax. For estimating
the action and action parameters during tracking we have
used classical Bayesian propagation over time which, as
we will discuss below, provides an excellent embedding for
tracking in action space, including the use of primitives and
action grammars. Our key contribution are:

• introduction of Tracking in Action space by posing the
3D human pose estimation problem as one of action
and action parameter recognition,

• good recovery of 3D pose and action recognition plus
action parameters

• is content with monocular video data

• potentials to run in real-time, our implementation runs
with just edge features

• concise formulation in particle filtering framework

• concept of approaching action recognition as a context
and object dependent problem.

The paper is structured as follows: In Sec. 2 we will discuss
the Tracking in Action Space in detail. Sec. 2.1 explains the
use of parametric HMMs (PHMMs) for modeling the action
space and Sec. 2.2 explains details on using the PHMMs for
tracking in action space. In Sec. 2.3, we will discuss the

calculation of the observation likelihood for a given image.
In Sec. 3, we provide experimental results for synthetic and
for real video data, and we conclude with final comments in
Sec. 4.

Related work

As it can be seen in the survey [18], early determinis-
tic methods, as gradient based methods, have been over-
come by stochastic methods due to problems as depth dis-
ambiguations, occlusions, etc. The methods rage from the
basic particle filtering, as described in [11], to, e.g., belief
propagation [9, 16]. Efficient techniques for particle filter-
ing [3, 24, 5] in combination with (simple) motion models
[23] to constrain the particle propagation or the state space
[25] are investigated since the number of required particles
generally scale exponentially with the degree of freedom.
Novel frameworks use for example multistage approaches
([16] considers the stages: coarse tracking of people, body
part detection and 2D joint location estimation, and 3D
pose inference) or implement various constrains ([9] con-
siders the constrains concerning self-occlusion, kinematic,
and appearance and uses belief propagation to infer the pose
within a graphical model). Contrary to the simple motion
models, which roughly approximate the state space used by
certain motions, for example as a linear subspace [25], ad-
vanced approaches, as for example locally linear embedding
allow to learn [4] the intrinsic low dimensional manifold, or
aim at the learning of nonlinear dynamic system (NLDS) on
motion data, as it is approached through the Gaussian pro-
cess model developed in [26] in a more efficient way. In-
terestingly for our context, the learning of NLDS requires a
vast amount of training data [26], whereas “classic” HMMs
for example can be easily trained but are limited in their ex-
pressiveness for complex motions. In our work, we use the
parametric extension to HMMs and are interested in both
the pose estimation and the uncovering the action parame-
ters.

2. Tracking in action space
In this section we want to discuss our approach for

Tracking in Action Space in detail.
We are starting our discussion looking at the classical

Bayesian propagation over time:

pt(ωt)∝
∫
P (It|ωt)P (ωt|ωt−1)pt−1(ωt−1)dωt−1, (1)

where It is the current observation, pt(ωt) the probability
density function (pdf) for the random variable (RV) ωt at
time t, P (ωt|ωt−1) the propagation density, and P (It|ωt)
the likelihood measurement of It, given ωt. If applied for
3D human body tracking, the RV ω usually specifies the set
of joint angles for some human body model (see, e.g., [3]).



The propagation density is used to constrain the RV ωt to
the most likely pose values at each time step t [5, 23, 3]. In
order to compute the likelihood P (It|ωt), a human body
model is generated using the pose values from ωt and is
then compared with the input image It.

For tracking in action space we use the RV ω to con-
trol a generative action model with ω = (a,θ, k). Here,
the parameter a identifies which action it is, θ is a vector
specifying the parameters of action a, and k is a timing pa-
rameter which specifies the timing within the action model.
In our work, we use parametric hidden Markov models (PH-
MMs) [27] which we will discuss in detail, below. We train
the PHMM for each action a on joint location data cap-
tured from human performances of the action a. Using one
PHMM for each action, the parameter a refers then to the
a-th PHMM, the parameter vector θ specifies the parame-
ters for the PHMM, e.g., where we point to or grasp at, and
the parameter k is discrete and specifies the PHMM state.
Then, the likelihood P (It|ωt) = P (It|(a,θ, k)t) is com-
puted by first using the a-th PHMM to generate the joint
location of the 3D human body pose for parameters θ and
HMM-state k. We can do this because the PHMM is trained
on joint location data for the action a, as discussed above. In
the second step, these joint angles of the 3D body pose are
translated into the corresponding 3D body model which is
then projected onto the image plane and compared to the in-
put image It. For computing the observation likelihood, we
also make use of the standard deviations of the observation
densities of the PHMM. This second step is in principle the
same as the likelihood measurement in Eq. (1). The propa-
gation density P (ωt|ωt−1) can be considerably simplified.
Assuming that a human finishes one action primitive before
starting a new one, the action identifier a is constant until
an action (primitive) is finished. If we have an action gram-
mar model for complex human actions as in [7, 6] then the
corresponding action grammar can be used to control the
progression of a. Likewise, the action parameters θ are ap-
proximately constant until the action primitive is completed.
The timing parameter k changes according to the transition
matrix of the HMM.

In the following subsections we will discuss some details
of PHMMs (Sec. 2.1), how we use the PHMMs in our track-
ing scheme (Sec. 2.2) and how we compute the observation
likelihood (Sec. 2.3).

2.1. Parametric hidden Markov models

In this section we give a short introduction to parametric
hidden Markov models (PHMMs) [27], which are an ex-
tension of the hidden Markov model (HMM) [19] through
additional parameters. The additional variables allow to
model a systematic variation within a class of modeled se-
quences. For example, for a pointing, reaching or pushing
action, the variation is given by the target location (e.g., a

location pointed at).
A hidden Markov model is a generative model. It is

a finite state machine extended in a probabilistic manner.
For an continuous (P)HMM λ = (A,B,π), the vector
π = (πi) and the transition matrix A = (aij) define the
prior state distribution of the initial states i and the transition
probability between hidden states. In continuous HMMs,
the output of each hidden state is described by a density
function bi(x), which is in our context a multivariate Gaus-
sian density bi(x) = N (x|µi,Σi). The HMM parameters
can be estimated through the Baum-Welch algorithm [19]
for a set of training sequences.

An output sequence x = x1 . . .xT can be drawn from
the model by generating step-by-step a state sequenceQ =
q1 . . . qT with respect to the initial probabilities πi and the
transition probabilities aij and drawing for each state qt the
output xt from the corresponding observation distribution
bqt(x). Generally, there is no unique correspondence be-
tween an output sequenceX and a state sequenceQ as dif-
ferent hidden state sequences can generate the same output
sequence X . Since we are interested in the temporal be-
havior and correspondence between parts of the sequence
and the state, we use a left-right model [19] to model the
trajectories of different actions. A left-right model allows
only transitions from each state to itself or to a state with a
greater state index.

The movement trajectories we are considering gener-
ally underlie a systematic variation, e.g., the pointed at
position. A general HMM can handle this only as noise
or with a great number of states. A parametric HMM
(PHMM) [27] models the systematic variation as a varia-
tion of the means of the observation distributions bθi (x),
where bθi (x) = N (x|µθ

i ,Σi). The means are functions
µθ

i = f i(θ) that are approximated for each state separately
in the training process.

In [27] a linear model and a more general nonlinear
model is used to model f i(θ). In the linear case, each func-
tion f i(θ) is of the form µi = µ̄i +Wi θ, where the matrix
Wi describes the linear variation. In the more general non-
linear case, a neural network is used for each state i that
is trained to approximate a more general nonlinear depen-
dency. For both models, the training procedures are super-
vised by providing the parametrization θ for each training
sequence. For training in the linear case, an extension of
the Baum-Welch approach is used. For the non-linear case,
a generalized EM (GEM) procedure was developed. We
will denote a PHMM with parameter θ by λθ.

2.2. Action tracking: PHMM-based

In this section we want to discuss the details of using
PHMMs for modeling the actions for the action tracking.
In our problem scenario we have a set A = {1, . . . ,M} of
actions, where we have for each action a ∈ A a trained



PHMM λθ
a . They define each action through the corre-

sponding sequences of human joint settings. On these se-
quences of joint settings, the PHMMs are trained. E.g. the
PHMM for the pointing action is trained on joint location
sequence coming from different pointing actions, including
pointing actions into different directions. We consider left-
right PHMMs with a single multi-variate Gaussian as the
observation density bi(x) = bθa,i(x) for each state i of λθ

a

with a rather small covariance.
Our human action model has the following parameters:

the value a identifies the PHMM λa. The value k speci-
fies the hidden state, i.e., the progress of the action a. The
parametrization θ (e.g., a pointing location) of the PHMM
λθ

a is used as the parameter for the observation functions
bθa,i. Hence, we have defined our random space over the
tracking parameter ωt = (a,θ, k)t.

In order to generate an action using a PHMM one simple
way is to sample the PHMM: the first state kt=0 is drawn ac-
cording to the initial distribution πa. At each time step the
state change is governed by the probability mass function
P (kt|kt−1) specified by the transition matrix Aa. The ac-
tual synthesis is then done by sampling from the observation
density bθa,kt

(x), parametrized with θ. In principle the like-
lihood for an observation It and for a given ωt = (a,θ, k)
can be computed simply by P (It|ωt) = bθa,k(It) if the ob-
servation space is the same as the one bθa,k is defined on. In
our case, P (x|ω) = bθa,k(x) defines the distribution of joint
locations of 3D body poses which generates a correspond-
ing 3D human body model (see Fig. 2, left) which is then
matched against the input image It:

P (It|ωt) =
∫

x

P (It|x)P (x|ωt)dx . (2)

Finally, the propagation density P (ωt|ωt−1) is given as fol-
lows: k is propagated as mentioned above using Aθ

a , and θ
is changed using Brownian motion. The variable a is ini-
tially drawn from an even distribution and is then kept in
this work constant for each particle. We use a particle-filter
approach [11] to estimate ω = (a,θ, k). It is worth having
a close look at this approach: The entropy of the density
pt(ωt) of Eq. 1 reflects the uncertainty of the so far de-
tected parameters. Furthermore, by marginalizing over θ
and k, we can compute the posterior probability of each ac-
tion a (see Fig. 6). And by marginalizing over a and k, we
can compute the action parameters, θ, respectively. This is
displayed in Fig. 1. The figure shows the progression of the
RV ω over time for a pointing action. The red and green
lines show the most likely pointing coordinates u and v (for
θ = (u, v)). The dotted lines show their corresponding un-
certainties. The horizontal thin lines mark the correspond-
ing correct values for u and v. As one can see, the uncer-
tainty decreases with time, and after ≈ 60 frames, the cor-
rect parameters are recovered. This is about the time when

the arm is fully stretched. In the next section, we will dis-
cuss how the observation likelihood P (It|ωt) is computed.

2.3. Observation model

We use an articulated model of the human body, see
Fig. 2 (left), where the kinematic structure is similar to the
one used in [3]. Based on this model, we compute the
observation function P (I|x) for an arm pose drawn from
P (x|ω) for a particle ωi. Here, the arm pose is defined
through x = (p, q, r), where p, q, and r are the positions
of shoulder, elbow, and finger-tip in R3. The mapping to the
model’s kinematic is purely trigonometric. However, since
the vector x is drawn from a Gaussian which is an obser-
vation density of an HMM, the lengths of the upper arm
|p − q| and forearm |q − r| are not preserved. Generally,
we set the finger-tip and shoulder positions of the model
as given through r and p. The elbow position q is then
corrected with respect to the model’s arm lengths through
refining q to the nearest possible point on the plane defined
through p, q, and r. The rather unlikely case that |p − r|
is greater than the overall arm length is mapped on an arm
pose, where the stretched arm points from the shoulder po-
sition p in the direction of r. The computation of the ob-
servation function is based on the edge information of the
arm silhouette, therefore, the contour C of the model is ex-
tracted from the rendered view for a pose x. We defined
the observation function similar to the method described in
[3] on a smoothed edge image (see Fig. 2, right), where the
pixel values are interpreted as distances to the nearest edge.
The edge distance image is calculated as follows. We cal-
culate a normalized gradient image of the observed image
I , gray values above some threshold are set to 1. The image
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Figure 1. The figure shows the progression of the current estimate
of the action parameters over time. The estimate parameters u, v
are computed as mean of all particles ω = (u, v, k). The action
parameters u, v correspond to the x-, and y-offsets to the center of
the active table-top region (x corresponds to the horizontal, y to
the deeps direction in Fig. 4). The dotted lines show the standard
deviation of the particles.



is finally smoothed with a Gaussian mask, and normalized.
This edge image, denoted by G, can be interpreted as a dis-
tance to edge image. The value of 1 − G(c) of a pixel c
can then be interpreted as distance values between 0 and 1,
where the value 1 corresponds to a pixel with no edge in the
vicinity. This distance interpretation is in some sense simi-
lar to the edge detection along normals as used in [11], but
faster to evaluate.

The observation function is computed by

P (I|x) = exp− 1
2γ2

1
|C|

∑
p∈C

(1−G(p))2 , (3)

where C is the model’s contour and G is the smoothed edge
image. A value of γ = 0.15 turned out to be reasonable in
the experiments. An extension to multiple camera views is
straight forward:

P (I|x) = exp− 1
2γ2

∑
i

1
|Ci|

∑
p∈Ci

(1−Gi(p))2 , (4)

where Ci and Gi are the corresponding contour sets and
edge images of each view i.

Figure 2. Left: We use an articulated human model, where the
skeletal structure is modeled by cones and super-quadratics. Right:
The edge image (here of the model itself) is a smoothed gradient
image, serving as a distance to edges image.
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Figure 3. The function σ(k) = 0.4 · exp(−2 loge(1/4) ·
k /#states) is used to change the diffusion of the parameters
(u, v) during the propagation step. The diffusion decreases with
increasing PHMM state number k.

3. Experiments
We have evaluated our approach on synthetic data and

on monocular video data. For the testing with real data
we captured performances of reaching and pointing move-
ments simultaneously with a single video camera and Vicon
motion capture system, the video camera was synchronized
with the Vicon system. Our experiments were carried out
on the monocular video data while the Vicon system pro-
vides us with ground truth. In this paper, we focus our atten-
tion on human arm pointing, reaching and pushing actions
in particular (see tracked sequence, Fig. 4). We call our
scenario a table-top scenario where the actions are meant
be performed on objects on a table. For each action, we
used a linear PHMM λ(u,v) trained on 20 demonstration of
each action recorded with the Vicon system. The pointing
and reaching 2D locations (u, v) at table-top cover a table-
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Figure 5. The three plots compare the estimated finger position
(red) to the true position (green) over three pointing actions. The
position value (red) is the median filtered value of the pose esti-
mates through action tracking (black), the true position is given
through marker-based tracking. Here, the x-, y-, and z-position
belong to the horizontal, depth, and height directions in Fig. 4.



Figure 4. Pose Estimation through Tracking in Action Space. In the rows 2–5, a whole pointing action (approaching and withdrawing
motion) is shown with the recovered arm pose superimposed. The sequence has about 110 frames, of which every ≈ 6th frame is shown.
The recovered pose corresponds to the sample/particle which explains the observation in the single monocular view best. The measurement
is based only on the edge information in the gradient images (see top row). The estimated action parameters are indicated through the dot
on the table: the color of the dot reflects the uncertainty of the indicated location (given through the entropy): a red dot indicates a large
uncertainty, a green dot a low one. The last two rows show 10 completed pointing performances where one can see the stretched arm and
the recovered pointing position (red dot).



top region of 30cm×80cm; these positions correspond with
the parametrization of the corresponding PHMM, and were
during the training procedure given by the finger tip location
at the time of maximal arm extension. For training we used
actions directed approximately to the four outer corners of
the table top, with 5 repetitions each. The testing was done
using continuous video data of 40 different random loca-
tions on the table top. Ground truth was available through
the vicon system, the markers on the human were used by
the vicon system, but were not used for our tracking exper-
iments. We used a large number of HMM states which as-
sured a good predictive model (resolution in time) and small
state covariances of the observation densities. The used
PHMM is a forward model which allows self-transitions
and transitions to the subsequent three states. In order to
allow the tracking of repeated performances of the actions,
we have defined a very simple action grammar that models a
loop. For the particle based tracking in action space we use
400 particles (ωi = (a;u, v; k)). The propagation over time
is done as described in Sec. 2.2. We decrease the diffusion
of the u and v during the propagation step in dependence of
the HMM state number k and it is governed by σ = σ(k)
as given in Fig. 3. Our argument for the cooling down of
the diffusion is that for the first frames the visual evidence
for the right u and v is very weak, but as visual evidence
increases with time, we inversely reduce the standard devi-
ation.

The sampling and normalization of the image observa-
tion are performed as described in [11]; as discussed the ob-
servation function is based on the evaluation of the edge in-
formation in the monocular video data and the human body
model for a particle ωi.

The images in Fig. 4 show that the arm pose is (visually)
very accurately estimated. The following three complicat-
ing factors emphasize the capabilities of our tracking in ac-
tion space approach: 1) all information is gathered from a
single monocular view, 2) we use only a single feature type
(edge information), and 3) the edge images (especially the
first sequence part in Fig. 4 due to the chair) have a lot of
clutter, so that the silhouette of the arm is difficult to seg-
ment accurately. Besides the pose estimation, one can see
in Fig. 4 that the estimation of the action parameters (corre-
sponding to the position indicated by the small colored dot
on the table) converges to the true parameters of the action
when the arm approaches the table-top.

The quality of the pose estimation over a sequence of
several pointing actions is shown in Fig. 5. Here, we com-
pare the positions of the shoulder, elbow, and finger es-
timated through action tracking to the ground truth posi-
tions recorded with the marker-based Vicon system. The
route-mean-square error of the three joint positions over the
three pointing actions which are plotted in Fig. 5 is 3.3cm,
whereas the component-wise average error is just 2.4cm. It

is interesting to note that this errors correlate with the natu-
ral variance of the human movements as recorded with the
vicon system. This gives a mean error for the recovered
table locations of 1.3cm.

frame Error X Error Y Error Z
61 -2.53 -0.53 0.72
195 -3.77 -0.48 -0.36
301 -0.05 -1.70 1.62

Table 1. The table shows the errors in cm between the recovered
parameters and the ground truth at the specified frames (completed
pointing action). Frame numbers here are the same as in Fig. 5.

Despite the good results above, the recognition rate be-
tween reaching and grasping was very low. This was due
to the fact that these two actions have the same general arm
trajectory but differ only in the hand movement. On the
other hand, testing on videos showed pointing and pushing
actions in random order with at least 40 pointing and 40
pushing actions, the recognition rate was with ≈ 98% as
high as expected. Fig. 6 shows the posterior probability for
the two actions over time for a test video showing the point-
ing action: The action label a of a particle ω = (a;θ; k)
identifies the pointing or pushing action. By marginalizing
ω over θ = (u, v) and k we compute the likelihood of a.
The actions are very similar in the beginning. This is also
visible in the plot: after 60 frames, the pushing action starts
to differ from the observed pointing action and the posterior
probability of the pushing action converges.

For the particle filter, we use only 400 particles, the edge
features are fast to compute and on a standard workstation
with non-threaded code we require presently 3.9s per frame.
Ongoing work is to port our approach to CUDA for faster
processing on a GPU.

4. Conclusions
We presented a novel concept of tracking in action space

which combines the aspects of recognition, tracking and
prediction based on parametric and time dependent action
models. One can argue that this approach is too limited be-
cause it is not possible to model all different possible actions
each with a PHMM. As our response, the starting point for
our approach was (1) the observations that most actions are
object and context dependent which means that a) object
affordances and b) the scenario and the scene state greatly
reduce the set of possible actions, and (2) that according to
neuroscientific evidence actions are composed using action
primitives and grammars. Thus, even though the number
of possible actions at any time is indeed large, only a small
number of actions actually can appear, with a certain like-
lihood. Furthermore, all these possibly appearing actions
do not need to be modeled each with a PHMM. Instead, it
is sufficient to identify the building blocks of these action,



i.e., the action primitives, to model only those with PHMMs
and to then compose the complete actions out of these ac-
tion primitive PHMMs. In the experiments, we have fo-
cused on arm actions as these were the ones needed in our
human-robot communication scenario. But we believe that
our approach should scale well to more body parts and more
complex actions. In our future work we are going to con-
sider different actions and the use of stochastic grammars
in order to allow proper concatenation of actions as, e.g.,
reach for an object, move the object, withdraw arm etc. Ex-
tension to, e.g., dual arm actions in combination with upper
body tracking is also ongoing work.
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Figure 6. The plot shows the posterior probability of the two ac-
tions point and push over time.
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Figure 1: Representing objects in terms of functionality and affordances. Top: Semantic,
appearance based categories. Bottom: Functional, affordance based categories.

1. Introduction

In recent years, a tremendous research effort has been made in the area
of visual object categorization (Fei-Fei et al., 2009), leading to methods with
impressive performance on very difficult images. Object classes are typically
semantic and appearance-based; common examples are cups, toys, bikes,
cars, and trees.

For certain classes of applications, e.g., in Robotics, it is however more
meaningful to categorize objects according to their function (Rivlin et al.,
1995; Stark and Bowyer, 1996; Stark et al., 2008). Both a chair, a sofa, and
a stool might be categorized as ”sittable”, and a cup might be categorized
both as ”drinkable” and ”pourable” (Figure 1).

To a certain extent, functional object properties can be extracted from
visual information. However, there are functional properties that can not
be observed visually from a single image, such as temperature, flexibility
and weight. We propose to learn functional properties of objects from video
sequences where a human perform actions involving the objects.

The application we are focusing on is robot learning from demonstration
(Billard et al., 2008), also denoted imitation learning (Schaal, 1999). With
imitation we here do not mean blind reproduction of the movements of all
body parts; rather, we mean observing an action and its effect on the world,
and performing an own action that has the same effect (Montesano et al.,
2008).

We here formulate the problem of learning from demonstration as one
of learning the affordances of objects. Introduced as a concept by Gibson
(1979), affordances are properties of the environment that afford a certain
action to be performed by a human or an animal. Here we study affordances
of objects involved in human manipulation actions.

An affordance is an intrinsic property of an object, allowing an action to
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be performed with the object. The affordance also depends on the embodi-
ment of the agent performing the action. For example, a human can use a
knife to chop an onion, while a dog can not. Hence, the knife affords onion
chopping to a human but not to a dog.

From this we can conclude that an agent (robot) learning object affor-
dances from a human must have an embodiment similar to a human: Two
arms with the same reaching range and at the same height as human arms,
and human-like hands, which can manipulate objects in the same way as
human hands. In other words, the agent should be humanoid. This paper
does not further treat robotic manipulation; we instead concentrate on the
learning of object affordances from human demontration.

Manipulation actions, i.e. hand actions for picking up objects, doing some-
thing with them and putting them down again, is an important class of hand
activity not well studied in computer vision. An important cue to the class
of a manipulation action is the object handled; for example, seeing a human
bring a cup towards his/her face brings us to believe that he/she is drinking,
without actually seeing the fluid. Similarly, a strong cue to the class of the
object involved is the action; for example, a cup is to some extent defined
as something you drink from. Therefore, it is beneficial to simultaneously
recognize manipulation actions and manipulated objects.

Only one-hand actions are considered here, although this is not a limita-
tion to the method in a formal sense. From a video sequence of the action, the
human hand position and articulation in 3D are reconstructed and tracked
using an example based method (Romero et al., 2010). The action state
space in each frame is the hand orientation and velocity as well as the finger
joint angles, representing the hand shape.

Objects in this application are ”graspable”, i.e., fairly rigid, so shape is a
good object descriptor. Objects are therefore detected in the neighborhood
of the hand using a sliding window approach with a histogram of gradients
(HOG) (Dalal and Triggs, 2005; Freeman and Roth, 1995; Shakhnarovich
et al., 2003) representation and an SVM classifier (Cristianini and Shawe-
Taylor, 2000). Section 3 further describes the feature extraction.

There are implicit, complex interdependencies in the object and action
data. The object detection is affected by occlusion and shading from the
human hand. Similarly, the hand shape depends on the size, shape and sur-
face structure of the object in the hand. These dependencies are difficult to
model, which leads us to use a discriminative sequential classifier, conditional
random fields (CRF) (Lafferty et al., 2001), that does not model the data
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generation process.
On a semantic level, there are also action-object dependencies of the type

drink–cup, drink–glass, write–pen, draw–pen and so on, which can be
explicitly modeled within the CRF framework. The action-object dependence
is modeled on a per-frame basis using a factorial CRF (FCRF) (Sutton et al.,
2004). This is detailed in Section 4.

A manipulation action is here thought of as beginning with the picking-up
of an object and ending with the putting-down of that object – also referred
to as ”manpulation segments” (Zöllner et al., 2005). However, two such
actions with the same object might also follow each other directly, without
any putting-down and picking-up events in between. The FCRF enables
simultaneous object-action classification and temporal action segmentation,
removing the need for special tags (e.g., grasping or reaching motions) in the
beginning and end of each action (Gupta et al., to appear; Serrano Vicente
et al., 2007). This is further discussed in Section 5.

The concept of contextual object-action recognition, as well as the recog-
nition method chosen in this paper, are experimentally evaluated in Section
6. From the experiments it can be concluded that both action and object
recognition benefit from the contextual information.

2. Related Work

Visual recognition, expecially object recognition (Fei-Fei et al., 2009), is
a vast area of research and can be regarded as one of the core problems in
Computer Vision. We do not make an attempt to review the whole field, but
focus on learning of object affordances and contextual recognition.

2.1. Learning of Object Affordances and Learning from Demonstration

The concept of affordances (Gibson, 1979) has come in focus lately within
the Cognitive Vision and Robotics communities. While many other papers
on affordances, e.g. (Bohg and Kragić, 2009; Saxena et al., 2008; Stark et al.,
2008), concentrate on robotic grasping, we here focus on more composite,
higher-level actions, which typically involve grasping as a sub-component.

The embodied/cognitive vision approach to affordance learning consists
of an agent acting upon objects in the environment and observing the reac-
tion. In (Fitzpatrick et al., 2003), a robot pushes, pokes, pulls and grasps
objects with its end-effector, thereby learning about rolling, sliding etc. Mon-
tesano et al. (2008) notes that an affordance can be described by the three
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interdependent entities of action, object, and effect. A robot first learns a
set affordances by own exploration of the environment using preprogrammed
basic motor skills. It can then imitate a human action, not by mimicking
the action itself, but rather observing the effect and then selecting an own
action that will have the same effect on the current object. The difference to
our imitation learning is that we also learn the object affordances themselves
from human demonstration.

To a certain degree, affordances can be observed in images. In three
recent works, (Bohg and Kragić, 2009; Saxena et al., 2008; Stark et al.,
2008), relations between visual cues and grasping affordances are learned
from training data. In (Stark et al., 2008), object grasping areas are extracted
from short videos of humans interacting with the objects, while in (Bohg and
Kragić, 2009; Saxena et al., 2008) a large set of 2D object views are labeled
with grasping points. Early work on functional object recognition (Rivlin
et al., 1995; Stark and Bowyer, 1996) can be seen as a first step towards
recognizing affordances from images. Objects are there modeled in terms of
their functional parts, such as handle, hammer-head etc (Rivlin et al., 1995),
or by reasoning about shape in association to function (Stark and Bowyer,
1996).

The robot can also learn through visually observing another agent – for
example, a human – making use of object affordances. This is the approach
we take in this article. A similar idea is also exploited in (Veloso et al., 2005).
However, while they study whole-body activities such as sitting-on-chair
and walking-through-door, we focus on manipulation actions, involving
the human hands and arms.

Affordances relate to the concept of task oriented vision (Ikeuchi and
Hebert, 1992; Miura and Ikeuchi, 1995). According to this notion, a Com-
puter Vision system should be designed with a specific task in mind. This
is put in contrast to Marr’s (1982) general purpose vision paradigm. The
intended task will affect what aspects of the world are perceived and pro-
cessed, as well as the design of the whole system. The inspiration comes from
human vision; psychophysical experiments (Triesch et al., 2003) indicate that
humans indeed only percieve the aspects of the world relevant to the task at
hand.

Ikeuchi and Hebert (1992) exemplify task oriented vision by comparing
two systems designed to solve two different grasping tasks. Miura and Ikeuchi
(1995) point out that knowledge of the task should be used to ensure that
only relevant information is extracted. Although the rapid development of
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computational power has made this issue less critical today, it is still valid.
In our learning from human demonstration method, the robot only includes
objects near the human hand in the action-object analysis, rather than trying
to model all objects in the scene.

2.2. Contextual Recognition

There has been a large recent interest in contextual recognitinon within
the Computer Vision community.

One type of contextual information for object detection and recognition
is text. The caption of an image says something about what objects can
be expected in it. When labeling images according to object content, any
captions should therefore be taken into account. Caption-guided object de-
tection can be used to segment the image into object regions and associate
them with object labels (Carbonetto et al., 2004), or to automatically label
or cluster a large set of unlabeled images with captions given a smaller set
of labeled images with captions (Quattoni et al., 2007). Prepositions and
comparative adjectives can also be used to discover spatial relations between
objects in the image (Gupta and Davis, 2008).

In (Torralba, 2003; Murphy et al., 2003; Torralba et al., 2004), the scene
itself, the ”gist” of the image, is used to guide object recognition. The scene
itself is a strong prior cue as to which objects can be expected and where they
are most likely to be found. Similarly, in (Marszalek et al., 2009), actions
and events are recognized in movies in context of the scene. Events can even
be recognized from single images (Li and Fei-Fei, 2007), if object and scene
context is exploited.

Object recognition can also be guided by observations of human inter-
action with the objects. Moore et al. (1999) provide a Bayesian framework
for recognizing objects based on contextual information from other objects,
human actions being performed on the object, and the scene. In (Peursum
et al., 2005), human actions are used to infer object class. Reversely, recog-
nition of manipulation actions can be guided by knowledge about the objects
involved. Wu et al. (2007) represent kitchen activity solely in terms of the
sequence of objects in contact with the hand during the activity. These
approaches all relate to the presently presented, with the addition that we
perform simultaneous recognition of actions and objects in context of each
other.

The idea of simultaneous object-action recognition has been exploited
before. In (Filipovych and Ribeiro, 2008), primitive actor-object interac-
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tions such as grasp cup, touch spoon, are learned from video. We model
more high-level actions, which might involve grasping, touching etc. Gupta
et al. (to appear) use an approach similar to ours to recognize actions and
objects in context of each other. The main difference, apart from our affor-
dance framework, is that they segment manipulation action by detecting of
reaching motion. We instead incorporate the temporal segmentation into the
recognition using a conditional random field. This enables us to recognize
actions following each other, without any special delimiter actions such as
reaching, putting down or picking up. Furthermore, they focus on upper-
body or whole body actions while we study hand manipulation actions.

3. Features for Classification

For our purposes, extraction of object and action features could be done
in a variety of ways (Fei-Fei et al., 2009; Moeslund et al., 2006) depending
on the purpose of the feature extraction. As opposed to many other action
recognition applications, it is here necessary to obtain the location of the
human hand to find the object or objects involved. Furthermore, it should
be possible to recreate the recognized action with a robot, which means that
the hand position, orientation and articulated pose should be retrievable from
the action representation. This is further discussed in Section 3.2 below.

3.1. Object Features

Different actions involve different number of objects. For example, the
action pour involve two containers, one to pour from and one to pour to,
while the action sit involves one piece of furniture. (We do not here separate
between tools and other objects; this is further discussed in Section 7.) The
object state ot therefore encodes both the number and the classes of objects
involved in the action at time t.

The object state is approximated by a vector xot where each element is
the detection probabilities for each object class respectively. At this pre-
processing stage, objects are categorized according to appearance into 6
semantic categories of the type shown at the top row of Figure 1: book,
magazine, hammer, box, cup, and pitcher. Section 5 describes how these
object classes are grouped according to observed human use.

All objects of the known range of classes in the neighborhood of the
human hand are detected. We use sliding window detectors, one for each
object class. The detector for a certain object class searches over image
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(a) Ground truth: book (b) Ground truth: magazine (c) Ground truth: box

(d) Ground truth: box+pitcher (e) Ground truth: cup+pitcher (f) Ground truth: cup+pitcher

Figure 2: Detection of objects in human action sequences. (a,b) Books and Magazines
are difficult to distinguish visually. (c) A Box (and its lid) look similar to a closed Book
or a Magazine. (a,e,f) Objects with non-discriminatory appearance (here Hammer) are
sometimes ”hallucinated”. (e) Objects (here Cup) are sometimes missed. (a-f) Color
coding: • = book, • = magazine, • = hammer, • = box, • = cup, • = pitcher. This
figure is best viewed in color.

position, scale and height/width ratio in the image plane, in the vincinity
of the human hand (see Section 3.2). Each window is classified as object
or background using a two-class support vector machine (SVM) (Cristianini
and Shawe-Taylor, 2000). The features used in SVM classification are the
histograms of oriented gradients (HOG) (Dalal and Triggs, 2005) extracted
from the window. Figure 2 shows example detections of the 6 different object
classes.

A sequence of object detections is denoted xo = {xot}, t = 1, . . . , T , where
xot is a vector of detection probabilities for the 6 known object classes. Sim-
ilarly, o = {ot}, t = 1, . . . , T denotes the corresponding object state, where
ot is an integer value, indicating which combination of objects is involved in
the action at time t.
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Figure 3: Reconstruction and tracking of 3D articulated hand pose. Top: original frame.
Bottom: reconstructed view (object not included in the pose description).

3.2. Action Features

A human manipulation action is to a very large degree described by the
articulated motion of the hand. We therefore use the hand pose reconstruc-
tion method in (Romero et al., 2010) to reconstruct and track the articulated
motion of the hand in 3D.

The method is example based. In each timestep, the hand is first seg-
mented from the image using skin color. The appearance of the hand is
compared to a large database (on the order of 106 examples) of synthetic
hand views tagged with articulated pose and orientation. Temporal pose
consistency is enforced in the reconstruction. Moreover, typical occlusions
from objects in the hand are modeled by including object occlusions in some
examples in the database.

A reconstruction example can be seen in Figure 3. The reconstruction is
quite crude with angular errors of 10-20%. However, the method is function-
ing in real-time and is very robust to temporary tracking failure. Therefore,
it is suitable for our purposes, where speed and robustness is more critical
than accuracy.

To provide position invariance the global velocity of the hand is encoded,
rather than the global position itself. A hand pose is thus defined by global
velocity, global orientation, and joint angles. In a manner similar to the
object feature extraction, the hand pose at time t is classified as being part
of the actions open, hammer, pour, or as not involved in any particular action.
The classification of a hand pose as being part of an action or no action is
separate from the others, using a two-class SVM for each action.

In the following, a sequence action classifications is denoted xa = {xat }, t =
1, . . . , T , where xat is a vector of classification probabilities for the three
action classes. The corresponding sequence of action classes is denoted
a = {at}, t = 1, . . . , T , where at is an integer value indicating action class.
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3.3. Correlation Between Object and Action Features

The temporal classifier described in Section 4 models explicit semantic
dependencies between manipulation actions and the manipulated objects.
However, there are also dependencies on the feature level.

The shape of the hand encoded in xat gives cues about the object as
well, since humans grasp different types of objects differently, due to object
function, shape, weight and surface properties. Similarly, the object detection
results encoded in xot is affected by the hand shape since the hand occludes
the object in some cases. Furthermore, there are temporal dependencies:
xat−1 and xat are correlated as are xot−1 and xot . This correlation within the
data is implicit and difficult to model accurately, but should be taken into
account when modeling the simultaneous action-object recognition.

4. Classification of Object-Action Data

Since we can expect complex dependencies within our action data xa and
object data xo over time, a discriminative classifier which does not model the
data generation process is preferable over a generative sequential classifier like
a hidden Markov model (HMM) (Rabiner, 1989). We thus employ conditional
random fields (CRF:s) (Lafferty et al., 2001) which are undirected graphical
models that represent a set of state variables y, distributed according to a
graph G, and conditioned on a set of measurements x. CRF:s have previously
been used to model human activity, e.g. in (Sminchisescu et al., 2006).

Let C = {{yc,xc}} be the set of cliques in G. Then,

P (y|x; θ) =
1

Z(x)

∏
c∈C

Φ(yc,xc; θc) (1)

where Φ is a potential function parameterized by θ as

Φ(yc,xc; θc) = e
P

k θc,kfk(yc,xc) (2)

and Z(x) =
∑

y

∏
c∈C Φ(yc,xc; θc) is a normalizing factor. The feature func-

tions {fk} are given, and training the CRF means setting the weights θ, e.g.,
using belief propagation (Lafferty et al., 2001).
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Figure 4: CRF structures. (a) Linear-chain CRF (Lafferty, McCallum and Pereira 2001),
used for action or object recognition. (b) Factorial CRF (Sutton, Rohanimanesh and
McCallum 2004), used for simultaneous object-action recognition.

4.1. Linear-Chain CRF

For linear-chain data (for example a sequence of object or action features
and labels), y = {yt} and x = {xt}, t = 1, . . . , T as shown in Figure 4a. This
means that the cliques are the edges of the model, which gives

P (y|x; θ) =
1

Z(x)

T∏
t=2

Φ(yt−1, yt,x; θt) (3)

with a potential function

Φ(yt−1, yt,x; θt) = e
P

k θt,kfk(yt−1,yt,x). (4)

Each state yt can depend on the whole observation sequence x – or any
subpart of it, e.g. the sequence {xt−C, . . . , xt+C}, C being the connectivity of
the model.

4.2. Factorial CRF

In Section 3.3 we argue that there are correlations between action obser-
vations xa and object observations xo implicit in the data. We make use of
this correlation on the data level by not imposing a simplified model on the
data generation process and instead using a discriminative classifier, CRF.
However, there is also an explicit, semantic correlation between actions and
objects on the label level, as discussed in the introduction. This correlation
can be modeled using a factorial CRF (FCRF) (Sutton et al., 2004). Figure
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4b shows an FCRF with two states, action class at and object class ot, for
three time-steps t = 1, 2, 3. The cliques in this model are the within-chain
edges {at−1, at} and {ot−1, ot}, and the between-chain edges {at, ot}. The
probability of a and o is thus defined as

P (a,o|x; θ) =
1

Z(x)

T∏
t=1

Φ(at, ot,x; θt)
T∏
t=2

Φ(at−1, at,x; θa,t)Φ(ot−1, ot,x; θo,t) .

(5)
The weights θ are obtained during training, e.g., using loopy belief propaga-
tion (Sutton et al., 2004).

5. Object-Action Recognition using CRF:s

Using the apporach described above, the actions and objects in a stereo
sequence of human activity can be both temporally segmented and classified,
using a CRF in a sliding window manner over time.

An FRCF structure of length T = 3 is trained with X object-action
patterns (o,xo, a,xa), also of length T = 3, involving Y different action
classes and Z different object classes.

A new sequence (χω,χα) of length τ can now be segmented and clas-
sified using this model. For each time step t = 2, . . . , τ − 1, the pattern
(χωt−1, χ

ω
t , χ

ω
t+1, χ

α
t−1, χ

α
t , χ

α
t+1) renders the classification ωt, αt.

Objects can also be ordered into affordance categories using correlation
information extracted from the training data (o, a). This is represented with
a correlation matrix C where element Cij indicates the degree to which object
class i can be used to perform action j.

6. Experiments

The feature extraction and classifiers were implemented in Matlab, using
the LibSVM toolbox (Chang and Lin, 2001) and the CRF toolbox by Mur-
phy (2004). The object and action feature extraction methods described in
Section 3 were first evaluated (Sections 6.1 and 6.2). We then evaluated the
temporal object-action segmentation and classification. This is described in
Section 6.3.
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Figure 5: The 50 instances in the normalized-uniform NORB dataset (LeCun et al., 2004)
(for one lighting condition, elevation, azimuth each). Training data left, test data right.

6.1. Evaluation of Object Classifier

HOG has previously been shown (Dalal and Triggs, 2005) to be a good
feature representation, since it allows for high intra-class variability (differ-
ences between class instances, lighting and pose variation, etc.) while being
discriminant with respect to inter-class variability. To verify this, we eval-
uated the HOG- and SVM-based classifier which is the basis of the sliding
window object detector described in Section 3.1.

We first experimented with the NORB dataset (LeCun et al., 2004), which
contains 5 different classes of rigid objects; animals, humans, airplanes,
trucks, and cars with 10 instances of each, 5 for test and 5 for training
(Figure 5). The database contains stereo views of each object from 18 dif-

Table 1: Results on the normalized-uniform NORB dataset, percent error. Left: Classi-
fication error percentage compared to methods presented in LeCun et al. (2004). Right:
Generalization test; robustness to different amount of jitter in test data (training data
unaltered).

Mono Stereo

Hist+SVM 6.4 6.2

Raw+SVM 12.6 (LC) —

Conv Net — 6.6 (LC)

Brightness Shift

±0 ±10 ±20 ±30 ±3 ±6 ±9

Hist+SVM 6.4 6.4 7.1 8 10.3 18.1 29.2

Raw+SVM 12.6 (LC) 15.8 18 21 20.8 35.1 48.6
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ferent azimuths and 9 elevations in 6 different lighting conditions. Only the
normalized-uniform part of the dataset, designed to test classification per-
formance, was used.

To evaluate the suitability of the HOG feature representation (Section
3.1) for modeling shape categories, a five-class SVM was trained with HOGs
extracted from the NORB training images. Table 1 left shows the results
compared to others. Our HOG + SVM classifier reached the same classifi-
cation accuracy as a state-of-the-art method for object categorization (Le-
Cun et al., 2004), which indicates that the HOG representation captures the
specifics of a shape class, while allowing a significant variability among in-
stances of that class. In comparison, training an SVM on the raw image
downsampled to a size of 32× 32 led to twice the classification error (a sur-
prisingly good result, as noted in (LeCun et al., 2004), given that the task is
object categorization, not instance recognition). Furthermore, we note that
the incorporation of stereo does not add much to the accuracy.

Certain robustness towards differences in color and lighting, as well as
small position errors of the object detection window, is also desireable. In
(LeCun et al., 2004), this was tested by adding ”jitter”, i.e. small transfor-
mations to both the training and test set. However, this arguably tested how
the methods performed with a larger test set, rather than how they could
handle noise that was not seen before (not present in the training data).
Therefore, we did a variant of this experiment where we added jitter to only
the test set (Table 1 right). First, the overall brightness of each test image
was varied. Our HOG feature representation was very robust to this noise,
which is expected since it relies solely on the gradient orientations and not
on their value. In comparison, the raw image classification error grew much
quicker. Then, the test images were shifted vertically and horizontally in a
random manner. The feature representation was more sensitive to this noise,
but less so than the raw image representation.

We then proceed to evaluate the the performance of HOG and SVM for
classification of the 6 object categories described in Section 3.1. We collected
a dataset consisting of 4 to 6 different instances of each class (Figure 6a), with
330 views of each instance. Each object instance was grasped and moved by
a human in some views, and the deformable objects were deformed (opened,
pages flipped etc.) in other views. In each view, a the quadratic bounding
box of the object was manually marked in the image. A HOG representation
used for training and classification was then computed over this window.

Training and testing were carried out in a jackknife manner, where one
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(a) Dataset

Book

Magazine

Hammer

Box

Cup

Pitcher

Book Mag.Hammer Box Cup Pitcher

0.56 0.23 0.07 0.09 0.04 0

0.24 0.66 0.05 0.02 0.02 0

0.1 0.14 0.51 0.07 0.1 0.08

0.13 0.02 0.07 0.55 0.07 0.16

0.04 0.02 0.08 0.06 0.69 0.11

0.01 0 0.11 0.2 0.3 0.39

(b) Confusion matrix

Figure 6: Classification of objects of the 6 classes used in this paper. (a) The 33 instances
used in the experiment. 330 views of each instance are provided. Each object is grasped
and moved by a human in some views, and the deformable objects are deformed (opened,
pages flipped etc.) in other views. (b) Object classification confusion matrix (rows: true
classes, columns: classification ratios).

instance at a time of each class were removed from the dataset during train-
ing, and used for testing. (Thus, the same instance was never used for both
training and testing.) For each training-test data division, a 6-class SVM
was trained with the HOG representations. Figure 6b shows the confusion
matrix representing the mean classification result.

The experiments with the NORB dataset above indicated that the HOG
representation allows certain intra-class variation, while being rich enough to
make inter-class discrimination possible. The confusion between book and
magazine, between book and box, and between box and pitcher is there-
fore probably intrinsic to the classes themselves. Books and magazines look
very similar both closed and with pages flipped (23% and 24% misclassi-
fication) – the main difference is the thickness of the volume. Boxes look
like closed books (13% misclassification), but opened books and books with
pages flipped do not look like boxes (9% misclassification). Hammers are hard
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(a) Dataset

Open

Hammer

Pour

Open Hammer Pour

0.52 0.13 0.35

0.08 0.81 0.11

0.13 0.03 0.84

(b) Confusion matrix

Figure 7: Classification of actions of the three classes used in this paper. (a) The 28
instances used in the experiment. Each instance is a sequence of hand velocities and
articulated hand poses, extracted separately from each frame. Each frame is considered
as a separate data point. (b) Action classification confusion matrix (rows: true classes,
columns: classification ratios).

to model with this classifier (7–14% misclassifications against other classes)
since most bounding boxes around hammers contains very much background.
Pitchers are often misclassified as boxes (20% misclassification) since many
of them look quadratic from a side view, and as cups (30% misclassification)
since the shape of those object classes are very similar, with handles and
openings at the top.

The classes book and magazine, and pitcher and cup, are good examples
of object classes that are hard to distinguish from appearance only.

6.2. Evaluation of Action Classifier

The action classification described in Section 3.2 was evaluated in a simi-
lar manner. A dataset consisting of 8 to 12 examples of each class of actions,
performed with different objects and by four different individuals, was col-
lected (Figure 7a).
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Training and testing were done similarly to the above, where the examples
from one individual at a time were removed from the training data. Training
was done on examples from the three other individuals, and the resulting
classifier was evaluated with the examples of the fourth individual. Figure
7b shows the confusion matrix representing the mean classification result.

As with the object classification, there are certain confusions intrinsic to
the actions themselves. Most notably, open actions are often misclassified
as pour (35% misclassification), probably since the global hand velocity is
similar in these action, and since different individuals configure their hands
very differently while opening objects. On the other hand, pouring actions
are much more distinct in terms of hand articulation and velocity, and are
more seldom misclassified as opening (13% misclassification). Due to its
rapid vertical velocity, hammer actions are easily recognizable.

The classes open and pour are good examples of action classes that are
hard to distinguish without contextual information, e.g., from objects in-
volved in the action.

6.3. Classifying Actions and Objects Together

Experiments with the object and action feature extractors in Sections 6.1
and 6.2 showed certain confusions between classes, which appeared to be in-
trinsic to the object and action classes themselves. E.g., books and magazines
can not always be distinguished by appearance only. However, they afford
slightly different ranges of actions, which means that the action observed in
connection to the object can be used to constrain the object classification.
Similarly, action classification can be constrained by the objects observed in
the vincinity of the hand performing the action.

In this experiment, we trained and evaluated an FCRF (Section 5) with
the 6 object classes and the three action classes mentioned above, in the 7 fol-
lowing combinations: open-book, open-magazine, open-box, hammer-with-
book, hammer-with-hammer, pour-from-pitcher-into-box, and pour-from-

pitcher-into-cup. Thus, an open action can only be observed together with
either a book, a magazine or a box; a hammer action only together with a
book or a hammer; a pour action only together with a box and pitcher or a
cup and pitcher.

We collected a training set consisting of sequences in which three different
individuals performed all 7 object-action combinations, using the first object
instance from each class in the evaluation set in Figure 6a. Each frame of the
sequences were labeled with object (none, book, magazine, hammer, box, cup,
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Object class over time, FCRF
None
Book

Magazine
Hammer

Box
Cup

Pitcher

Action class over time, FCRF
None
Open

Hammer
Pour

Object class over time, separate CRFs
None
Book

Magazine
Hammer

Box
Cup

Pitcher

Action class over time, separate CRFs
None
Open

Hammer
Pour

Figure 8: Object-action classification over time. The depicted sequence contains 7
object-action combinations: open-book, open-magazine, open-box, hammer-with-book,
hammer-with-hammer, pour-from-pitcher-into-box, pour-from-pitcher-into-cup.
Time on x axis, Classification on y axis. White block = (F)CRF classification during
this time period. Grey block = classification ground truth during this time period.

pitcher, box+pitcher, or cup+pitcher) and action (none, open, hammer,
or pour) ground truth. Only the frames in which a hand is detected were
used for training.

The evaluation set consisted of a sequence where a fourth individual per-
formed the same object-action combinations, using the same object instance.
Only the frames in which a hand is detected were used for evaluation. (The
frames with no hand were automatically labeled as object none, action none.)

From each frame of each of the four sequences, object features were ex-
tracted as described in Section 3.1. The 6 background/object classifiers were
trained with images of a fifth person handling the object instances in the
same way as in the training and evaluation sequences. Action features were
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extracted as described in Section 3.2. The three background/action classifiers
were trained on hand poses and velocities from the three training sequences.

An FCRF was trained with sequences of T = 3 consecutive frames of ob-
ject and action features from the training data, in all 1471 training examples.
This FCRF can be expected to learn

1. allowed object-action combinations

2. allowed temporal action transitions (in this dataset, only none-action
and action-none)

3. typical errors in the per-frame object feature extraction

4. typical errors in the per-frame action feature extraction

To provide a baseline, two individual CRFs were trained with sequences of
T = 3 consecutive frames of object features and action features, respectively.
The object CRF can be expected to learn aspect 3) above, and the action
CRF can be expected to learn aspects 2) and 4); none of them capture aspect
1).

The object-action FCRF and the two individual action and object CRFs
were used to classify the evaluation sequence. The classification result is
shown in Figure 8.

First, it can be noted that many frames of the sequence contains an
object but action none; in other words, the human is doing something else
with the object than opening, hammering or pouring. In these frames, the
object classification in the FCRF (Figure 8, row 1) is not supported by more
information than the classification in the separate object CRF (Figure 8,
row 2), since all combinations of objects and action none are present in the
training data. In the remainder of the analysis, we therefore focus on the
frames where there is an open, hammer or pour action taking place (grey
blocks in the Open, Hammer, or Pour lines in Figure 8, rows 3,4).

From an application perspective we are not primarily interested in if an
the starting and ending frame of an object-action combination are correctly
detected; the main focus is instead on whether the action-object combination
is detected and correctly classified at all. From this perspective, both the
FCRF and the individual CRFs detected all 7 object-action combinations,
i.e., classified some frames of each object-action combination as something
else than object none, action none.

The classification of the detected object-action combination is here de-
fined as the majority vote among the classifications in the frames of the
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detection. The FCRF (Figure 8, rows 1,3) detected the 7 following object-
action combinations: open-book (correct), open-book (incorrect but al-
lowed), open-box (correct), hammer-with-book (correct), hammer-with-ham-
mer (correct), pour-from-pitcher-into-box (correct), pour-from-pitcher-
into-cup (correct). This concords with the findings in the experiments with
the object feature extraction above: Books are often detected as magazines
and vice versa (se also Figure 2a,b), and they both afford opening, which
means that the contextual action information could not guide the object
classification in the second object-action combination. The inclination to
classify the magazine as book in Figure 8, rows 1,2 could be due to coin-
cidences in the training and evaluation data – there were more images of
books than magazines in the training data with the same orientation as the
magazine in the evaluation data.

The two individual CRFs (Figure 8, rows 2,4) detected the 7 following
object-action combinations: open-book (correct), open-book (incorrect but
allowed), open-box (correct), hammer-with-book (correct), hammer-with-

hammer (correct), pour-from-pitcher-into-box (correct), pour-from-ham-
mer (incorrect). In the last combination, the object detection was inadequate
by itself, but the contextual action information in the FCRF helped in infer-
ring the correct object classes (Figure 8, row 1). Furthermore, the actions are
more accurately detected by the FCRF in the two last combinations (Figure
8, row 3), than by the individual action CRF (Figure 8, row 4). The reason
is most certainly the contextual object information provided by the FCRF.

This shows that the FCRF is able to infer information about the object
and action present in a frame, not immediately apparent from the present
image information, from knowledge about which object-action combinations
are commonly observed in other data.

The many spurious detections, particularly of hammer actions, would pose
problems to a learning from demonstration system employing the classifica-
tion method. A first measure against this is to train the FCRF and the
feature extractors with much larger and more diverse datasets; more indi-
viduals, more object instances, more action instances performed by each
individual.

7. Conclusions

This paper investigated object categorization according to function,i.e.,
learning the affordances of objects from human demonstration. More specifi-
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cally, we presented a method for classifying objects grasped and manipulated
by a human in context of which actions the human was involved in, and at
the same time, classifying human actions in context of the object involve in
the action. An FCRF was trained with short sequences of simultaneously ex-
tracted object and action features, modeling both information about objects
and action detection, and the likelihood of observing different object-action
combinations.

Experiments with a dataset of combinations of three actions and 6 objects
showed that the FCRF captured contextual dependencies which could be
used to infer information about both actions and objects not present in the
image data. This improved the classification of both actions and objects.

7.1. Future Work

In the applications of interest here, primarily learning from demonstra-
tion, the requirement of fully labeled training data is a limiting factor. Our
intention is therefore to develop methods for semi-supervised training of the
FCRF, e.g., using co-training (Blum and Mitchell, 1998) with an object and
an action view.

A related avenue of research is the introduction of grammatical struc-
tures to describe human activity (Shi et al., 2003). These structures can be
considered as contextual information, guiding the classification of individual
actions and objects. The structures can be learnt in a semi-supervised man-
ner from a combination of the demonstrations themselves and the human
demonstrator’s utterances during the demonstration.

A slightly more philosophical question regards the different roles of ob-
jects in actions. E.g., the action-object combination hammer-with-hammer-on-nail

contains two objects, where hammer is a tool and nail is not. Tools are tricky
when reasoning about affordances (Gibson, 1979) – when used, they can be
regarded as part of the agent’s body. (A robotic agent can very well have
a hammer permanently attached to its body.) Thus, the division between
agent, objects and scene is not clear (Wörgötter et al., 2009). At present,
our method does not differ between tools and other objects in any principal
way. However, this will be addressed in future work.
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Learning Actions from Observations
Volker Krueger, Dennis Herzong, Sanmohan, Ales Ude, and Danica Kragic

Abstract—In the area of imitation learning, one of the im-
portant research problems is action representation. There has
been a growing interest in expressing actions as a combination of
meaningful subparts called action primitives. Action primitives
could be thought of as elementary building blocks for action
representation. In this paper we present a complete concept of
learning action primitives and for using them to recognize and
synthesize actions. The main novelty in our work is the detection
of primitives in a unified framework that takes into account
objects and actions being applied to them. In many human and
robot tasks actions and objects are intertwined; we can interpret
actions from their effect on the involved object. While human
movements can look vastly different even under minor changes in
location, orientation and scale, the use of the object can provide
a strong invariant for the detection of motion primitives. As the
first major contribution we propose an unsupervised learning
approach for action primitives that makes use of the human
movements as well as the object state changes. We group actions
according to the changes they make to the object state space. This
allows us to define action primitives as sets of movements where
the movements of each primitive are connected through the object
state change they induce. As a statistical representation of the
primitives, HMMs, splines, etc. are often used. However, these
are strictly trajectory based representations and they are not
able to model the relationship between the trajectories and their
effects. Thus, as a second major contribution, we propose to use
parametric hidden Markov models (PHMMs) for representing
the discovered action primitives. PHMMs allow to represent
movement trajectories as a function of their desired effect on
the object, and we will discuss (a) how these PHMMs can be
trained in an unsupervised manner, (b) how they can be used for
synthesizing movements to achieve a desired effect and (c) how
they can be used to recognize an action primitive and the effect
from an observed acting human.

I. INTRODUCTION

The need and motivation for imitation learning have been
widely documented in the area of robotics during the last
decade, [1], [2], [3], [4]. The open challenge in imitation learn-
ing is to develop a compact and flexible representation that
can be used for action planning, action recognition and action
synthesis. Many approaches follow the arguments raised in
[5], [6] that human actions are composed of action primitives
similarly to human speech being composed of phonemes and
that the same parts of the human brain seem to be responsible
for the generation and recognition of human actions. Hence,
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the use of action grammars based on action primitives is a
plausible representation so that in this work we follow the idea
of looking for action primitives out of which all actions can be
described and to look for a grammatical description, how the
primitives are to be combined. It is, however, less obvious how
a) these action primitives and the associated grammars can be
extracted automatically from visual observations without any
input in addition to the visual observations [7], b) how they
should be represented in terms of data structures and c) how
they can be used simultaneously for action recognition and
action synthesis.

For the learning of primitives and grammars, most of
the state-of-the-art approaches employ an off-line, supervised
learning stage where the primitives are labeled by the teacher
and are then used in the recognition stage. In a more re-
cent work, the problem of on-line, continuous learning has
been studied [8] where segmentation and classification are
performed in an unsupervised manner. In this paper we study
the problem of unsupervised detection of action primitives and
their subsequent use for action recognition and action synthesis
tasks. One novelty in our work is to consider actions where
the teacher is interacting with objects rather than considering
the main-stream free body movements. The changes in object
state are facilitated directly in the primitive learning phase.

Once the primitives are detected, we can use different
techniques for representing these parametrically. Hierarchical
representation is necessary when attempting to integrate low-
level control and high level action planning aspects. An addi-
tional contribution of our work is the use of parametric hidden
Markov models (PHMMs) for clustering action of primitives.
While many different body movements are able to induce
the same changes in the object state, PHMMs offer a unified
framework that allows to model the movement trajectories in
terms of their effect on the object.

Fig. 1: In the left image, one can see a set of demonstrated
actions. In the right image, one can see the intuitive and hand-
selected action primitives with the corresponding grammar [9].



To make the contributions clearer, let us consider the follow-
ing scenario: A robot is observing a human preforming actions
on objects such as taking object A and placing it at location
B or inserting object A into object B. After the demonstration
stage, the robot is requested to a) identify a set of action
primitives and b) identify the corresponding grammar from the
observations. We relate the expected outcome of the system
to the graphical model shown in Fig. 1: In the left image, the
actions on objects may be described with a general approach-
act-remove cycle. In the right image, more intuitive and hand-
selected action primitives with the corresponding grammar are
shown. The work presented here derives these action primitives
and the corresponding grammar automatically from the set of
demonstrations. These are then further modeled by an PHMM-
based representation and used for generating actions on the
robot in order to achieve a desired effect as well as to allow
the robot to recognize the primitives and their effects from
human performances.

This paper is organized as follows: In Sec. II we give
an overview of previous research and the motivation for our
work. In Sec. III we discuss our approach for learning action
primitives and the corresponding grammar. In Sec. IV we
present our PHMMs for modeling the action primitives for
the purpose of synthesis (Sec. V) and action recognition
(Sec. VI-A). We will conclude the paper with final comments
in Sec. VII.

II. BACKGROUND AND MOTIVATION

The derivation of action primitives is not trivial; ideally,
the demonstrations are repeated, possibly even by different
teachers and in different ways in order to assure good statistics.
When actions are performed on objects, the objects and/or the
human teacher may not necessarily be in the same location
so that the visual appearance of these performances are likely
to vastly differ from each other. One obvious way to look
for primitives in demonstrations is to search for statistical co-
occurrences, i.e., compare trajectories and identify correspond-
ing and re-occurring parts [10]. However, since the trajectories
can be vastly different from each other if the human agent
or the involved objects are at different locations, such an
approach will generate a lot of primitives [10]. Thus, an
important challenge is to identify the primitives independent
of the variability in appearance.

In order to solve this problem, we would like to argue that
for object manipulation actions, one should consider both, the
human movements and the objects to which these actions are
applied. Indeed, actions and objects seem to be intertwined and
we observe that a human/humanoid action can be seen from
two different perspectives: a) we look at an action as being
defined by movements of body parts of the humanoid agent.
This is what we need for 3D body tracking and movement
synthesis; b) we can also look at actions as being defined by
the effect the human movement has on an object, e.g., push
object, rotate object, etc. By looking at the state of the object,
the effect of a human movement is a change in that object
state. Defining the movement space as the space of human
movements and the object state space as the space of object

states, we define a dual view on the human actions, one from
the movement perspective and one from the object perspective.
Indeed, one is tempted to identify the effect of a movement
to be the “semantic” of that corresponding movement.

Therefore, instead of analyzing the movement space, as done
in [9], [10], we suggest to approach the detection of action
primitives instead by analyzing the object state space. This
way, we are able to identify all human movement trajectories
to be instances of the same primitive as long as they induce
the same effect on the object.

A major disadvantage of using the effects of human move-
ments for identifying the primitives instead of the trajectories
in movement space is that state-of-the-art approaches such
as hidden Markov models (HMMs) cannot easily be used
anymore for recognizing and synthesizing the movements
because they model trajectories in the movement space but
discard the effects as noise.

Therefore, we require a representation that is effect de-
pendent. The parametric hidden Markov model is such a
representation because it takes the effect of a movement as a
parameter and generates a new trajectory in movement space
that would lead to the desired effect.

In that respect, the main contributions of our work are:

• the definition of duality between the movement space and
the object state space;

• unsupervised learning procedure for detecting action
primitives;

• learning of the underlying action grammar;
• using parametric hidden Markov models (PHMMs) for

modeling trajectories in movement space based on their
effect in the object state space;

• non-supervised training of PHMMs based on both the
trajectories in the movement space and the effect of the
movements on the object state space;

• using the PHMMs for action synthesis, where a desired
effect is given and where a robot should generate the
necessary movement;

• using PHMMs for action recognition, where we require
to identify the effect and the action primitive based on
the observed movement.

Our concept is illustrated in Fig. 2 and it consists of the
following steps:

1) Non-supervised learning of action primitives: identify
the selection of necessary action primitives. This will
be done by analyzing the effects of the actions on
the objects, rather than the action trajectories directly
and store all the different performances of each of the
primitive in an action equivalence class. For example,
the equivalence class of the primitive reach for object
contains all action trajectories of the reach for object
primitive.

2) Build a parametric hidden Markov model (PHMM) for
each of these primitive classes based on the movement
trajectories and their effects.

3) Generate actions on robots that achieve a desired effect
and recognize action primitives and their effects from
the observed human actions.



In the following, we will discuss each of the steps in detail.
Each section contains its own experimental results.

   

Non­supervised learning of 
action primitives

action primitive 
classes according to 
their effect on 
objects

Build PHMM for 
each primitive class

Generate actions on 
robots, recognize 
actions on humans

Observation

Fig. 2: The figure shows the different steps involved in
learning actions.

III. UNSUPERVISED LEARNING OF ACTION PRIMITIVE
CLASSES ACCORDING TO THE Effect ON OBJECTS

In this section we discuss our approach to unsupervised
learning of action primitives based on the effect of the actions
on objects.

In the first two steps in Fig. 2, we evaluate the trajectories
that are caused by the human actions in the object state
space. For this purpose, let an action be represented by a pair
[Hi

t O
i
t] of hand trajectories Hi

t in movement space and object
trajectories Oit in object state space. While the trajectories Hi

t

in movement space are given by the hand locations, Oit is
given by the object locations and orientations. We propose
to analyze Oit to detect joint trajectories across the different
action effects which gives rise to a set of primitives. This is an
important difference from, e.g., [11], where human joint data
is used to identify action primitives. Having found primitives
in the object state space, i. e., a segmentation for each of the
Oit into these primitives, we become able to segment Hi

t in the
same way. If done for all training movements, we obtain sets
of human trajectories where each set corresponds to a specific
primitive (specific effect) in the object state space. In other
words, each set is an equivalence class of human movements
modulo the effect these movements have on the object state
space.

As movements are considered to be equivalent if their effect
is the same, an obvious key question is how the quanziation
of the object state space should be done. For example if the
object state space is quanitized in terms of the object locations,
then, e.g., two push movements are the same iff the initial and
the final object locations of the two movments are the same.
We have investigated in our work two different quantizations:
the first one is based on the change of the object location
in terms of Euclidean coordinates (Euclidean quanitization),
the second one is based on the change of object location and
orientation in terms of polar coordinates (polar quantization).
While the Euclidean quantization is direction selective, the
latter is direction invariant.

In the following subsections, we will give a brief explana-
tion of all necessary steps. A more detailed description can

be found in [12]. For better visualization in this section, we
chose the Euclidean quantization.

After this section, the learning approach will provide us
with a) sets of movements that all have the same effect on the
object with respect to the chosen quantization of the object
state space and b) how precisely the object states were changed
by each of the movements. As we will discuss in Sec. IV-A
both pieces of information will be required for unsupervised
training a PHMM for each of the detected equivalence class.

Use object info
to segment O

Find primitives

Group primitives
with same effect
in the object space

Segment and
group primitives
in action space

in object space

Object spaceAction space

Input features
[H O]

Fig. 3: Overview of our approach. The input H and O denote
the action and object features. The object features are first
analyzed and segmented. This is then used to extract the
primitives in the action space. Magenta boxes correspond to
analysis in the object state space, while the cyan box represents
analysis in the action space.

A. Modeling Object-Action Interactions as HMMs

In the first step we analyze the trajectory Oit in order to
identify the joint effect trajectories in the object state space.
To do this, we represent the set of trajectories as a left-to-right
hidden Markov model (HMM) [13] (see also Sec. IV-A2). We
build the HMMs recursively: each trajectory Oit is modeled
as an ordered sequence of 2D Gaussians mixtures where the
mean is given by the location on the trajectory, the major axis
of each Gaussian points in the direction along the trajectory
while the length of the minor axis’ is given by the expected
noise in the trajectories. A transition matrix is used to capture
the temporal order of the Gaussians along the trajectories. If
for two sequences two Gaussians strongly overlap, they are
fused into a single Gaussian. This keeps the final number
of Gaussians small. After the fusion of two Gaussians, the
transition matrix is adapted accordingly. At the end of this
process, we obtain a single hidden Markov model that models
the entire training set and where the HMM states are given by
the Gaussians.

In the next step, we identify for each trajectory Oit the opti-
mal sequence of HMM states by using the Viterbi algorithm.
At this moment, all continuous trajectories are turned into
a discrete sequence of HMM states. This is summarized in
Fig. 4 for a pushing action example: While a human pushes an
object on a table, the object coordinates change. Fig. 4 shows
pushes into four directions. To prevent location dependencies,
only the differences with respect to the initial object state are
considered. One can see that the Gaussians close to the origin
appear larger than those that are further away. This reflects that



Fig. 4: Data covered with Gaussians. Ellipsoids show the
contours of Gaussians used to cover the data. Lengths of the
trajectories indicate how much distance the object was moved.

in the example training set, the variability of short movements
was larger.

B. Grouping of HMM States into Primitives in Object Space

Once we have sampled the continuous trajectories into dis-
crete state sequences, the next step aims at detecting the action
primitives. This will be done by using a longest common
substring (LCS) approach. Two steps are required: a) The
left-to-right HMMs are expected to have self-transitions which
means that the discrete state sequences contain not only state
changes but also state repetitions. To be able to apply the
LCS approach, we discard in the first step the state repetitions
such that the discrete state sequence only contain the state
changes. b) we now can consider the learning of the final
primitives from the discrete state sequences as a Longest
Common Substring (LCS) problem [10] which we solve using
a dynamic programming approach [14]. This results in a small
set of primitives in the object state space and each original
continuous trajectory Oit can now be represented as a sequence
of primitives pi1, p

i
2 . . . p

i
N .

C. Segmentation and Grouping in Movement Space

In the final step we start from a sequence pi1, p
i
2 . . . p

i
N

of primitives for the object state trajectory Oit and we now
propagate the same segmentation to the trajectory Hi

t in the
movement space. While doing this for all trajectory pairs
[Hi

t O
i
t], all pieces of the Hi

t that inherit the same (effect)
primitive p are combined into one single equivalence class
p̂. In other words, all movements in the equivalence class p̂
have the same effect on the object while any two sequences

from two different equivalence classes p̂ and p̂′ have different
effects in the object state space.

D. Experimental Results

We have tested our approach for learning action primitives
on a re-recorded version of the dataset that was previously
used in the work by Vicente et al. [9]. In their work, a dataset
of different human arm actions doing manipulative tasks on
objects in a table-top scenario was recorded and ground
truth was generated. Fig. 5, right, shows the experimental
setup for the manipulative arm actions on objects on a table
top. In Fig. 1, left, one can see the different actions that

Fig. 5: Left: Our Experimental Setup. The markers are
attached to both, person and object. The object can be moved
from any position to any other position on the table. Right:
Experimental Setup in [9]. The table is marked with locations
where the object can be moved around. Object positions are
not recorded.

were recorded. Action primitives were hand-selected in an
intuitive sense as ground truth (Fig. 1, right). The aim of
our experiments is to learn these intuitive action primitives
automatically. Since the original dataset of [9] was lacking
data about the object state, we re-recorded the dataset using
our Vicon motion capture system with markers placed on the
human as well as on the object. In addition, the new dataset
provides a larger variability in object location as well as four
different directions for the push and move movements (up,
down, left, right). Fig. 5, left, shows the setup for the new
recording that includes the object-action interaction. As object
states we use the object locations and the object orientation.
For the Euclidean quantization of the object state space, the
finally recovered action primitives are shown in Fig. 6. As
it can be seen, we recover object translations (move and
push actions) into the four different directions available in
the training data, the rotate, the approach and the remove
primitive. It is interesting to note that the move and push
movements were identified as one movement, however. The
rotation movement was identified correctly, but the grasping
movement could not be detected. The reason for this is that the
grasp action by itself does not induce any object state change.
It is important to note in this context that both, the push and
the move movements required the object to be grasped. The
difference between move and push in our dataset is that the
push movement moves the object on the table while the move
action lifts the object from the table in order to place it at a
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Fig. 6: Results of Primitive Extraction in Movement Space. The figures, left and right, show results for slightly different data.
Each of the actions (recoded in sequence) starts by approaching the object, then it performs a manipulative primitive and ends
by retrieving the hand. Each of the squares represents a primitive in the object state space and the corresponding primitive in
the movement space. Left: Resulting primitive structure when rotation action was not included. Right: Result when rotation
is included.

new location. Since both movements require the object to be
grasped, the approach movements are the same.

When using polar quantization of the object state space,
the discovered action primitives become direction invariant,
i.e., the direction variant move primitives in the Euclidean
quantization are fused into a single, direction-invariant move
primitive. In the remainder of this paper, we will use the
direction invariant action primitives for learning a PHMM-
based representation for each of the primitives.

IV. BUILDING PHMMS FOR EACH PRIMITIVE CLASS

In the previous section, we have presented an approach that
can detect a set of action primitives from a set of observed
human movements. The result of the learning process was a) a
set of equivalence classes with movements that are equivalent
in terms of their effect on the object state space and b) the
precise effect of each of these movements on the object state.
For example, using the polar quantization, all push and move
movements were clustered into the same class. Furthermore
for each movement m we stored with it its precise effect, e.g.,
the initial location x0 of the object and the final location x1.

In this section we want to introduce parametric hidden
Markov models [15] as a compact representation that allows to
model each action primitive (equivalence class) in a way that
it can be used for synthesizing actions with a given desired
effect on an object or for recognizing the primitive and its
effect based on the visual and even monocular observation of
a human movement.

Hidden Markov models[13], [11] are a common tool for
statistically representing movements as trajectories. However,

they do not have the possibility to model these trajectories in
terms of an effect they should cause. On the contrary, varia-
tions in the movement trajectories that are necessary to cause a
certain effect are modeled as noise instead. For example while
an HMM can be used to model pointing movements (“Look at
this object”), the precise pointing direction will be considered
as noise. If one wanted to use a HMM to recognize the
pointing direction, one would have to use several HMMs, one
HMM for each specific direction. This means that the meaning
of the pointing movement, i.e., where is being pointing to,
is completely lost when using an HMM. Parametric hidden
Markov models, on the other hand, are able to identify the
pointing movement as well as the direction of pointing.

In the following, we introduce the PHMMs and discuss how
they can be used for representing the action primitive such that
they can be used for action recognition and synthesis.

A. The Parametric Hidden Markov Model

Parametric hidden Markov models (PHMMs) [15] are an
extension of the hidden Markov models (HMMs) [13], [16]
through latent parameters φ = (φ1, . . . , φN ), which model a
systematic variation within each action class. In the following
we shortly review the main principles of HMMs and then
extend the HMMs into PHMMs.

1) The Hidden Markov Model: A hidden Markov model
is a generative model. It is a finite state machine extended
in a probabilistic manner. For an HMM λ = (A,B,π),
the vector π = (πi) and the transition matrix A = (aij)
define the prior state distribution of the initial states i and the



transition probability between the hidden states. In continuous
HMMs, the observation densities of each hidden state are
described by density functions bi(x), which are in our context
multivariate Gaussian densities bi(x) = N (x|µi,Σi). The
HMM parameters can be estimated through the Baum-Welch
algorithm [13] for a set of training sequences.

2) Sequence Generation and Left-Right HMMs: An output
sequence X = x1 . . .xT can be drawn from the model
by generating step-by-step a state sequence Q = q1 . . . qT
with respect to the initial probabilities πi and the transition
probabilities aij and drawing for each state qt the output
xt from the corresponding observation distributions bi(x).
Generally, there is no unique correspondence between an
output sequence X and a state sequence as different hidden
state sequences can generate the same output sequence X .
This seems to be a rather poor approach in order to generate
a good prototype movements from the model. To overcome
this problem, we use a left-right model [13] as shown in
Fig. 7. A good prototype can then be generated by taking
the sequence means µ1 . . .µT and interpolating between the
means with respect to expected time durations encoded in the
state transitions.

21 43 ...
Fig. 7: Transition Structure of a particular Left-Right HMM.

3) The Parametric Extension to HMMs: A Parametric
hidden Markov model (PHMM) [15] λφ allows to take
into account a systematic variation φ in the input data
as variations of the means of the observation distributions
bφi (x) = N (x|µφi ,Σi). This means that for PHMMs the
means µφi = fi(φ) of the observation pdfs bφi are functions of
the parameter φ and that the functions fi(φ) are approximated
for each state i separately in the training process. For example,
for an approach action, the parameter φ is given by the
location of the object to be grasped. In order to model the
approach action to location φ, all observation pdfs bφi of the
PHMM are adapted appropriately. For a move action that starts
at an initial object location A and ends at a final object location
B, the parameter φ contains the initial location A as well as
the final location B.

In [15] a linear as well as a more general nonlinear model
are used to model fi(φ). In the linear case, each function
fi(φ) is of the form µi = µ̄i + Wi φ, where the matrices
Wi describe the linear variation φ. In the more general non-
linear case, a neural network, which is trained to approximate
a more general nonlinear dependency on φ, is used for each
state i. For both models, the training procedures are gener-
ally supervised as the parameterization φ for each training
sequence needs to be provided. In our case, these parameters φ
are automatically provided through our unsupervised primitive
learning approach from Sec. III: Recall that the result of the
primitive learning approach was a) sets of movements that all
have the same effect on the object with respect to the chosen
quantization of the object state space and b) how precisely the
object states were changed by each of the movements. That

means while the movements in each equivalence class are used
for training the PHMM, the initial and the final object state for
each of the movement are available and provide the necessary
parametric data for the PHMM training.

During primitive learning, the approach actions are suffi-
ciently specified by the location of the object to be grasped
because at the beginning of each approach action, the human
arm was always in a resting position in which is it is simply
hanging down from the shoulder. On the other hand, the
move action was specified by two parameters given by the
initial and the final object position. In order to be able to
use a single learning method for the two types of primitives,
we changed the approach movement into a two parameter
movement. To do that, we used the hand location instead
of the object location: while for example the move action
uses two object locations, we gain an additional location
parameter at the beginning of the approach movements and
an additional location parameter at the end of the remove
movement by considering the hand location. This way, all
primitives become bi-parametric which allows us to use a
single learning approach for all primitives.

In this paper we used a linear model to model the parametric
variability between the movements. For learning the PHMM
parameters we used an extended version of the Baum-Welch
approach.

4) Synthesis with PHMMs: The procedure for generating
a particular sequence with parameter φ is closely related to
the method explained in Sec. IV-A2. The difference here is
that one generates a specific movement for a parameterization
φ: given φ, one first computes the means µφ1 . . .µ

φ
T for

the observation densities bφi . This is done by evaluating the
functions fi(φ) that were learned in the training process
(Sec. IV-A3). Then, as all the observation densities bi are
specified, a good prototype can be synthesized as described
in Sec. IV-A2. Once the parameter φ is defined the means are
fixed.

5) Recognition with HMMs and PHMMs: Let us assume
that we have a set of action classes K and for each class
k ∈ K we trained an HMM λk. The maximum likelihood
approach can then be applied to identify X as that class k
which maximizes the likelihood:

kML = arg max
i

P (X|λi).

The likelihood can be efficiently computed using the forward-
backward procedure [13]. In the case of parametric HMMs
λφk

k the recognition becomes a two step procedure. First one
estimates for each model λφk the parameterization φk that
explains the movement in the maximum likelihood sense best:

φML
k = arg max

φi

P (X|λφi

i ) (for each k ∈ K) .

This can be done using EM, as in [15], or with gradient
descent, as in [17].

By adapting the parameters of the PHMM, this step reduces
the PHMM to a normal HMM, and the next step becomes the
same as in the case of general HMMs, i. e.

kML = arg max
i

P (X|λφ
ML
i

i ).



V. SYNTHESIZING ACTIONS WITH PARAMETRIC HIDDEN
MARKOV MODELS

In the previous sections, we have discussed how action
primitives can be detected and how parametric hidden Markov
models can be learned in order to represent these action
primitives.

In this section we want to discuss how precisely the PHMMs
are able to synthesize movements and how such movements
can be concatenated.

A. Precision of synthesized actions from PHMMs

As discussed above, PHMMs are able to synthesize move-
ments that are meant to generate a specific effect on the scene.
For example in order to move an object from location A
to location B, the PHMM λφmove that was trained for the
move action primitive is parameterized with the parameter
φ = (A,B). As discussed above in Sec. IV-A4 the parameter
φ effects the observation densities bφi of the PHMM λφmove in
such a way that the first observation pdf bφ1 assures that the
hand is located at location A, the last observation pdf bφlast
positions the hand at the final location B, and the observation
pdfs between the first and the last one are parameterized
appropriately to result in a smooth movement. In other words,
the movement trajectory will by definition start at location A
and end at location B as these are hard-constrained by the
parameters.

The locations of the observation pdfs within the movement
trajectory and the functions µi = µ̄i +Wi φ for each of the
observation densities are specified during the learning process
of the PHMM to assure an optimal approximation of the
training data in the least squares sense. The interpolation of
the movement trajectory between the observation pdfs can be
done linearly.

We have investigated how the quality of the action synthesis
depends on the number of training movements for the PHMM
and also how the synthesis quality depends on the location
of the object. The following two experimental results for the
approach movement are representative results in our set of
experiments: we have hand-reduced the equivalence class for
the approach movement so that it contained a) four repetitions
of approach movements to each of the four corners of the table
(2 × 2 grid) and b) four repetitions of approach movements
to each of the four table corners and the middle of the table
sides (3×3 grid). Based on these reduced equivalence classes,
we trained the approach PHMM λφapproach with 40 states.

For testing, we synthesized movements for evenly dis-
tributed 5×7 locations on the table. For each of these locations,
4 repetitions of the true human movements were available in
our movement dataset. The table top has a size of 80×30 cm.

We calculated the error for each of the 5×7 as the distance
between the synthesized movement f(t) and the averaged
trajectory f(t) of the four available human performances. To
be precise, each human movement in our movement dataset is
specified by 6 3D trajectories for the shoulder, the elbow of the
right arm, the wrist the index finger, its knuckle, and the thumb
of the right hand. Thus, the movements f(t) and f(t) are 6 3D
trajectories f(t) = (fi(i))6i=1, where the fi(t), i = 1, 2, . . .
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Fig. 8: The top image shows the root-mean-square error for
the synthesized grasping movement, where the PHMM was
trained on 2 × 2 training movements. The bottom image
shows the route-mean-squared error for the human reference
performances. The tabletop has the size 80× 30.

are shoulder, elbow, wrist, etc. The error ε of the synthesized
movement f(t) is calculated as the route-mean-square error
between the synthesis and the averaged human movement
f(t):

ε =

√√√√1
6

6∑
i=1

∫
(fi(α(t))− f i(α(t)))2dt

/∫
α(t)dt, (1)

where α(t) and α(t) are warping functions.

The results are summarized for the 2 × 2 training grid in
Fig. 8,top. For the 3 × 3 training grid the results are very
similar to the 2×2 grid. The synthesis errors are approximately
1.8cm. We have measured the route-mean-error of the human
performances compared to the average human performance.
The result is plotted in Fig. 8. By comparing the two plots
in Fig. 8 one can see that the performance of the PHMM is
comparable with the human performance.



Fig. 9: Generating movements on a robot. The humanoid HOAP-3 grasps for an object and puts it somewhere else.

B. Concatenating action primitives into complex actions using
PHMMs

If actions are defined in terms of action primitives and action
grammars, one has to be able to concatenate the primitives in
order to become able to synthesize complex actions, e.g., on a
robot. While we are aware that a concatenation of action primi-
tives for animation purposes is very complex [18], [19] as, e.g.,
smooth transitions between primitives have to be assured, we
have investigated the concatenation of primitives in a robot
experiment. In this experiment a humanoid robot was meant
to grasp objects on a table and place these objects into specific
holes in the table (see Fig. 9). The scenario was inspired by
the classic childen’s game where specific geometric objects fit
only into specific holes in a box. In our experimental setup,
the object states were given by their 2D locations on a table,
and the 2D locations were identified through a camera above
the table. The location of our humanoid robot relative to the
camera was calibrated. In order to generate movements on the
robot, we used the three action primitives: approach, move,
remove as learned from our primitive learning approach and
represented by our PHMMs. Extra care was taken for the
move primitive. As discussed in Sec. III, our learning approach
is not able to distinguish between the move and the shift
movement because we do the clustering based on the effect of
a movement, but not the movement itself. Thus, in our robot
experiment, we assured that the PHMM λφmove for the move
movement was trained only on the true move-movements in
the move/push equivalence class while the push-movements
were deleted from that equivalence class1.

The robot task was a-priori specified as an approach-move-
remove movement. During the execution, a human supervisor
advised the robot which object to move by pointing towards
the object. The robot identified the object closest to the indi-
cated location and estimated its position, which we denote here
by A, by vision. Using this information and the training data
it was able to generate the appropriate approach movement to
location A and grasp the object. To generate the movement, the
PHMM λφapproach was used, where φ specifies two locations:
1) the initial location of the end-effector in its resting location
and 2) the location A. The grasp is modeled as part of the
approach movement (see Sec. III-D).

Next, the robot executed the move movement where the
object was moved from location A to the new location B.

1We are presently investigating the enhancement of the effect-based prim-
itive selection to include also hand and grasping information.

This trajectory was executed using λφmove where φ specified
the locations A and B.

Finally, the robot executed the movement remove, where
the end effector opens and the arm is removed from the table
until it ends again in its resting position alongside the robot
body. The trajectory is computed using λφremove where φ is
specified 1) by the final object location B as the start location
of the remove and 2) by rest position of the end-effector as
its final location (same location as the initial location of the
approach movement). Implementational details can be found
in [20].

VI. RECOGNITION OF HUMANS’ ACTIONS

In this section we discuss how to recognize an action
primitive and its intended effect from a visual monocular
observation. In detail, given a monocular visual observation of
a human action, we want to identify which PHMM models this
observation best and which parameterization it uses. From the
PHMMs and its parameterization, we can identify the primitive
and, given the action grammar from Sec. III we become able
to recognize complex actions.

The most common approach to action recogition is to
assume that a person can be tracked and that the 3D postures
of the person can be estimated. Once the time sequence of 3D
body postures has been estimated, the sequence is evaluated,
commonly with an HMM [21] or possibly even with a PHMM,
as discussed in Sec. IV-A. However, non-intrusive full-body
motion capture is neither a trivial nor a solved problem [22],
[21], [23]. In this section we propose a completely novel,
context- and object-driven approach where we acknowledge
the fact that tracking, action recognition and the scene context
are intertwined, i.e., that the objects and the context constrain
the actions and vice versa.

A. Recognition through Tracking in Action Space

Instead of posing the action recognition problem as a 3D
human tracking problem with a subsequent action recognition
step, we suggest to pose the action recognition problem as
an action recognition problem where we acknowledge that
any action is being carried out in a context, and that, e.g.,
manipulative actions are carried out on objects. Instead of a
3D tracking approach with a subsequent action recognition,
we use our PHMMs to estimate directly which action it is
and which parameterization it has. As a consequence, while
general 3D human body tracking needs to solve the parameter



Fig. 10: Tracking Actions in Action Space. The images show a person reaching for a certain position on the table. The top
row shows the edge image for the likelihood measurement, the second row shows the corresponding camera image with the
detected arm pose superimposed. The current estimate of the position is indicated by the red point on the table.

estimation problem in a very high parameter space of human
joint configurations, our approach to action recognition is
concerned with a much smaller parameter space which is
defined by the conditional density over the possible actions
and parameters, given the context and objects in that context.
Since our parametric hidden Markov models are generative
models, we can generate the corresponding 3D postures from
the PHMMs and deduce the 3D human pose in the scene.

We call this approach tracking in action space and we define
the action space as given by the above conditional density.
For example, in case of an approach action (Sec. IV-A),
the action space is essentially described by only the object
location parameter, thus for tracking the approach action it is
in principle sufficient to test for different location parameters
instead of searching in a high dimensional action space. But
even that can be simplified because we can constrain these
parameters if we are able to identify the object locations in
the scene.

To explain our framework in more detail, let us consider the
classical Bayesian propagation over time as it is often used in
the context of general 3D human body tracking [21]:

pt(ωt) ∝
∫
P (It|ωt)P (ωt|ωt−1)pt−1(ωt−1)dωt−1 , (2)

where It is the current visual observation, pt(ωt) the prob-
ability density function (pdf) for the random variable ωt at
time t, P (ωt |ωt−1) the propagation step, and P (It |ωt) the
likelihood measurement of It, given ωt. Typically, the random
variable ωt specifies the body configuration of a human model
in joint angles, and the propagation density is used to constrain
the random variable ωt to the most likely pose values at each
time step t [24], [25]. In order to compute the likelihood
P (It |ωt), a human body model is generated using the pose
values from ωt and then compared with the input image data
It. For evaluating the Bayesian propagation, one commonly
uses a particle-based approach [22], [21], [26], [27].

In the tracking in action space approach, the random
variable ω is given as ω = (a,φ, τ), and it is used to control
our PHMMs: the parameter a identifies which PHMM it is, φ
specifies the parameters of λφa that need to be estimated, and
τ is the timing parameter which specifies the current hidden
state within the PHMM.

The propagation density P (ωt |ωt−1) can be considerably
simplified. If we assume that a human finishes one action
primitive before starting a new one, the action identifier a
is constant until an action primitive is finished. The timing
parameter τ changes according to the transition matrix of the
HMM and the paramter φ can also be assumed to be roughly
constant until a new action primitive is started.

Finally, the likelihood P (It |ωt) = P (It | (a,φ, τ)t) is
computed by first using the a-th PHMM to generate the joint
angles of the 3D human body pose for the parameter φ and
HMM-state τ . In the second step, the generated joint angles are
used together with a 3D body model to compute a projection
of the body onto the image plane, which we then compare
with the input image It. When computing the observation
likelihood, we also make use of the standard deviations of
observation densities of the PHMM.

B. Action Tracking: PHMM-based

In this section we discuss the details of using PHMMs to
model the actions for action tracking. In our problem scenario
we assume to have a set A = {1, . . . ,M} of actions, where
for each action a ∈ A a PHMM λφa was trained.

In Sec. IV-A2 and Sec. IV-A4 we have discussed how to
generate a sequence from a PHMM λφa for action a and param-
eter φ. Hence, for a given ωt = (a,φ, τ), P (x |ω) = bφa,τ (x)
defines the distribution of joint angles of 3D body poses for
which bφa,τ (x) generates a corresponding 3D human body
model (see Fig. 11, left) which is then matched against the



input image It:

P (It |ωt) =
∫
x

P (It |x)P (x |ωt)dx. (3)

Finally, the propagation density P (ωt |ωt−1) is given as
follows: τ is propagated as mentioned above by the transition
matrix Aa of PHMM λφa , and we allow φ to change according
to a Gaussian distribution (Brownian motion[28]). The variable
a which specifies the action primitive is initially drawn from
a contex-dependent distribution and is allowed to change
according to the grammar computed in Sec. III.

It should be noted that for all action primitives and the
corresponding PHMMs, the initial parameters are known and
given by the present tracking state. Only the final parameter
needs to be estimated. For example the move primitive starts
at the present location of the hand which immediately defines
the first parameter for the move PHMM λφmove and it must,
according to our grammar in Sec. III coincide with the final
parameter of the approach primitive.

It is worth having a close look at the estimation process for
ωt: The entropy of the density pt reflects the uncertainty of
the detected parameters. The entropy decreases usually with
every new incoming image and we use it as a measure of
convergence of the parameter estimation process.

Furthermore, by marginalizing over φ and τ , we can com-
pute the likelihood of each action a, and by marginalizing
over a and τ , we can also compute the pdf of the action
parameters φ. Fig. 12 shows the progression over time for
the unknown parameters of the approach action. The red and
green lines show the most likely 2D location parameters u and
v (for p = (u, v)). The dotted lines show their corresponding
uncertainties. The horizontal thin lines mark the corresponding
correct values for u and v. As one can see, the uncertainty
decreases with time, and after ≈ 60 frames, the correct
parameters are recovered. This is about the time when the
arm is fully stretched.

In the next section, we will discuss how the observation
likelihood P (It |ωt) is computed.

Fig. 11: Left: Body Model. We use an articulated human model,
where the skeletal structure is fleshed out by cones, and super-
quadratics. Each shoulder and elbow pair have 4 degrees of
freedom. — Right: Edge Distance Image. The edge image
(here of the model itself) is a smoothed gradient image, serving
as a distance to edges image.

C. The Observation Model

We use an articulated model of the human body, see Fig. 11,
left.

The computation of the observation likelihood is based
on the edge information of the arm silhouette. Therefore,
the contour C of the projected articulated body model is
extracted from the rendered view for a pose x. We defined
the observation function similar to the method described in
[27] on a smoothed edge image (see Fig. 11, right), where the
pixel values are interpreted as distances to the nearest edge.
The edge distance image is calculated as follows. We calculate
a normalized gradient image of the observed image I , gray
values above some threshold are set to 1. The image is finally
smoothed with a Gaussian mask, and normalized. This edge
image is denoted by G. The value of 1 − G(c) of a contour
pixel c can then be interpreted as distance values between 0
and 1, where the value 1 corresponds to a pixel with no edge
in the vicinity, and 0 corresponds to a pixel on a strong edge.
This distance interpretation is in some sense similar to the
edge detection along normals as used in [29], but faster to
evaluate.

The observation function is computed as

P (I | x) = exp

− 1
2σ2

1
|C|
∑
p∈C

(1−G(p))2

 , (4)

where C is the model’s contour and G is the edge image. An
extension to multiple camera views is straightforward:

P (I | x) = exp

− 1
2σ2

∑
i

1
|Ci|

∑
p∈Ci

(1−Gi(p))2
 , (5)

where Ci and Gi are the corresponding contour sets and edge
images of each view i.

D. Experiments

We evaluated our approach on monocular video data of the
same arm actions as in our movement dataset [9], as described
in Sec. III. The scenario (actor and table-top) in which the
actions are performed can be seen in the tracked sequence,
Fig. 10. As action model, we used linear PHMMs λφa with
φ = (u, v) as trained in Sec. IV-A.

The propagation over time is performed as described in
Sec. VI-B. We decrease the diffusion of the Brownian motion
of u and v in dependence of the state number τ . Therefore, we
draw the diffusion offset from a Gaussian where the standard
deviation σ = σ(τ) is a function of τ , as also shown in Fig. 13.
Our argument for the cooling down of the Brownian motion
over time is that for the first frames the visual evidence for the
right position φ = (u, v) is very weak which means that we
should allow a large variety of possible (u, v). But as visual
evidence increases with time, we become more certain about
the correct (u, v) and we can successively reduce the variance.

The sampling and normalization of image observations
are performed like in [29]. As described in Sec. VI-C, the
observation function is based on the evaluation of the edge
information in the monocular video data and the human body
model for state xωti

.
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Fig. 12: Progression of Action Parameters. The figure
shows the progression of the current estimate of the action
parameters u, v over time, where (u, v) defines the pointed
at position on table-top, and is measured as offset in cm to
center of the active table-top region, in the images of Fig. 10
the variables correspond to the “horizontal” (u) and “vertical”
direction (v). The dotted lines show the standard deviation for
u and v.

The images in Fig. 10 show that the arm pose is (visually)
very accurately estimated. The following three factors empha-
size the capabilities of our tracking in action space approach:
all information is gathered from a monocular video based on
a single feature type (edge information). The edge images
(especially the first part of the sequence) contain a lot of clutter
and the silhouette of the arm is not segmented accurately.
Besides the posture estimation, one can see in Fig. 10 that
the estimation of the action parameters (corresponding to the
position indicated through the small red dot) converges to the
true parameters of the action when the arm approaches the
table-top.

To evaluate the quality of posture estimation, we recorded
the joint positions in parallel with a marker-based motion
capture system. The route-mean-square error of the three
joints positions (shoulder, elbow, and finger) over the whole
sequence as shown in Fig. 10 is 3.3cm. The component-wise
averaged error is only 0.4cm. This error was within the natural
human action variation as it was observable in the training
data.

VII. CONCLUSIONS

We have presented a complete framework for learning action
primitives and for representing them with parametric hidden
Markov models for syntehsizing and recognizion actions.
The learning algorithm was used for simple actions using
object information. We are able to recover a simple primitive
structure for the actions that is similar to the natural language
description for the actions we have considered. Primitive based
modeling of actions enables us to define a hieararchy of actions
by converting continous observations into discrete symbols.
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Fig. 13: Cooling-Down of Brownian Motion. The plot shows
the deviation σ(k) = 0.4 · exp{−2 loge(1/4) · τ /#states} of
the diffusion. We decrease the Brownian motion in dependence
on the particle’s current state number k.

Several authors have represented actions in a hierarchical
manner [30], [31], [32]. These works require the manual
modeling of atomic movements/primitives. The contribution of
our work is that we perform this segmentation automatically.

The experimental results from [33] suggests that action
perception and execution of motor primitives are connected
through objects. There are also further studies from experi-
mental psychology which confirms the role of objects in action
understanding [34], [35]. In this paper we have exploited
object information to learn action primitives. Even though
object detection and classification literature is quite large (for
overview see [36]), there are not many attempts to combine
it with action modeling [37], [38]. In [37] Hidden Markov
models are combined with object context to classify hand
actions. Image, object and action-based evidence was used
to label and summarize activity and also to identify objects.
They define a generalized class model to describe objects.
Actions associated with each class were represented using
trained HMMs. The states of such HMMs were connected to
the regions through which the object moved for the particular
action. Our approach learns such a model for modeling actions
automatically. A graphical Bayesian model was used in [38]
for modeling human-object interactions. Some of the condi-
tional probabilities of this model was calculated using trained
HMMs. These approaches require a good initial training of
action models for later recognition even though a known
structure is assumed. Our work goes beyond the state of the art
in this area since it exploits object knowledge in the primitive
learning process. Our work relates to the recent work of [8]
where a hierarchical tree structure is incrementally formed
representing the motions learned by the robot. One of the
issues raised is that each node representing a motion primitive
may differ from those segmented in an off-line, supervised
process. By integrating the object knowledge in the learning
process, the resulting primitives are more similar to the ones
generated in an off-line process.

Alternatives to PHMMs are for example extensions of
HMMs[39] as in [40] where a metric of imitation performance
is found and used for optimizing trajectories or the use of
dynamic motion primitives [41].

One might argue that our approach cannot be used for
general action synthesis and recognition because the space
of possible actions will always be too limited. However,



following the arguments in [5], [6], [7], [42], [43] about human
actions being composed out of motor primitives similarly to
human speech being composed out of phonemes, we believe
that our limited action space can be generalized to span the
space of action primitives. Stochastic action grammars could
be used as in [44], [7], [43] to model more complex actions.
Furthermore, [43] explains how a language for human actions
can be generated based on grounded concepts, kinetology,
morphology and syntax.
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Hands in Action:
Real-Time 3D Reconstruction of Hands in Interaction with Objects

Javier Romero Hedvig Kjellström Danica Kragic

Abstract— This paper presents a method for vision based
estimation of the pose of human hands in interaction with
objects. Despite the fact that most robotics applications of
human hand tracking involve grasping and manipulation of
objects, the majority of methods in the literature assume a
free hand, isolated from the surrounding environment. Our
hand tracking method is non-parametric, performing a nearest
neighbor search in a large database (100000 entries) of hand
poses with and without grasped objects. The system operates
in real time, it is robust to self occlusions, object occlusions and
segmentation errors, and provides full hand pose reconstruction
from markerless video. Temporal consistency in hand pose is
taken into account, without explicitly tracking the hand in the
high dimensional pose space.

I. Introduction

Articulated tracking and reconstruction of human hands
has received an increased interest within the fields of com-
puter vision, graphics and robotics [1] and applications in-
clude learning from demonstration, rehabilitation, prosthesis
development, human-computer interaction. Our goal is to
equip robots with the capability of observing human hands in
interaction with objects based solely on vision data, without
markers.

Capturing hand articulation from video without markers
is a challenging problem. A realistic articulated hand model
has at least 28 degrees of freedom, making the state-space
very large. The pose estimation suffers from self-similarity
– fingers are hard to distinguish from each other – and a
high degree of self-occlusion. Furthermore, hands move fast
and non-linearly. Any method is thus computationally costly,
making real-time implementation demanding. Although there
are hand tracking systems developed for specific purposes
such as sign recognition [1], full pose estimation remains an
open problem, specially if real-time performance is required,
as in virtually all robotics applications.

Hand pose estimation methods can largely be divided into
two groups [1]: A) model based tracking and B) single
frame pose detection. Methods of type A) usually employ
generative articulated models [2], [3], [4]. Due to the high
dimensionality of the human hand, they are facing challenges
such as high computational complexity and singularities
in the state space. They are thus generally unsuitable for
robotics applications. Methods of type B) are usually non-
parametric [5], [6]. They are computationally less demanding

This work is supported by EU through the project PACO-PLUS, IST-
FP6-IP-027657, and GRASP, IST-FP7-IP-215821 and Swedish Foundation
for Strategic Research.The authors are with the Computational Vision
and Active Perception Lab, Centre for Autonomous Systems, CSC-KTH,
Stockholm, Sweden. jrgn,hedvig,dani@kth.se

Fig. 1. Left) Original image and Right) Estimated pose.

and more suited for a real-time system, but also more brittle
and sensitive to image noise, since there is no averaging over
time. In this paper we present a type B) non-parametric pose
estimation method (Fig. 1), which takes temporal consistency
into account. The probabilistic framework of this method is
described in Section II. The method is faster and better at
recovering from temporary errors than type A) model-based
tracking methods. In an earlier paper [7] we also showed
that the time continuity constraint makes the method more
accurate and robust than other type B) single frame detection
methods.

The method maintains a large database of (synthetic) hand
images. Each database instance is labeled with 31 parameters
describing the hand articulation and orientation of the hand
with respect to the camera. The 31D hand configuration of
a new (real) image can then be found using an approximate
nearest neighbor approach, taking previous configurations
into account. Section II describes the composition of the
database. The hand image representation is described in Sec-
tion IV and the nearest neighbor-based mapping is described
in Section V.

In the majority of applications, the human hands are
frequently in contact with objects. Despite this, researchers
have up to now almost exclusively focused on estimating
the pose of hands in isolation from the surrounding scene.
A recent notable exception is [8], who describe a type A)
model-based tracker that allows for objects in the hand.
Our method is also able to reconstruct hands both with and
without grasped objects. Reconstruction of a hand grasping
an object is in many ways a much more challenging task
than reconstruction of a free hand, since the grasped object
generally occludes large parts of the hand. The method of
[8] allows for hand pose reconstruction despite the object
occlusion.

On the other hand, knowledge about object shape gives
important cues about the configuration of palm and fingers
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Fig. 2. The non-parametric temporal regression framework.

in contact with the object. Moreover, object shape and
functionality give cues as to how this object is generally
grasped. The relation between object shape and hand shape
is however complex, and this information is hard to exploit
in a type A) generative tracking model. In contrast to [8], our
method is non-parametric, which means that complex object-
hand shape dependencies can be implicitly represented by
examples. Hand views in the database depicting grasping
hands include occlusion from objects with a shape typical
for this kind of grasp (Fig. 1). The occlusion affects the
appearance of a hand view, so that hands with similar
objects in them will appear similarly. Since the underlying
assumption is that appearance similarity implies similarity
in hand pose, the object shape contributes to the hand pose
estimation in our method.

Thus, the main contribution of the paper is a robust non-
parametric method for 3D hand reconstruction, operating
in real-time, that also takes time continuity constraints into
account. The method handles severe occlusions of the hand
and also takes the object shape into account in 3D hand
reconstruction. Experiments in Section VII also show that
the method is robust to segmentation errors, a necessary
requirement for the method to be applicable in a realistic
setting.

II. Probabilistic Framework
The following notation is used throughout the paper. In

a specific time instant t, let xt be the articulated hand pose
and yt the observation. Here, xt is a 28 dimensional vector
of joint angles, and yt is a 512D histogram of oriented
gradients (HOG) [9], see Section IV. The space spanned by
x is hereafter called JOINT space, while the space spanned
by y is called HOG space. We assume that p(xt) is uniform
over the JOINT space, and that the process is Markovian,
i.e., xt depends on the previous pose xt−1 only.

As shown in [7], the view yt alone is not enough to non-
ambiguously estimate the articulated hand pose xt. Therefore,
the pose xt−1 at the previous timestep is taken into account
in the estimation. This corresponds to sequential estimation
of p(xt |yt, xt−1), the hand pose given the observation and the
previous state. The temporal regression problem is decom-
posed as p(xt |yt, xt−1) ∝ p(xt |yt)p(xt |xt−1). As shown in Fig. 2,

(a) Original image (b) Segmented hand, (c) NN in database,
HOG HOG

Fig. 3. Data representation.

the method takes as input a monocular image and segments
the hand based on skin color segmentation (a). A HOG yt is
then computed as described in Section IV (b).

The HOG yt is compared to a large database of hand views
(c), returning a weighted set of nearest neighbors {(yi

t, x
i
t,w

i
t)},

as described in Section V (d). Each neighbor view yi
t from

the database has an associated joint angle configuration xi
t,

which, weighted by wi
t, constitute a sampled approximation

of p(xt |yt) (e).
The temporal consistency constraint p(xt |xt−1) is a para-

metric function of xt and xt−1, as explained in Section VI
(f). This term gives a higher probability to estimates where
the hand has moved little over the last time step, thus giving
priority to smooth motion estimates. The multiplication with
p(xt |xt−1) is approximated by updating the database nearest
neighbor weights to w∗it ∝ wi

t p(xi
t |xt−1) (g).

The expected hand pose value at time t is then estimated
as x̂t = E(xt |xt−1, yt) ≈ arg maxxi

t
w∗it , i.e., the database pose

with the highest weight (h).

III. Database Composition

The hand pose xt could potentially be found by expressing
p(xt |y1, xt−1) parametrically, and finding the maxima of this
function using an optimization algorithm. However, this
optimization problem is high dimensional and non-convex.
To alleviate the dimensionality problem, and constrain the
search to commonly observed hand poses, we use a non-
parametric approach: we discretize the state space by creating
a large database of hand poses with synthetic images.



The composition of the database is motivated by our
research aim: understanding human interaction with objects.
Our database has more than 105 images, consisting of 5
different timesteps of 33 object grasping actions observed
from 648 different viewpoints. The grasp types are selected
according to the taxonomy presented in [10]. The graphics
software Poser 7 is used to generate the synthetic hand views.
The synthetic views in the database include basic object
shapes that are usually involved in each kind of grasp (see
Fig. 3c). The objects are considered background (although
colored black for visibility in the figures) and the hand parts
occluded by the object do not provide any features to the
image observation yt. This can be seen in Fig. 3c, bottom,
where there is a “hole” in the middle of the HOG. As
mentioned in the Introduction, the object shape contributes
to the hand pose estimation in our method, since the hand
pose depends on the shape of the object, which in turn affects
the HOG yt.

It can be argued that this method can only work if the
object shape in the real action is the same as in the database.
However, firstly, a particular kind of grasp is executed
usually to similarly shaped objects and, secondly, the features
used in our system (see Section IV) generalizes well over
small variations in object shape. As described in Section II,
p(xt |yt, xt−1) is modeled non-parametrically using {(yi

t, x
i
t)},

a set of database nearest neighbors to yt in HOG space,
weighted by their distance to yt in HOG space and xt−1 in
JOINT space. The weighting is formalized in Sections V
and VI.

IV. Image Representation

The input to the method are monocular images of the
type and quality shown in Figure 3a. In these images, the
hand is segmented using skin color thresholding in HSV
space [11] (Figure 3b, top). From the segmented hand image
a histogram of oriented gradients (HOG) [9] is extracted
(Figure 3b, bottom). This is a rich representation of shape,
with certain robustness towards segmentation errors and
small differences in spatial location and proportions of the
segmented hand. The image is partitioned into cells and a
histogram of gradient orientation is computed for each cell.

The size of the cells and the granularity of the histograms
affect the generalization capabilities of the feature. With
smaller cells and detailed histograms, the feature is richer
but less capable of generalize over small differences. For
our purposes, 8× 8 cells and histograms with 8 bins provide
good generalization with a sufficient level of details. The ob-
servation yt equals the concatenation of the 8× 8 histograms
corresponding to each cell of the image. The dimensionality
of yt is thus 8 × 8 × 8 = 512. A more detailed discussion on
how different parameters of the HOG affect human detection
can be found in [9].

V. Non-ParametricMapping

The probability density function p(xt |yt) is approximated
by indexing into the database of hand poses using the image
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Fig. 4. Two different methods for modeling temporal consistency.

representation yt, and retrieving the k nearest neighbors
(kNN) in the space spanned by y.

As an exact kNN search would put serious limitations on
the size of the database, an approximate kNN search method,
Locality Sensitive Hashing (LSH) [12] is employed. LSH is
a method for efficient ε nearest neighbor (εNN) search. It is
particularly suited for high dimensional data, since its online
complexity does not depend explicitly on the set size or the
dimensionality [12].

Each retrieved εNN yi
t is given a weight wi

t = N(yi
t |yt, σy),

drawn from a 512D Gaussian density centered in yt with
standard deviation σy. This gives higher weight to database
εNN that look similar to the observed hand.

In the database, each HOG y j is associated with a pose
x j. The poses corresponding to the εNN {yi

t} can thus be
retrieved. Together with the weights, they form the set
{(xi

t,w
i
t)} which is a sampled non-parametric approximation

of the density p(xt |yt).
The pose vector x is composed of the rotation matrix of

the wrist wrt the camera and the sines of the joint angles
of the hand (which takes values between [− π2 ,

π
2 ]). Each

component of x therefore lie in the domain [−1, 1], which
makes scaling unnecessary. The advantage of using a rotation
matrix to represent the wrist rotation is that rotation matrices
can be compared in a Euclidean fashion, as opposed to Euler
angles and quaternions. Euclidean comparison of poses is
used in the temporal consistency modeling (Section VI) and
the experimental evaluation (Section VII-A).

VI. Temporal ConsistencyModeling

As described in Section II, the temporal consistency con-
straint p(xt |xt−1) is modeled as a parametric function. It is
used to reweight the sampled distribution {(xi

t,w
i
t)}, approxi-

mating p(xt |yt). We propose two ways to model the temporal
consistency constraint, outlined in the two subsections below.

A. Single Hypothesis Gaussian Weighting

The simplest way of modeling temporal consistency is to
assume that poses similar to the previous estimated pose
x̂t−1 are more likely than poses that are very different from
the previous one. Hence, p(xt |xt−1) = N(xt |x̂t−1, σx), a 28D
Gaussian density centered in x̂t−1 with standard deviation σx.
This approach was used in [7] and is depicted in Figure 4a.



(a) α = 0.5% (b) α = 3.3% (c) α = 5%

Fig. 5. Artificial segmentation corruption α added to synthetic sequences.

B. Multiple Hypothesis Kernel Density Estimation Weighting

A drawback of the single hypothesis approach is that all
the “second best" nearest neighbor hypotheses at t − 1 are
thrown away before temporal propagation. A logical im-
provement is to consider the full weighted set of hypotheses
{(xi

t−1,w
∗i
t−1)} instead of the most likely hypothesis x̂t−1 in the

estimation of p(xt |xt−1). This is illustrated in Figure 4b.
Following this idea, we use kernel density estimation

(KDE) [13] over the weighted set of poses of the previous
frame {(xi

t−1,w
∗i
t−1)} to estimate p(xt |xt−1). The system can

then recover from an erroneous estimation of xt−1.
As shown in the experiments in Section VII, KDE leads to

a more robust sequential estimation than Gaussian weighting
in many cases. Furthermore, even though KDE increases
the computational load with a factor corresponding to the
number of nearest neighbors |{xt−1}], the computational load
of computing the temporal consistency weights is negligible
compared to, e.g., the database εNN lookup. A drawback
of KDE compared to Gaussian weighting is however the
necessity of tuning more parameters, most importantly, the
bandwidth of the kernels.

VII. Experiments

We first experimentally compare the two temporal con-
sistency models detailed in Section VI, using synthetic
sequences with hand pose ground truth. Then, the method is
evaluated on real sequences featuring three different subjects
and three object shapes. The sequences were captured at
10 frames/sec with a Point Grey Dragonfly camera with a
resolution of 640×480 pixels. The method was implemented
in C++ and runs at 10 frames/sec on one of the cores of a
four core 2.66GHz Intel processor.

A. Comparison of Temporal Consistency Models

The single hypothesis and multiple hypothesis temporal
consistency models are first compared in terms of pose
reconstruction accuracy. This quantitative analysis of our
method is done with synthetic sequences, where the hand
pose ground truth is available. To make experimental con-
ditions as realistic as possible, none of the hand poses or
the objects in the synthetic sequences are present in the
database. Moreover, the poses are corrupted with a variable
amounts of segmentation noise (see Fig. 5), to simulate
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Fig. 8. Pose error with increasing segmentation corruption in sequence 1.
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Fig. 9. Pose error with increasing segmentation corruption in sequence 2.

segmentation errors that occur with real sequences. The
segmentation corruption is performed in the following way:
The segmentation mask is first assigned as the full hand view
(without noise). A fraction α of the pixels in the segmentation
mask are set to zero. The error is then propagated through an
erosion followed by dilation. In each frame t, the error of the
estimated hand pose x̂t relative to the ground truth pose xgt

t
is estimated as ‖x̂t − xgt

t ‖, the Euclidean distance in the pose
space explained in Section V. Figures 6 and 7 show the hand
pose estimation of synthetic sequences 1 and 2 respectively,
with segmentation corruption α = 0.5%.

As shown in Fig. 8-9, the multiple hypothesis temporal
consistency model almost consistently gives a better accu-
racy. The effect is more visible with higher segmentation
corruption levels α. The reason for this is that the single-
frame pose estimate p(xt |yt) is more ambiguous for higher
α, which means that there is a higher uncertainty about which
sample xi

t is the best pose estimate at time t. With higher α
it is thus increasingly better to let all samples {(xi

t−1,w
i
t−1)}

influence the temporal model. It can als be seen that the pose
estimation performance is largely unaffected by segmentation
corruption levels up to α = 2%.

B. Real Sequences with Subjects Not in Database

To show the performance of the method on real data, it
was evaluated with sequences of the first author and two
uninstructed persons (one man and one woman) grasping



Fig. 6. Synthetic sequence 1. Top: original synthetic image. Middle: segmentation image with α = 0.5%. Bottom: estimated pose. (The objects in the
database are colored black for visibility here, but do not contribute to the HOGs.) Video at www.csc.kth.se/∼jrgn/VideosICRA2010/synthetic1.mp4

Fig. 7. Synthetic sequence 2. Top: original synthetic image. Middle: segmentation image with α = 0.5%. Bottom: estimated pose. (The objects in the
database are colored black for visibility here, but do not contribute to the HOGs.) Video at www.csc.kth.se/∼jrgn/VideosICRA2010/synthetic2.mp4

three different objects: A cup (with no equivalence in the
database), a tennis ball (similar to a ball in the database),
and a pair of pliers (with no equivalence in the database).
The actions are not required to start from any specific pose.
Naturally, the grasps in the sequences do not have exact
correspondences in the database. Furthermore, the subjects’
hands are of different sizes and shapes.

The multiple hypothesis temporal consistency modeling,
shown above to be consistently better than the single hy-
pothesis alternative, was used throughout the real image
experiments. Fig. 10, 11, and 12, show the result of pose
estimation for the three subjects respectively.

One conclusion that can be drawn is that the method is
robust to individual variations in hand shape and proportions.
The hand model used to generate the database view is
designed to be male. However, the method is successful
in recovering the poses of the considerably more slender
female hand (Fig.”12), as well as of the hand with a larger
proportion of the lower arm uncovered (Fig. 11); this affects
skin segmentation, which in turn affects the HOG yt used for
database lookup.

The results also show that the method generalizes over
grasps and objects that are not exactly represented in the
database. It should be taken into account that two of the
subjects have no previous experience with the method or the
database, and thus can be expected to grasp the objects in
a natural way. The cup and the ball are well represented
by other objects present in the database. However, the pliers
pose a slightly larger challenge for the method. There are two
possible reasons for this. Firstly, the layout of the pliers, with
two separated legs, makes the occlusion of the hand appear
differently than any example in the database. Secondly,

the functionality of the pliers makes the subjects grasp it
differently than other rod-like structures in the database.
Fig. 13 shows the pose estimation of a sequence where large
parts of the hand is occluded by the grasped object showing
the method is robust to large object occlusion.

The pose estimation in Fig. 14 points to an avenue for im-
provement of the method. In our current temporal continuity
approaches we assume that the most probable current pose is
similar to the most probable previous pose. With this we are
making an implicit assumption of static hand pose. However,
this assumption is frequently violated; fast hand motions like
the one shown at the end of the sequence in Figure 14 are
not uncommon. With the assumption of being static in the
temporal consistency model, all poses xi

t selected by the εNN
sampling will be equally unlikely according to the temporal
consistency model. Ambiguities in the HOG signature, e.g.,
between the front and back part of the hand, will then cause
estimation errors as the one in the leftmost frame of Fig. 14.
This issue can be addressed by including a dynamic model
of pose over time.

VIII. Conclusions

A non-parametric method for 3D sequential pose esti-
mation of hands in interaction with objects was presented.
The contributions of this paper are the development of a
method that not only handles severe occlusion from objects
in the hand, but also takes the object shape into account
in 3D hand reconstruction. In addition, the method is non-
parametric and provides 3D hand reconstruction, operating
in real-time, taking time continuity constraints into account.

Experiments showed that the method estimates hand pose
in real time robustly against segmentation errors and large
occlusion of the hand from objects. It was also shown that



Fig. 10. Real sequence 1 (male subject 1). Top: image with skin segmentation window highlighted. Bottom: estimated pose. (The objects in the database
are colored black for visibility here, but do not contribute to the HOGs.) Video at www.csc.kth.se/∼jrgn/VideosICRA2010/real1.mp4

Fig. 11. Real sequence 2 (male subject 2). Top: image with skin segmentation window highlighted. Bottom: estimated pose. (The objects in the database
are colored black for visibility here, but do not contribute to the HOGs.) Video at www.csc.kth.se/∼jrgn/VideosICRA2010/real2.mp4

Fig. 12. Real sequence 3 (female subject 3). Top: image with skin segmentation window highlighted. Bottom: estimated pose. (The objects in the database
are colored black for visibility here, but do not contribute to the HOGs.) Video at www.csc.kth.se/∼jrgn/VideosICRA2010/real3.mp4

Fig. 13. Real sequence 4 (male subject 1) with large hand occlusion. Top:
image with skin segmentation window highlighted. Bottom: estimated pose.
Video at www.csc.kth.se/∼jrgn/VideosICRA2010/real4.mp4

Fig. 14. Real sequence 5 (male subject 1) with fast non-linear motion. Top:
image with skin segmentation window highlighted. Bottom: estimated pose.
Video at www.csc.kth.se/∼jrgn/VideosICRA2010/real5.mp4

the robustness to temporary estimation errors is improved
by taking multiple hypotheses of previous hand pose into
account.

Future work includes improving the motion model; cur-
rently, a static temporal model is implicitly assumed. This
can be done in several ways, e.g., by learning low-
dimensional models of hand motion from motion capture
training data. Furthermore, we will enlarge the database to
represent poses of differently shaped hands, grasping a wider
range of objects under different illumination conditions. The
approximate database lookup has a highly sub-linear time
complexity, which allows for a significantly larger database
with a moderate increase in computational load.
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Abstract— Markerless, vision based estimation of human
hand pose over time is a prerequisite for a number of robotics
applications, such as Learning by Demonstration (LbD), health
monitoring, teleoperation, human-robot interaction. It has spe-
cial interest in humanoid platforms, where the number of
degrees of freedom makes conventional programming challeng-
ing. Our primary application is LbD in natural environments
where the humanoid robot learns how to grasp and manipulate
objects by observing a human performing a task. This paper
presents a method for continuous vision based estimation of
human hand pose. The method is non-parametric, performing
a nearest neighbor search in a large database (100000 entries)
of hand pose examples. The main contribution is a real time
system, robust to partial occlusions and segmentation errors,
that provides full hand pose recognition from markerless
data. An additional contribution is the modeling of constraints
based on temporal consistency in hand pose, without explicitly
tracking the hand in the high dimensional pose space. The pose
representation is rich enough to enable a descriptive human-
to-robot mapping. Experiments show the pose estimation to
be more robust and accurate than a non-parametric method
without temporal constraints.

I. INTRODUCTION

Vision based, markerless human hand tracking in natural
environments with and without interaction with objects is
an important building block for various human-machine
interaction and robot learning tasks. An important aspect
considered in our work is enabling robots to learn how
to grasp and manipulate objects just by observing humans.
Another aspect is monitoring of humans in everyday environ-
ments for designing hand prosthesis able of performing most
common human grasps. However, capturing hand articulation
is a challenging problem. Using the joint angle representation
of hand pose requires 28-dimensional configuration space. In
addition, self-occlusions of fingers introduce uncertainty for
the occluded parts. Although there have been examples of
systems that can track hands for very specific purposes such
as sign recognition, full pose estimation remains an open
problem, specially if real-time performance is required.

In robotic applications, an important aspect of task mod-
eling is how different objects involved in the task should
be grasped and manipulated. Humanoid robots are equipped
with more and more dexterous humanoid hands, capable of
perform human-like grasps. However, the control of these
hands is far from trivial; therefore LbD is an attractive way
of teaching the robot how to grasp [1]. While observing
the human, the robot must estimate the human hand pose

(a) (b)

Fig. 1. a) ARMAR head, b) ARMAR head observing human grasp
demonstration

over time, and then map the hand pose to its own hands
or grippers. In this paper we focus on visual estimation of
human hand motion during object manipulation. While hand
motion can be robustly extracted using 3D magnetic sensors
or datagloves [2], the usability of a home service robot is
compromised if the user is required to carry special markers
during task instruction. The visual hand pose estimation is
therefore required to be markerless.

Humanoid heads are constraint to have small baseline,
lightweight stereo vision systems (see Figure I). This makes
the stereo-matching problem difficult and sometimes inaccu-
rate, specially for textureless surfaces as human hands. For
this reason visual hand pose estimation based on monocular
images can be an attractive field for humanoid robot research.

Markerless 3D reconstruction of hand pose based on
a single image is an extremely difficult problem due to
the large self-occlusion, high dimensionality and non-linear
motion of the fingers. There are different ways of addressing
these difficulties. Hand pose estimation method can largely
be divided into two groups [3]: model based tracking and
single frame pose estimation. Due to the high dimensionality
of the human hand, articulated 3D model based trackers are
facing challenges such as high computational complexity
and singularities in the state space [4].Single frame pose
estimation is usually more computationally efficient than
model based tracking, but lacks the notion of temporal
consistency, which is an important cue to hand pose [5],
[6].

In earlier work [6], we presented a method for non-
parametric estimation of grasp type and hand orientation



from a single monocular image. The method maintained a
large database of (synthetic) hand images. Each database
instance was labeled with the grasp type and the orientation
of the hand with respect to the camera. The grasp type and
orientation of a new (real) image could then be found using a
nearest neighbor approach. For completeness, the hand image
representation is described in Section III and the nearest
neighbor-based mapping is described in Section IV.

In the current work, we have further developed the initial
approach in two ways; I) by including temporal consistency
in the distance measure used for database retrieval. This
greatly enhances the robustness of the hand pose estimation,
as it will be shown in Section VI; II) by extending the state
space to a full joint angle representation, allowing a full 3D
reconstruction of hand pose. This facilitates the learning of
rich human-to-robot hand pose mapping. Development II)
is the main contribution of this paper, described in more
detail in Section IV and it is possible in part because of
Development I), which is a secondary contribution, detailed
in Section V.

Experiments in Section VI show that we can reconstruct
the hand pose in real time and that our method is consider-
ably robust to segmentation errors, a necessary requirement
for the method to be applicable in a realistic setting. Addi-
tionally, it is shown that the temporal consistency constraint
has a profound effect on the pose estimation accuracy and
robustness.

II. RELATED WORK

Analysis of human hand pose for the purpose of LbD [7]
has been thoroughly investigated, almost exclusively with the
help of markers and/or 3D sensors attached to the human
hand [2]. However, we envision a LbD scenario were the
teaching process can be initiated without calibration and
where the robot-user interaction is as natural as possible.
For this reason we want to reconstruct the hand posture in a
visual markerless fashion.

The field of markerless visual hand pose estimation has
been mainly devoted to hand gesture or sign language
recognition [8]. A common approach is to estimate the hand
pose from a single frame and use this pose as the input to a
recognition module [5], [9], [10].The pose estimation is made
easier by the fact that the range of poses can be constrained
to the discrete set of specific gestures.

Methods for hand pose estimation that are not constrained
to a limited set of poses can largely be classified into
two groups [3]: I) model based tracking and II) single
frame pose estimation. Methods of type I) usually employ
generative articulated models [11], [4].Since the state space
of a human hand is extremely high-dimensional, they are
generally very computationally demanding, which currently
makes this approach intractable for a robotics application.
Methods of type II) are usually non-parametric [6].They are
less computationally demanding and more suited for a real-
time system, but also more brittle and sensitive to image
noise, since there is no averaging over time. The method
presented here falls into the second approach. However, it

(a) HOG x, JOINT p (b) HOG x1, JOINT p1 (c) HOG x2, JOINT p2

Fig. 2. Ambiguity in mapping from HOG space to JOINT space. Even
though it is visually apparent that ‖p−p2‖ � ‖p−p1‖ in JOINT space,
database instance 1 will be regarded as the nearest neighbor as ‖x−x1‖ <
‖x−x2‖. Note that the object in the hand just contributes with occlusion of
the hand in HOG extraction, as it is then colored uniformly with background
color.

takes temporal continuity into account and it can be used for
on-line real-time reconstruction.

For LbD purposes, it is relevant to investigate what hand
pose information the robot needs in order to perform a
successful human-to-robot mapping of the hand motion. In
[12], [13] the control of a grasping hand was performed from
a low dimensional space thanks to dimensionality reduction
techniques.

III. IMAGE REPRESENTATION

The input to the method is a sequence [It], t = 1, . . . , n
of monocular images of the human hand. The same image
representation was used in our previous work [6], where a
more elaborate description can be found.

In each frame It, the hand is segmented using skin color
segmentation based on color thresholding in HSV space. The
result is a segmented hand image Ht. Due to a number of
factors such as image noise, skin color in the background
and non-skin colored areas on the hand (e.g. jewellery), the
segmentation is more or less erroneous.

The shape information contained in Ht is represented with
a Histogram of Oriented Gradients (HOG). This feature has
been frequently used for representation of human and hand
shape [14], [15].It has the advantage of being robust to small
differences in spatial location and proportions of the depicted
hand, while capturing the shape information effectively.

Gradient orientation Φt ∈ [0, π) is computed from the
segmented hand image Ht as Φt = arctan(∂Ht

∂y /∂Ht

∂x ).
From Φt, a pyramid with L levels of histograms with

different spatial resolutions are created; on each level l, the
gradient orientation image is divided into 2L−l×2L−l equal
partitions. A histogram with B bins is computed from each
partition.

The hand view at time t is represented by the HOG xt

which is the concatenation of all histograms at all levels in
the pyramid. The length of xt is thus B

∑L
l=1 22(L−l). Em-

pirically, we obtained the best performance with a reasonable
running time using B = 8 and L = 3. A discussion about
how different parameters of the HOG affect human detection
can be found in [16].

IV. NON-PARAMETRIC POSE RECONSTRUCTION

In this section, we regard the problem of estimating a
single pose p from a single HOG x omitting the time index.



The goal of the hand pose reconstruction process is to find
the mapping p̂ = M(x), where p̂ is the estimated 31D hand
pose in terms of global orientation (lower arm yaw, pitch,
roll) and joint angles (3 wrist joint angles, 5 joint angles per
finger) , and x is the observed 168D HOG representation of
the hand view, described in Section III.

The mapping function M can be expected to be highly
non-linear in the HOG space, with large discontinuities. Fol-
lowing [6], M is therefore represented non-parametrically,
i.e., as a database of example tuples {〈xi,pi〉}, i ∈ [1, N ].
Due to the high dimensionality of both the HOG space
(168D) and the state space (hereafter denoted JOINT space,
31D), the database needs to be of a considerable size to cover
all hand poses to be expected; in our current implementation,
N = 90000. This has two implications for our mapping
method, as outlined in the subsections below.

A. Generation of Database Examples

Generating a database of 105 examples from real images
is intractable. Instead, we used the graphics software Poser 7
to generate synthetic views Hsynth

i (see Figure 4) of different
poses. The database was generated offline and it took around
5 days to render all the poses on a standard desktop computer.
We are here motivated by the LbD application where we
envision human to perform different types of grasps on
objects in the environment. Therefore, the database examples
are chosen as frames from short sequences of:

1) different grasp types, from
2) different view points, with
3) different grasped objects, and with
4) different illuminations.
The grasp types are selected according to the taxonomy

developed in the GRASP project1, which integrates the
Cutkosky [17], Kamakura [18], and Kang [19] taxonomies.
The whole database is also available at the same place.
For each grasp type, a number of poses from whole grasp
sequences (rest, approach and grasp) are included. Each pose
is rendered with four different illuminations and from 386
different points of view uniformly distributed on a sphere.
Standard objects are included to simulate typical occlusions.

From each example view Hsynth
i , the tuple 〈xi,pi〉 is

extracted, where xi is generated from Hsynth
i as described

in Section III, and pi is the pose used to generate the view
Hsynth

i in Poser 7.

B. Approximate Nearest Neighbor Extraction

Given an observed HOG x, the goal is to find an esti-
mated pose p̂ = M(x). With the non-parametric mapping
approach, the mapping task p̂ = M(x) is one of searching
the database for examples 〈xi,pi〉 such that xi ≈ x. More
formally, Xk, the set of k nearest neighbors to x in terms
of Euclidean distance in HOG space, di = ‖x − xi‖ are
retrieved.

As an exact kNN search would put serious limitations on
the size of the database, an approximate kNN search method,

1www.grasp-project.eu.

Fig. 4. Synthetic sequence not contained in the database. Note that the
object in the hand just contributes with occlusion of the hand in HOG
extraction, as it is then colored uniformly with background color.

Locality Sensitive Hashing (LSH) [20] is employed. LSH is a
method for efficient ε-nearest neighbor (εNN) search, i.e. the
problem of finding a neighbor xεNN for a query x such that

‖x− xεNN‖ ≤ (1 + ε)‖x− xNN‖ (1)

where xNN is the true nearest neighbor of x.
The number of hyperplanes and number of tables used in

the LSH search are learned from the database, as explained in
[20]. In our current implementation, K = 30 and T = 5000.

The computational complexity of εNN retrieval with LSH
[20] is O(DN

1
1+ε ) which gives sublinear performance for

any ε > 0.

C. The Mapping M is Ambiguous

The database retrieval described above constitutes an
approximation to the true mapping p̂ = M(x), robust to
singularities and discontinuities in the mapping function M.

However, it can be shown empirically that M is inherently
ambiguous (one-to-many); substantially different poses p can
give rise to the similar HOGs x [14]. An example of this is
shown in Figure 2.

Thus, the true pose p can not be fully estimated from a
single HOG x (using any regression or mapping method);
additional information is needed. In the next section, we de-
scribe how temporal continuity assumptions can be employed
to disambiguate the mapping from HOG to hand pose.

V. TIME CONTINUITY ENFORCEMENT IN JOINT SPACE

We now describe how temporal smoothness in hand mo-
tion can be exploited to disambiguate the mapping M.

Consider a sequence of hand poses [pt], t = 1, . . . , n,
that have given rise to a sequence of views, represented
as HOGs [xt], t = 1, . . . , n. Since the mapping M is
ambiguous, the k nearest neighbors to xt in the database,
i.e. the members of the set Xk, are all similar to xt but
not necessarily corresponding to hand poses similar to pt.
An important implication of this is that a sequence of hand
poses [pt], t = 1, . . . , n does not necessarily give rise to a
sequence of HOGs [xt], t = 1, . . . , n continuous in the HOG
space. This is illustrated in the upper part of Figure 3, where
we see that the red crossed arrow forcing continuity in HOG
space points to the wrong pose.

This property of the data makes the problem of continuous
hand pose recognition intrinsically different to other continu-
ous NN problems found in the literature. For example, in [21]
the “visible” feature displays time continuity, thus allowing
the kNN answers from previous time steps to guide a new
kNN query.
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Fig. 3. Due to the underlying physics, a sequence of poses is continuous in the JOINT space, but not in HOG space.

However, due to the physics of the human body, the speed
of the hand articulation change is limited. Thus, the sequence
of hand poses [pt], t = 1, . . . , n, i.e. the hidden variables,
display a certain continuity in the JOINT space. This is
illustrated in Figure 3.

The hand pose recognition for a certain frame t is therefore
divided into two stages; I) retrieval of a set of k nearest
neighbors Xk using single frame non-parametric mapping,
as described in Section IV; II) weighting of the members of
Xk according to their time continuity in the JOINT space.

(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 4

Fig. 5. Recognition of hand pose with perfect segmentation. Row 1: query
pose pt; Row 2: estimated pose p̂t; Row 3: estimated pose p̂uniform

t .

Let Pk be the set of poses corresponding to the kNN set
Xk found in stage I). Moreover, let p̂t−1 be the estimated
pose in the previous time step. In stage II), the members
pj , j ∈ [1, k] of Pk are weighted as

ωj = e−
‖pj−p̂t−1‖

2σ2 . (2)

where σ2 is the variance of the distance from each entry pose
pj to the previous estimated pose pt−1.

The pose estimate at time t is computed as the weighted
mean of Pk:

p̂t = (
k∑

j=1

ωjpj)/(
k∑

j=1

ωj) . (3)

It should be noted that this is very similar in spirit to
temporal filtering. The main difference is that a filtering
approach can be regarded as top-down, making predictions
about future poses according to some motion model, pre-
dicting how the observations of those prior poses should
appear, and comparing the expected observations with the
actual observations. Our approach can instead be regarded as
bottom-up, making estimates directly from the observations,
and then evaluating them in terms of the motion model.

In order to weight the poses pj , pt−1 could be substituted
by more complex predictions such as Kalman Filters or
Particle Filters. However, the dynamics of the joints are not
easy to model, so we preferred to keep the assumption about
the dynamics as simple as possible as a first step. We leave
the inclusion of a particle filter predictor for future work.



(a) α = 0% (b) α = 1% (c) α = 5%

Fig. 6. Synthesizing imperfect segmentation for synthetic images with
3 noise levels: fraction α pixels removed, followed by an opening-closing
operation on the image.

Fig. 7. Mean square error of 31D pose vector for continuous and non-
continuous recognition

VI. EXPERIMENTS

The experiments are designed to measure the effect of tak-
ing time continuity into account in the hand pose estimation
as described in Equations (2), (3) as opposed to unweighted
averaging

p̂uniform
t = (

k∑
j=1

pj)/k . (4)

Firstly, a quantitative analysis is made, using a synthetic
sequence not included in the database. Secondly, the perfor-
mance of the method is qualitatively evaluated on real images
with hand poses not included in the database.

A. Quantitative Analysis

It is difficult to obtain ground truth poses pt for a real im-
age sequence; this would mean introducing markers, which
would seriously affect the appearance of the hand. Therefore,
a synthetic sequence is created, shown in Figure 4. The
sequence depicts a typical approach-grasp action. Neither the
rest position, the pose after the approach nor the final grasp
pose are included in the database.

The quality of the estimated pose vector p̂t is measured
in terms of Euclidean distance from the ground truth pose
vector pt in JOINT space: Et = ‖p̂t − pt‖.

Fig. 8. General comparison. Row 1: query pose pt, not included in the
database; Row 2: estimated pose p̂t; Row 3: estimated pose p̂uniform

t .

Figure 5 shows reconstructed poses p̂t compared to the
baseline of p̂uniform

t . The time continuity constraint is clearly
effective: The estimates p̂uniform

t are much more incoherent
over time than p̂t. Figure 7, leftmost bar, shows that the
mean error of sequence [p̂t], t = 1, . . . , n is 50% lower than
that of [p̂uniform

t ], t = 1, . . . , n.
The comparison becomes more valid if we simulate realis-

tic image noise conditions for this synthetic sequence. Noise
is thus introduced in the segmentation of the image, in order
to simulate imperfect segmentation in real sequences. This
is done by removing a certain fraction of the pixels in the
segmentation mask, followed by opening-closing morpholog-
ical operations. Figure 6 shows how this operation affects the
segmentation mask.

Figure 7 shows how the error (vertical axis) develops
as the image segmentation noise level increases (horizontal
axis). It is apparent that the estimation with pose continuity
is much more robust to segmentation errors up to α = 2%.
α = 5% there is an abrupt increase in error for both methods,
indicating that the segmentation (Figure 6c) then is too poor
to yield descriptive HOGs.

B. Qualitative Analysis

The algorithm was also evaluated with a real image
sequence without known ground truth. The sequence contains
grasps that do not correspond exactly to poses included in
the database. Moreover, some grasps are performed with high
velocity, yielding frames with substantial motion blur.

It should be noted that the experiments were performed
with different people, only changing parameters of color
skin segmentation. The system is quite robust to different
hand shapes. The sequences were recorded with the ARMAR
humanoid head (see Figure I). There is a decrease on
performance when the hand occupies less than approximately
40x40 pixels.

Sample frames from the sequence are shown in Figure 8.
The whole video with the results from the recognition system
can be found at http://www.csc.kth.se/∼jrgn/
handTracking264.mov.

The main point of using continuity is to overcome ambi-
guity arising during a few frames, by taking into account past



Fig. 9. Segmentation error comparison. Column 1: query pose pt; Column
2: segmentation mask; Column 3: estimated pose p̂t; Column 3: estimated
pose p̂uniform

t .

(a) t = 1 (b) t = 3 (c) t = 5 (d) t = 7

Fig. 10. Blurriness persistence. Row 1: query pose pt; Row 2: estimated
pose p̂t; Row 3: estimated pose p̂uniform

t .

estimations. As expected, Figure 8 shows that the estimates
p̂uniform

t are less robust to temporal ambiguities in the
mapping M. Enforcing continuity over time also improves
the robustness towards motion blur and bad segmentation, as
shown in Figures 10, 9. However, if the different problems
(blurriness, poor segmentation) persist over more than 5–10
frames, the continuity enforcement does not contribute to the
same extent.

Finally, we got some early results on a humanoid LbD
scenario for grasping purposes 2.

VII. CONCLUSIONS

A non-parametric method for 3D hand pose estimation
over time from a monocular video sequence was presented.
Experiments showed that the system estimates the hand pose
in real time robustly against segmentation errors. It was
also shown that enforcing continuity in the hand pose space
improves the quality of the hand pose estimation. Initial
results showed that the system can be used in a LbD scenario
for humanoid imitation.

Future work along these lines includes improving the
motion model; currently, a static model is implicitly assumed.
We can for example include angular velocities in the pose
state space, thus encapsulating velocity information in the
database examples. Furthermore, we will update the database
to represent poses of differently shaped hands under different
illumination conditions. We also plan to investigate methods
for mapping the human hand pose to a lower dimensional
space suitable for the robot hand that is going to actuate the
grasp after LbD.

2http://www.csc.kth.se/∼jrgn/
GraspRecognitionDivx.avi
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[1] S. Ekvall and D. Kragić, “Grasp recognition for programming by
demonstration tasks,” in IEEE International Conference on Robotics
and Automation, 2005, pp. 748–753.

[2] L. Y. Chang, N. S. Pollard, T. M. Mitchell, and E. P. Xing, “Feature
selection for grasp recognition from optical markers,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2007.

[3] A. Erol, G. N. Bebis, M. Nicolescu, R. D. Boyle, and X. Twombly, “A
review on vision-based full DOF hand motion estimation,” in Vision
for Human-Computer Interaction, 2005, pp. III: 75–75.

[4] M. de la Gorce, N. Paragios, and D. J. Fleet, “Model-based hand track-
ing with texture, shading and self-occlusions,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2008, pp. 1–8.

[5] V. Athitsos and S. Sclaroff, “Estimating 3D hand pose from a
cluttered image,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2003, pp. 432–439.

[6] H. Kjellström, J. Romero, and D. Kragić, “Visual recognition of grasps
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Modeling and Evaluation of Human-to-Robot Mapping of Grasps

Javier Romero Hedvig Kjellström Danica Kragic

Abstract— We study the problem of human to robot grasp
mapping as a basic building block of a learning by imitation
system. The human hand posture, including both the grasp type
and hand orientation, is first classified based on a single image
and mapped to a specific robot hand. A metric for the evaluation
based on the notion of virtual fingers is proposed. The first
part of the experimental evaluation, performed in simulation,
shows how the differences in the embodiment between human
and robotic hand affect the grasp strategy. The second part,
performed with a robotic system, demonstrates the feasibility
of the proposed methodology in realistic applications.

I. INTRODUCTION

Programming service robots for new tasks puts significant
requirements on the programming interface and the user.
Programming by Demonstration (PbD) systems offer a great
opportunity to unexperienced users for integrating complex
tasks in a robotic system. However, representing, detecting
and understanding human activities has been proven difficult
and has been investigated closely during the past several
years, [1], [2], [3], [4].

In the past, we have studied imitation of object manipula-
tion tasks, using magnetic trackers, [4]. Although magnetic
trackers and datagloves deliver exact values of hand joints, it
is desirable that the user demonstrates tasks to the robot in a
natural way; the use of gloves or other types of sensors may
prevent a natural grasp. This motivates the use of systems
based on visual input. In this paper, we concentrate on the
use of our vision based grasp classification system presented
in [5] for evaluation and execution of the grasp mapping on
a robot. The contributions of the work presented here are:
• Based on a single image and the classification method-

ology [5], we purpose a mapping strategy between a
human and two robot hands of different kinematical
properties. The mapping is performed according to the
grasp taxonomy proposed in [6], shown in Fig. 1.

• The distinction between the grasp categories is made
based on the preshape of the hand and also in terms of
different strategies for approaching the objects.

• We propose a metric for evaluation of the mapping
strategy and use it in the experimental evaluation.

We start with the state of the art description in Section II,
followed by a short overview of grasp classification in
Section III. Section IV describes the grasp mapping strategy
and Section V presents the evaluation of the system. The
paper is concluded in Section VI.

Authors are with the Centre for Autonomous Systems, CVAP, KTH,
Stockholm, Sweden. {jrgn,hedvig,dani}@ckth.se. The work
was supported by the EU projects GRASP, IST-FP7-IP-215821 and PACO-
PLUS, FP6-2004-IST-4-27657 and the Swedish Foundation for Strategic
Research.
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(d) 1.Dm.
Large

(e) 2.Dm.
Small

(f) 4.Abd.
Thumb

(g) 9.Pinch (h) 10.Power
Sphere

(i) 12.Precision
Disc

(j) Karlsruhe Power. (k) Karlsruhe Wrap. (l) Karlsruhe
Sphere.

(m) Karlsruhe
Disc.

Fig. 1. The six grasps according to Cutkosky’s grasp taxonomy [6]
considered in the classification, and the three grasps for a Barrett hand and
Karlsruhe hand, with human-robot class mappings ((d,e)→(a),(f,g)→(b),
(h,i)→(c)), (d,f,g)→(j), (e)→(k), (h)→(l), (i)→(m) shown. a) Barrett Wrap.
b) Barrett Precision. c) Barrett Precision Disc d) Large Diameter grasp, 1.
e) Small Diameter grasp, 2. f) Abducted Thumb grasp, 4. g) Pinch grasp, 9.
h) Power Sphere grasp, 10. i) Precision Disc grasp, 12. j) Karlsruhe Power,
k) Karlsruhe Wrap, l) Karlsruhe Sphere, m) Karlsruhe Disc

II. RELATED WORK

In the field of robotics, most of the object grasping
systems are based on the a-priori object knowledge where
either analytical or off-line methodology is used for grasp
execution. In the work presented in this paper, we aim for
learning grasps directly from human and mapping them on
different robot hands. This relates to the work of [7] that
classify objects based on their affordances (categories like
“sidewall-graspable”), so the classification itself determines
how to grasp the object. Also, as it has been showed by
[8], the appropriate usage of grasps is not necessarily related
just to the object’s shape. For example, the way to grasp a
hammer is not the most natural or most stable for this object,
but it is the best for the purpose a hammer is used.

According to [9], a grasp action involves two main func-
tions well separated: the approach component (involving the
arm muscles) and the grasp component (involving the hand
muscles). Although it has been showed that these systems



are closely correlated, people focused mainly on one of
the two subsystems. There are systems performing imitation
of the arm [10] or, more generally, the upper-body [11].
The arm/upper-body imitation does not experience the self
occlusion to the same extent as the hand does.

Our previous work [4] considered an HMM framework for
recognition of grasping sequences using magnetic trackers
and evaluated both the fingertip and the posture mapping.
There are approaches that imitate the whole hand posture
[12] or perform a simple mapping to a gripper based on
two fingertips [13]. Mapping grasps to more complex hands
is usually much more complicated. In [14] the concept of
”virtual finger” is introduced: one or more real fingers acting
in unison. Kang and Ikeuchi [15] use this concept as an
intermediate step in their mapping procedure. Our approach
integrates vision based mapping and the notion of virtual
fingers for mapping human grasps to two robot hands: one
of them resembles human kinematics (Karlsruhe hand) and
one of them does not (Barrett hand). Thus, the robot here
does not explore a range of approach vectors, but instead
directly imitates the human approach vector, encoded in the
hand position and orientation relative to the object.

III. VISION BASED GRASP CLASSIFICATION

The details of our methodology for visual recognition of
grasps can be found in our previous work, [5]. We only
summarize the most important aspects. The input to the grasp
classification method is a single monocular image in which
we first segment the hand. The classification method is non-
parametric; grasp classification and hand orientation regres-
sion is formulated as a problem of finding the hand poses
most similar to image example H in a large database. Each
database sample Hsynth

i,j , where i denotes grasp type and j
denotes sample number, has associated with it a class label
yi,j = i and a hand-vs-camera orientation oi,j = [φj , θj , ψj ],
i.e. the Euler angles from the camera coordinate system to
a hand-centered coordinate system. To find the grasp class
ŷ and orientation ô of an unknown grasp view H acquired
by the robot, a distance-weighted k-nearest neighbor (kNN)
classification/regression procedure is used. First the set of
k nearest neighbors to H in terms of Euclidean distance
between gradient orientation histograms obtained from the
grasp images are retrieved from the database. From the found
approximate nearest neighbors, the estimated class of H is
found as a distance-weighted selection of the most common
class label among the k nearest neighbors, and the estimated
orientation as a distance-weighted mean of the orientations
of those samples among the k nearest neighbors for which
yi,j = ŷ.

IV. EXAMPLE-BASED MAPPING OF GRASP TO ROBOT

The estimated grasp class as well as hand and object
orientation and position are used to instantiate a robot
grasp strategy. The human-to-robot grasp mapping scheme
is defined depending on the type of robot hand used. The
Barrett hand is a three fingered, 4DOF robotic hand with
an embodiment substantially different to a human hand.

Karlsruhe hand is a five fingered, 8DOF robotic hand with
an embodiment similar to a human hand. The preshapes used
for the hands are shown in Fig. 1. There are three preshapes
for the Barrett hand:
• Barrett Wrap: used for grasps with a preshape with large

aperture, like Large and Small Diameter grasps;
• Barrett Precision Grasp: for small aperture preshapes

like the Pinch grasp and the Abducted Thumb (executed
as a pinch grasp due to the hand kinematic constraints);

• Barrett Precision Disc: for circular objects.
There are four preshapes for the Karlsruhe hand:
• Karlsruhe Power preshape is applied for grasps with

four parallel fingers and thumb opposed to them, like
Large Diameter, Pinch and Abducted Thumb.

• Karlsruhe Wrap is applied for the Small Diameter where
the thumb is not opposed to the rest of the fingers.

• There are two preshapes for round objects, Karlsruhe
Sphere (for Power Sphere) and Karlsruhe Disc (for
Precision Disc); the differences are in the pose of the
thumb (more opposed in the Disc) and in how straight
are the rest of the fingers (more bent in Power Sphere).

The grasp mapping is performed as shown in Algorithm 1.
The hand orientation estimate oh→c, along with the hand
position estimate ph→c and the estimated position and ori-
entation oo→c, po→c of the grasped object all relative to the
camera are used to derive the estimated position and orien-
tation of the human hand relative to the object oh→o, ph→o.
The hand orientation relative to the table plane oh is extracted
from oh→c and the orientation of the camera oc, obtained
through the robotic head kinematics. The estimation of object
position and orientation is assumed perfect; this part of the
system is not implemented, instead the ground truth is given
in the simulations.

The system first decides which preshape to use based on
the recognized grasp. Then, the approach vector is chosen.
Two different ways of approaching the object are used, based
on the orientation of the human hand; if the palm orientation
oh is similar to the one in Fig. 1(e) the object is approached
from the side, otherwise it is approached from the top. Based
on the estimated type of grasp, the system differentiates
between volar and non-volar grasp, [15], i.e., whether there
should be a contact between the palm and object or not.
The original volar grasps are the Large Diameter, Small
Diameter, Abducted Thumb and Power Sphere grasps, see
Fig. 1. However, the limitations of the hands embodiments
make impossible to use the palm in the Abducted Thumb
and Power Sphere grasps. In a human Abducted Thumb
grasp the palm adapts its shape to the object, and the
abduction/adduction degrees of freedom of the fingers are
used; the robotic hands studied here lack those degrees of
freedom, so the Abducted Thumb is mapped to a Pinch
Grasp. In the case of the Power Sphere, the robotic hands
cannot apply a volar grasp due to the larger length of robotic
fingers.

The volar grasping is performed in the following order:
1) The robot adopts the hand orientation and preshape



Data: Human Grasp Gh, ph→o,oh→o, oh
/* Robot Hand H ∈ {Barrett,Karlsruhe} */
/* Robotic Grasp Gr */
/* Approach Vector a */
/* Distance palm-fingertip δ */
if H = Barrett then

if Gh ∈ {LargeDiameter, SmallDiameter} then
Gr = BarrettWrap;

else if Gh ∈ {Pinch,Abducted} then
Gr = BarrettPrecision;

else if Gh ∈ {PowerSpherical, PrecisionDisc}
then

Gr = BarrettPrecisionDisc;

else if H = Karlsruhe then
if Gh ∈ {LargeDiameter, P inch,Abducted} then

Gr = KarlsruhePower;
else if Gh = SmallDiameter then

Gr = KarlsruheWrap;
else if Gh = PowerSphere then

Gr = KarlsruhePowerSphere;
else if Gh = PrecisionDisc then

Gr = KarlsruhePrecisionDisc;

if oh = oside then ; /* see Fig. 1(e) */

a = as; /* approach from side */

else
a = av; /* approach from top */

/* execute */
Set hand to preshape Gr;
Set hand to orientation oh→o;
if Gh ∈ {LargeDiameter, SmallDiameter} then ;
/* if volar */

Approach following a towards ph→o until contact;
while contact pc out of palm do

Retreat;
ph→o = αpc + (1− α)ph→o;
Approach following a towards ph→o;
α = α2;

else ; /* if non-volar */

Approach following a towards ph→o − δ;
Grasp;

Algorithm 1: Pseudo-code for grasp mapping.

corresponding to the estimated human grasp.
2) The robot hand approaches the object centroid until it

detects contact on the palm sensor. After that, it closes
the hand.

When the robot detects that the first contact did not
occurred in the palm, the trajectory is replanned. The new
goal position for the hand is a weighted average between the
detected contact pc and the original goal position ph→o, as

explained in Algorithm1. The non-volar grasps, which have
no contact between the palm and the object, are originally the
Pinch and Precision Disc grasps (see Fig. 1). Since there is no
contact between the tactile sensor in the palm and the object,
in our system the grasp is performed without any feedback.
For this reason, the non-volar grasps depend heavily on the
precision of the object position and orientation estimation.
The difference between non-volar and volar strategies is the
absence of the loop where the contact location is checked
(see Algorithm 1).

V. EXPERIMENTAL RESULTS

We first evaluate our approach in the GraspIt! simulator
and then demonstrate it in a real robotic scenario.

A. Simulated grasping with GraspIt

As stated, evaluating the performance of a grasp imitation
system is not trivial. It cannot be based on grasp stability,
and comparison between joint angles in robotic hands and
human hand is not possible because of the differences in the
embodiment. We have decided to compare the grasps using
the concept of virtual fingers ([14]), computed based on the
equations stated in [16]. As cited in Section II, a virtual
finger is a group of real fingers (including the palm) that act
in unison. So, in theory, the average position and orientation
of the virtual finger contacts in the imitated grasp should be
similar to the ones in the original grasps. However, as it will
be discussed later, that is not always the case.

The virtual finger configuration tries to minimize two
factors: the number of virtual fingers N , in order to achieve
a compact representation, and the heterogeneity of the real
fingers Ri conforming each virtual finger Vk, described as
a cohesive index for virtual finger k, CVk

. The cohesive
index of each virtual finger is computed based on the degree
of force coupling (cosine of the angle between the forces)
between each two forces fi, fj applied with any of the fingers
within a virtual finger:

Dc(i, j) =
fi · fj
|fi| · |fj |

, mij =
1 +Dc(i, j)

2

CVk
=

∏
i∈Ri,j∈Rj

Ri,j∈Vk

mξ
ij , ξ =

(
F (Vk)

2

)−1

where F (Vk) is the number of fingers within Vk. For
example, if all forces within a virtual finger k are parallel,
CVk

= 1. If any two forces belonging to the virtual finger
are perpendicular, CVk

= 0. So, in order to find the best
configuration of virtual fingers, we maximize the cohesive
indexes CVk

trying to keep the number of virtual fingers
small:

Maximize Ceff = ( 1
N !

∏N
i=1 CV,i)

1
N

Subject to N ∈ 1, 2, 3, 4, 5, 6,
⋃N
i=1 Vi = R

Vi ∩ Vj = ∅, i 6= j, 1 ≤ i, j ≤ N

So for every possible combination of real fingers Ri
assignment to virtual fingers Vk, the coefficient Ceff is
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Fig. 2. First and third row shows the grasp execution in absence of errors for Barrett and Karlsruhe Hand. Second and forth row show a comparison
between the contacts for Barrett(black)-Human(blue) hands and Karlsruhe(black)-Human(blue) hands. The big arrows show the average pose of the virtual
fingers,PVk

computed. The assignment with the highest Ceff is selected
as the virtual finger representation of the grasp. The position
and orientation of contacts is automatically extracted from
the robotic simulator for the robot grasps, and it was tagged
manually from images for the human grasp.

So far, all the real fingers Ri have been assigned to a
virtual finger Vk. In order to compare the configuration of
different hands we will define the contact pose (6d, including
position and orientation) PVk

of a virtual Vk as the average
of the contact poses Pi within this virtual finger:

PVk
=

1
T (Vk)

∑
i∈Ri
Ri∈Vk

Pi

T (Vk) ≡ number of contacts within Vk

In the first experiment, perfect object pose estimation and
perfect hand pose recognition is assumed. Fig. 2 represents
the grasps and the contact comparison between the robotic
hands (black) and the human hand (blue). The big arrows
show PVk

, and the small arrows show all Pi. It can be
seen in this figure that the pose of the virtual fingers and
even the number of them does not coincide always. For
example, the Barrett hand has three virtual fingers for the

Small Diameter grasp, while Human and Karlsruhe hands
have two (Fig. 2a,g,m,s). The reason for this mismatch is
that Barrett fingers are longer than human and Karlsruhe
fingers, so the object is touched by the last phalanx in the
edges instead of the face. Another significant difference in
the number of virtual fingers appears in the Power Sphere
grasp (Fig. 2c,k,q,w). The human grasp has just one virtual
finger, while the robotic hands have two. For the human,
placing the thumb opposed to the rest of the fingers is
uncomfortable. The big contact surface and therefore big
friction between the hand and the ball allows him to place
the fingers in a relatively unstable way. However, the contact
surface between the robotic hands and the object is much
smaller, so the thumb should be placed in opposition to
the rest of the fingers. In contrast, in the Precision Disc
grasp (Fig. 2f,r,l,x) the human needs to place the thumb
in opposition to the rest of the fingertips due to the lower
friction between the hand and the object. It is also interesting
to reason about the results for the Large Diameter grasp
(Fig. 2b,h,n,t). Apparently there is a big difference between
the average virtual finger position, but the actual contacts
look similar. The reason is that the human fingers have
contacts in both the proximal and distal phalanges, while



the robot achieves a contact just in the distal ”phalanges”.
Finally, it should be pointed that despite the impossibility of
imitating properly the Abducted Thumb grasp, the position
of the virtual fingers is quite accurate, with a deviation in
orientation in one of them due to the two contacts from the
human palm and index fingertip in the top of the object,
inexistent in the robotic grasps.

We present a more concise view of the experiments in
Fig. 3: it represents the average error in virtual fingers
position and orientation (position and orientation component
of PVk

) between the robotic hands (where Barrett error is
represented in black and Karlsruhe in white) and the human
hand. However, it should be noted that this measure is a lower
bound of the error: in cases where the number of virtual
fingers is different, this represents the average distance
between the best matching virtual fingers. Sometimes this
mismatch is known and natural (like the different number
of virtual fingers in the Power Sphere grasp), but sometimes
this means that one finger failed to touch the object. This
happens mainly in the experiments with position error with
the Karlsruhe hand, and will be mentioned later. For the
case of perfect data (Fig. 3a for orientation, Fig. 3e for
position) we can infer a number of conclusions: Karlsruhe
hand performance in terms of orientation is better than the
performance of Barrett hand; the performance in terms of
position of the virtual fingers is similar; the biggest errors
appear in the Large Diameter grasp, for the reasons stated
before.

The next experiment tests the robustness with respect to
the object position errors. We introduced an error of ρ = 5cm
in 6 different directions:

p̂o = po + ρ[cosβ, sinβ, 0]

β = {0, π
3
, 2
π

3
, 3
π

3
, 4
π

3
, 5
π

3
}

The difficulty of the problem should be noted: the size of
the objects in their biggest axis is around 10cm, so the
error is significant compared to their size. Another factor
is the lack of any visual feedback. This experiment show us
principally the importance of the feedback (tactile feedback
in our case) in the presence of errors. The only grasps where
tactile feedback was used are the Large and Small Diameter
grasps. The reason for that is because those grasps are the
only ones where we expect a first contact with the palm:
this means that a first contact detected in any other finger
suppose an error in the object pose detection that should
be corrected. It can be seen that, in the presence of object
pose errors, the error increases much more in the grasps
without corrective movements (grasps 3,4,5 and 6) than in the
ones with corrective movements (grasps 1 and 2). Another
thing that can be inferred in Fig. 3b,f is that the Karlsruhe
hand is more sensitive to the errors that the Barrett hand;
the error increases more for Karlsruhe hand in presence of
errors than for the Barrett hand. Actually the error for the
Karlsruhe hand in non-corrected grasps is higher than the
one showed, because the thumb usually fail to touch the

object, and therefore the thumb virtual finger not compared.
There are principally two reason for this worse robustness
to errors: first, the shorter length of the fingers; second, the
palm configuration in the Karlsruhe hand. The shorter length
of Karlsruhe fingers affect the non-volar grasps, as we can
see in Fig. 4a,b. The small distance between the base of
the thumb and the base of the rest of the fingers affects
the volar grasps, that usually collide with the finger bases
before touching the palm. However, this is mostly solved by
the corrective movements.

(a) (b)

Fig. 4. Example of performance of a grasp without corrective movements

B. Real grasping with a KUKA arm

An image of the human grasp is captured and passed to the
grasp recognition module [5], which returns the type of grasp
and the position and orientation of the hand. Using the object
pose, the grasp policy is selected and executed. The scenario,
illumination and subject is different to the experiments in
[5], but we get similar results in the classification. Large
diameter, small diameter and abducted thumb are correctly
classified most of the time, while pinch grasp, power sphere
and precision disc grasp are sometimes confused with the
power grasp. In terms of orientation, the typical error is
around 15 degrees, which is acceptable in the execution of
the grasp. The object position is given manually, with an
error of ±3 cm. The position error did not inflict on the grasp
execution, except when performing Precision Disc grasp with
a ball, which rolled when the hand was not centered over
the ball. Fig. 5 shows the robot being shown four different
grasps (Large Diameter, Abducted Thumb, Pinch and Preci-
sion Disc, respectively), mapping them and performing the
corresponding grasp (Barrett Wrap, Barrett Precision, Barrett
Precision and Barrett Precision Disc, respectively).

VI. CONCLUSIONS

We have presented a human-to-robot grasp mapping sys-
tem based on a single image. We have proposed an evaluation
metrics for assessing the quality of mapping. The approach
was demonstrated both in simulation and in a real robot
setup. The system presented here can be improved in several
ways. The database of hand poses should include more
objects of different sizes, and more advanced non-parametric
regression methods could be employed for estimating grasp
type and hand pose. Moreover, the addition of visual servo-
ing would improve considerably the performance in grasps
without tactile feedback (volar grasps) or grasps when the



(a) Orientation error: perfect pose (b) Orientation error: 5cm pose error (c) Position error: perfect pose (d) Position error: 5cm pose error

Fig. 3. Error in position (mm) and orientation (degrees) for each of the six grasps tested (Small Diameter, Large Diameter, Abducted Thumb, Pinch,
Power Sphere, Precision Disc). Each column represents experiments with no error and error of 5cm.

(a) 9 → Barrett Precision. (b) 12 → Barrett Precision
Disc.

(c) 1 → Barrett Wrap. (d) 4 → Barrett Precision.

Fig. 5. Execution of grasps in a real robot environment: original images,
nearest neighbors in the database and robot execution.

tactile feedback fail due to the limitations of the hand
sensors. Finally, we will investigate the performance using a

humanoid robot hand.
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Abstract

With the recent finding of mirror neurons there has been a growing interest in expressing actions

as a combination meaningful subparts called primitives. Primitives could be thought of as an

alphabet for the human actions. In this paper we investigate modeling and recognition of arm

manipulation actions at different levels of complexity using primitives. Primitives are detected

automatically in a sequential manner. Here, we assume no prior knowledge on primitives but look

for correlating segments across various sequences. All actions are then modeled within a single

HMMs whose structure is learned incrementally as new data is observed. We also generate an

action grammar based on these primitives and thus link signals to symbols.

keywords: Primitive Detection, Imitation learning, high level event and activity understanding.

1 Introduction

An efficient method to transfer skills to a robot is very important to design a humanoid robot. Imi-

tation learning is a promising approach to teach a robot new motor skills [1, 2, 3, 4, 5, 6, 7, 8, 9]. A

standard approach in teaching tasks such as robot arm movements to a robot, is to store complete arm

movement that are to be executed by the robot. For complex tasks an entire library of specific arm

movement may be required. Humanoid robots, that are required to interact with humans need to have

the ability to a) recognize human movements in order to react to them and/or learn to perform tasks

from human demonstration and b) cope possibly with complex human environments by way of adapting

their movements[1, 5, 6, 7, 8, 9].

One way for humanoid robots to recognize a human movement is to find in the library the movement

model that explains the observed movement best. However, for large libraries this becomes very unrobust

in terms of recognition rate and very ineffective in terms of computation time. Concerning the ability

to adapt the movements, the robot is limited to choose a predefined movement from its library.
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An alternative to storing a predefined and complete movement library is to break down the library

movements into their common pieces and to represent the movements in a grammatical manner, with

the common movement primitives as the grammar symbols. In linguistics [10] and computer vision [11]

this has been proven to an effective approach for recognition, both in terms of recognition performance

and computational efficiency. Similar results were recently shown in robotics [12] where Vicente et al.

compared the use of a movement library with a more grammatical-like representation.

Figure 1: HMM models used in [12]. (left): Structure of HMM model I with actions as primitives;

(right): Structure of HMM II with composite actions.

A grammatical representation of actions has the advantage of allowing to re-combine the grammatical

symbols through planning strategies [13] and thus allowing the robot to adapt to new situations and

even develop new movements based on new combinations of the available set of movement primitives,

an issue that was also discussed in [12].

A common problem in using a grammatical representation is the definition of a proper set of prim-

itives. All above mentioned works [10, 11, 12] rely on hand-selecting the primitives. In this paper,

we present a systematic approach for finding the primitives for the robotics scenario presented in [12]

automatically.

In Sec. 2 we give a summary of the work by Vicente et al [12] which could be considered as the

starting point of our work. In [12], motion trajectories are segmented in a supervised manner and the

resulting primitives are modeled with an hidden Markov model (HMM). The observed superiority of

recognition rates [10, 11, 12] and the ability to model unknown actions with primitives motivates the

search for an unsupervised method for trajectory segmentation and modeling. This is in detail explained

in Sec. 3. We base our approach on HMMs, and we use a model merging technique to build a model

and segment trajectories into primitives. In this way, we arrive at a single HMM which is similar to the

one in the supervised learning scenario in [12]. We further learn a stochastic context free grammar for

the primitives we have found.

2 Summary of Supervised Approach

Our work is an enhancement to the work done in [12]. Hence we start with a brief overview of [12] so

that we could compare the works easily.
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The results of [12] are a study of modeling and understanding of manipulation actions performed

by humans on a table top scenario. Five actions are considered: a) pick up an object from a table, b)

rotate an object on a table, c) push an object forward, d) push an object to the side, and e) move an

object to the side by picking it up.

Each action is performed in 12 different conditions: Objects placed on two different heights and

two different locations on the table, and the demonstrator stand in three different locations (0, 30, 60

degrees). All the actions are demonstrated by 10 different people.

Four sensors are attached to each person and their positions in 3D coordinates are measured. The

sensors are located on: a) chest, b) back of hand, c) thumb, and d) index finger. The measurements

from chest sensor is used to provide a reference to the demonstrator position while the sensor at the

back of the hand is used as a reference for the thumb and index finger. The raw measurements are then

preprocessed and the following 12 measurements are used for experiments:

• position of the hand relative to the chest

• position of the index finger and the thumb relative to the hand

• velocity of the hand

Primitives are manually extracted from the data and two different HMM structures are considered for

modeling the actions which are shown in Fig. 1 and their results are compared. In the first model the

primitives are grasp(g), rotate(r), push forward(ps), push side(ps), move side(m), approach and remove.

In the second model, the grasping part of rotate and move side primitives were considered as separate

primitives. SVMs are used to recognize the primitives and the outcome of SVMs are then fed into the

HMM used for modeling the actions. Using the outcome of SVMs as observations, the HMM parameters

are learned through standard Baum-Welch algorithm.

The results of using Model I is presented in Tab.1 on the left. The entries on the diagonal shows the

correct recognition rates. In this model individual primitives did not yield good results due to their high

overlap.

In HMM model II , the common parts are kept as a separate primitive as shown in Fig. 1 on the right.

This way of representation will give the primitives a semantic meaning as well. One new state, remove

with object, was introduced to show that the end state is different from other cases . Each person is

holding the object at the end only for the grasp action.

Tab. 1 on the right presents the recognition results by the HMM where the numbers on the diagonal

give the correct recognition rate. The results of recognizing grasp and move have increased significantly.

2.1 Discussion

We could see the work of [12] as an extensive study on the modeling of the manipulation actions,

which have the characteristic of being very similar to each other. The most important findings of their
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HMM pf ps r g m

pf 87.50 4.17 0.00 4.17 4.17

ps 8.33 48.33 2.50 3.33 37.5

r 0.83 2.5 95 1.67 0.00

g 5.83 10 9.17 52.5 22.5

m 1.67 24.17 4.17 2.5 67.5

HMM pf ps r g m

pf 85 7.5 5 0.83 1.67

ps 9.17 47.5 4.17 2.5 36.67

r 0 0 92.5 0 7.5

g 4.17 7.5 10.83 72.5 5

m 1.67 10 6.67 0 81.67

Table 1: Recognition results from [12] for primitives using different HMMs .(Left)Confusion matrix

for the recognition rates using HMM model I. (Right) Confusion matrix for the recognition rates using

HMM Model II. Rows represent predicted class and colums represent actual class. Correct results are

given on the diagonal.

experiments could be stated as: a) sequences of simple semantic primitives can be used in describing

actions, and b) actions learned as sequences of primitives from other demonstrators can be combined

with knowledge of personal primitives to recognize new actions.

3 Automatic segmentation of primitives

From the discussions above we can see that an efficient model could be made if we have the primitives

at hand. Thus, it is desired to have a mechanism to detect the primitives automatically from action

sequences. We note from the previous section that we had two types of primitives: primitives that were

unique to an action and primitives that were common to more than one action. Thus our hypothesis is

that if we segment action sequences into parts that are common across more than one action and parts

that are unique to each of the actions, we will arrive at a set of action primitives that can be used for

recognition as discussed in the previous section.

We define two sets of primitives. One set contains parts that are unique to one type of action and

another set that contains parts that are common to more than one type of action. Two sequences are

of the same type if they do not differ significantly, e.g., two different walking paths. Hence we attempt

to segment sequences into parts that are common across sequences types and parts that are not shared.

Then, each sequence will be a combination of these segments. We also want to generate rules that

govern the interaction among the primitives. Keeping this in mind we state our objectives as:

1. Let L = {X1, X2, · · · , Xm} be a set of data sequences where each Xi is of the form xi
1x

i
2 · · · , xi

Ti

and xi
j ∈ Rn . Let these observations be generated from a finite set of sources (or states) S =

{s1, s2, · · · sr}. Let Si = si
1s

i
2 · · · , si

Ti
be the state sequence associated with Xi. Find a partition

S ′ of the set of states S where S ′ = A∪B such that A = {a1, a2, · · · , ak} and B = {b1, b2, · · · , bl}

are sets of state subsequences of Xi’s and each of the ai’s appear in more than one state sequence

and each of the bj ’s appear in exactly one of the state sequence. The set A corresponds to common
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actions and the set B correspond to unique parts.

2. Generate a grammar with elements of S ′ as symbols which will generate primitive sequences that

match with the data sequences.

3.1 Outline of our Approach

We approach the problem by building a model that will generate the first data sequence that we encounter

and check if the upcoming data sequences could have been generated from the constructed model. If

not, modify the model to accommodate the newly observed data sequence. We continue this until we

are able to a create a single model that is capable of generating all the data sequences. In our case,

we make a single hidden Markov model that will generate all the data sequences (explained in Sec.

3.2-3.2.3). Then by examining the sequence of states the observation sequences are going through, the

common states are identified. States(or sequence of states) common to sequences are separated out to

form A and the remaining contiguous states make the set B which were defined in Sec. 3. Creation of

the sets A and B is explained in Sec. 3.3.

3.2 Modeling the Observation Sequences.

3.2.1 Modeling the First Sequence

Let X1 be the first sequence with data points x1
1x

1
2 · · ·x1

T1
. Since we have just one data sequence to

start with, we generate a few more spurious sequences of the same type by adding Gaussian noise to it.

Then we choose (µ1
i , σ

1
i ), i = 1, 2, ...k1 so that parts of the data sequence are from N (µ1

i ,Σ
1
i ) in that

order. The value of k1 is such that N (µ1
i ,Σ

1
i ), i = 1, 2, ...k1 will cover the whole data. This value is

not chosen before hand and varies with the variation and length of the data.

The next step is to make an HMM λ1 = (A1, B1, π1) with k1 states where k1 is the number of Gaussians

needed to cover X1. We let A1 to be a left-right transition matrix and B1j (x) = N (x, µ1
j ,Σ

1
j ). All the

states at this stage get a label 1 to indicate that they are part of sequence type 1. We require this

information to link final primitives with different types of sequences and also for generating a grammar

for primitives.

3.2.2 Modeling the rest of the data

Let n − 1 be the number of types of data sequences we have seen so far. Let Xc be the next data

sequence to be processed. Calculate P (Xc|λM ) where λM is the current model at hand. If we get a

high value for P (Xc|λM ) it indicates that λM models sequences of type Xc well, and so we proceed to

the next data sequence. A low value for P (Xc|λM ) indicates that the current model is not good enough

to model the data sequences of type Xc and hence we make a new HMM λc for Xc as described in Sec.

3.2.1. The newly constructed HMM λc will be used to modify λM so that the updated λM will be able

to generate data sequences of type Xc. The modification procedure of λM using λc is described in Sec.
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3.2.3. We increase the number of types of data sequences by one at this stage. All the states in Xc will

be labeled n.

We might get a high value for P (Xk|λM ) for a new data sequence which has no unique part of its

own but is part of several different types of data sequences we have seen so far. We resolve this by

making use of the state labeling we have performed during the modeling. Whenever we get a high value

for P (Lk|λM ) we look at the Viterbi path of the data sequence and examine the labels of the state

sequence. If it is a new type then then there will be two states whose labels have empty intersection. In

that case we increase the number of types of data sequences by one and append the new type number

to each of the states it is passing through.

3.2.3 Merging of similar states

This section explains the most important part of our method: modifying the existing model to generate

a newly observed type of data. We do this by adding new states or by modifying existing states.

Suppose we want to merge λc into λM where λM is the current model so that P (Xk|λM ) is high if

P (Xk|λc) . We do this by adding states to λM from λc or by merging states of λM with states of λc.

Let Sc = {1, 2, · · · , c} and SM = {1, 2, · · · ,M} be the set of states of λc and λM respectively. Then the

state set of the modified λM will be SM ∪D1 where D1 ⊆ Sc. Each of the states i in λc affects λM in

one of the following ways:

1. If d(i, j) < θ, for some j ∈ {1, 2, · · ·M} , then i and j will be merged into a single state. Here d

is a distance measure and θ is a threshold value. The output probability distribution associated

with state j in λM is modified to be a combination of the existing distribution and bki(x). Thus

bM j(x) is a mixture of Gaussians. We append n to the label of the state j in λM . All transitions

to state i in λc are redirected to state j in λM and all transitions from state i in λc will now be

from state j in λM .

2. If d(i, j) > θ, ∀j, a new state is added to λM . i.e. i ∈ D1. Let i be the rth state to be added from

λc. Then, i will become the (M +r)th state of λM . The output probability distribution associated

with this new state in λM will be the same as it was in λc. Hence bM M+r(x) = N (x, µi,Σi) .

Initial and transition probabilities of λM are adjusted to accommodate this new state. The newly

added state will keep its label n.

We use Kullback-Leibler Divergence to calculate the distance between states. The K-L divergence

from N (x, µ0,Σ0) to N (x, µ1,Σ1) has a closed form solution given by :

DKL(Q||P ) =
1
2

(
log
|Σ1|
|Σ0|

+ tr(Σ−1
1 Σ0) + (µ1 − µ0)T Σ−1

1 (µ1 − µ0)− n
)

(1)

Here n is the dimension of the space spanned by the random variable x.

Now we elaborate more on the addition and merging of states into the combined model. Our aim is

to make the new model compatible with the newly observed type of data sequences. Since the states are
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probability distributions, if we see that two probability distributions corresponding to different states

are very close we do not need to keep them apart. Keeping these two states together will help us to

model the observations generated from two distributions by a single one. We use (1) to compute the

similarity between two states. We can observe that (1) will not handle mixture of Gaussians. We still

use this equation to evaluate component wise distances in mixtures and check if any of the components

are close to the distribution we are testing. We justify this criteria since our aim is to find out if a new

state is to be embedded into another state or not.

3.3 Finding Primitives

Primitive searching starts when we have processed all the available data sequences. Now using Viterbi

algorithm on the final merged model λM , the hidden states associated with each of the sequences are

generated. Let P1, P2, · · ·Pr be different Viterbi paths at this stage. Since we want the common states

that are contiguous across state sequences, it is similar to finding the longest common substring(LCS)

problem. We take all paths with non-empty intersection and find the largest common substring ak for

them. Then, ak is added to A and is replaced with an empty string in all the occurrences of ak in

Pi, i = 1, 2, · · · r. We continue to look for largest common substrings until we get an empty string as

the common substring for any two paths. Thus, we end up with new paths P ′1, P
′
2, · · ·P ′r where each

P ′i consists of one or more segments with empty string as the separator1. These remaining segments in

each P ′i are unique to Pi. Each of them are also primitives and form the members of the set B. Our

objective was to find these two sets A and B as was stated in Sec. 3.

We also note that the computational complexity of calculating the longest common subsequence

between two sequences of length Ti and Tj is O(Ti + Tj). Hence primitive finding is solvable in linear

time.

3.4 Generating the grammar for primitives

Let S ′ = {c1, c2, · · · cp} be the set of primitives available to us. We wish to generate rules of the form

P (ci → cj) which will give the likelihood of occurrence of the primitive cj followed by primitive ci. We

do this by constructing a directed graph G which encodes the relations between the primitives. Using

G we will derive a formal grammar for the elements in S ′.

Let n be the number of types of data that we have processed. Then, each of the states in our final

HMM λM will have labels from a subset of {1, 2, · · · , n}, see Fig. 2. By way of definition each of the

states that belong to a primitive ci will have the same label set lci . Let L = {l1, l2 · · · , lp} p ≥ n be

the set of different type of labels received by the primitives. Let G = (V,E) be a directed graph where

V = S ′ and eij = (ci, cj) ∈ E if there is a path Pk = · · · cicj · · · for some k. We have given the directed

graph constructed for our test data described in Sec. 3.5.2 in Fig. 2.
1The segmentation is caused by the gaps produced by the removal of elements of A.
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Figure 2: Directed graph for finding the grammar. This is the primitive graph for the data described in

Sec. 3.5.2

We proceed to derive a Stochastic Context Free Grammar(SCFG) from the directed graph G we have

constructed. Let N = S ′ be the set of terminals. To each vertex ci with an outgoing edge with label

leij , associate a corresponding non-terminal Aleij

ci
. Let N = S ∪ {Aleij

ci
} be the set of all non-terminals

where S is the start symbol. For each primitive ci that occurs at the start of a sequence and connecting

to cj define the rule

S −→ ciA
lci

cj
. (2)

To each of the internal nodes cj with an incoming edge eij connecting from ci and an outgoing edge ejk

connecting to ck define the rule

Alci∩lcj

ci
−→ cjA

lcj∩lck

ck
. (3)

For each leaf node cj with an incoming edge eij connecting from ci and no outgoing edge define the rule

Alci∩lcj

cj
−→ ε . (4)

The symbol ε denotes an empty string. We assign equal probabilities to each of the expansions of a

nonterminal symbol except for the expansion to an empty string which occurs with probability 1. Thus

P (Alij
ci
−→ cjA

ljk
cj ) =

1

|c(o)
i |

if |c(o)
i | > 0 . (5)

P (Aleij

ci
−→ ε) = 1 if |c(o)

i | = 0 . (6)
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where |c(o)
i | represents the number of outgoing edges from ci and lmn = lcm ∩ lcn . Let R be the collection

of all rules given in (2), (3), and (4). For each r ∈ R associate a probability P (r) using (5) and (6).

Then (N ,S ′, S,R, P (.)) is the stochastic grammar that models our primitives.

One might wonder why the HMM λM is not enough to describe the grammatical structure of the

observations and why the SCFG is necessary. The HMM λM would have been sufficient for a single

observation type. However for several observation types as in final λM , regular grammars, as modeled

by HMMs are usually too limited to model the different observation types so that different observation

types can be confused.

3.5 Experiments

We have run four experiments: In the first experiment we have used a synthetic data set with two types

of sequences. The second experiment is motivated by the surveillance scenario of Stauffer and Grimson

[14] and shows a complex set of paths as found outside our building. The third experiment is motivated

by the work of Vincente and Kragic [12] on the recognition of human arm movements. In the fourth

experiment we learn the movement primitives for a chess game.

3.5.1 Testing on Simulated Data

We illustrate the result of testing our method on a set of two sequences generated with mouse clicks.

We have selected 2 simple sequences to illustrate the whole process. The two sequences share the initial

portion as shown in Fig. 3(a). There is an intuitive segmentation with 3 parts for these two sequences:

one segment containing the shared part and two separate segments for the unique parts. Our method

extracts exactly these segments. The whole process is illustrated in Fig. 3. Sequence 1 with additional

sequences generated by noise addition is shown in Fig. 3(b). Fig. 3(c) shows the result of covering

these sequences with Gaussians. Covering of sequence 2 along with the first one is shown in Fig. 3(d).

The sequences require 8 and 7 states respectively for covering. Hence the resulting individual HMMs

will have 8 and 7 states respectively, see Fig. 3(e). Then the distances between the states of HMM1

and HMM2 are computed(Fig. 3(f)). Rows represent states of sequence 2 and columns represent states

of sequence 1. One can notice the low values for the first four elements in the diagonal. Thus we have

4 pairs to merge: S21 with S11, S22 with S12, S23 with S13 and S24 with S14. Merging is performed

sequentially as shown in Fig. 3(g)- Fig. 3(j). When the model merging took place, the overlapping

states were merged into one. The final HMM structure is shown in Fig. 3(j). The state sequences for the

observed sequences are shown in Fig. 3(k)(Multiple occurrences are removed). Primitive segmentation

will give us three primitives p1, p2 and p3, Fig. 3(l) . Using the primitives, we can write the two

sequences as primitive sequences:(p1, p2) and (p1, p3). Primitive tree in Fig. 3(m) shows the structure

of primitives observed in the data. Using the primitive tree, a Stochastic Context Free Grammar is

extracted by using the method illustrated in Sec. 3.4 and is shown in Fig. 3(n). The numbers in the

brackets represent the probability of choosing the corresponding derivation. Finally the segmentation
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of original data using primitives is shown in Fig. 3(o).

3.5.2 2D-Trajectory Data

The second experiment was done on a surveillance-type data inspired by [14]. The paths represent

typical walking paths outside of our building. In this data there are four different types of trajectories

with heavy overlap, see Fig. 4(left). We can also observe that the data is quite noisy. Fig. 4(right)

shows the result of covering with Gaussians. The result of primitive segmentation is shown in Fig. 5.

Different primitives are colored differently and we have named the primitives with different letters. The

detected common primitives are the junctions where different trajectories intersect. As one can see, our

approach results in primitives that coincide roughly with our intuition. Furthermore, our approach is

very robust even with such noisy observations and lot of overlaps.

It should also be noted at this point that this kind of merging will not make the intersection arbitrarily

large. Merging is done only when there is a good overlap. Also for each new type of sequences, there

cannot be more than one Gaussian that gets merged into the same state.

3.5.3 Hand gesture data

We have tested our approach on the dataset described in Sec. 2 without annotation. Thus we use only

the trajectory information for the sensors attached to the hand. The input to our system is the raw

data from the sensors. We do not use the transformation of data described in Sec. 2. The original data

is available on line [15]. We expect to extract a set of primitives so that each of these sequences can be

expressed as a combination of these primitives. Since each of these sequences started and ended at the

same position, we expect the primitives that represent the starting and end positions of actions will be

the same across all the actions.

By applying the techniques described in Sec. 3 to the hand gesture data, we ended up with 9 primitives.

The temporal order of primitives for actions for different actions are shown in Fig. 8. One can compare

this with Fig. 1 and see that they are very closely related. For an easy comparison we plot the result of

converting a grasp action sequence into a sequence of extracted primitives along with ground truth data

in Fig. 6. The ground truth was obtained by looking at each sequences and manually segmenting them.

This particular sequence had 119 points in it. In the ground truth, Reach extends from t=1 to t=42,

Grasp extends from t=43 to t=52 and Retrive extends from t=53 to t=119 . In our segmentation P1

and P2 combined extends from t=1 to t=44, P3 extends from t=45 to t=61 and P4extends from t=62 to

t=119. Thus we can infer from the figures Fig. 8 and Fig. 6 that P3 and P2 together constitute approach

primitive, P6 refers to grasp primitive and P6 corresponds to remove primitive. Similar comparison could

be made with other actions using the comparison diagram given in Fig. 7.

Using these primitives, an SCFG was built as described in Sec. 3.4. This grammar is used as an

input to the Natural Language Toolkit (NLTK, http://nltk.sourceforge.net) which is used to parse

the sequence of primitives. This grammar is used to test the validity of the primitive sequence for an

10
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(a) Original Data (b) Data with additional sequences (c) Data Covered with Gaussians

(d) Covering of sequence 2

S11

S21

S14

S22

S12 S13 S15 S16 S17 S18

S23 S24 S25 S26 S27

(e) HMMs for the data

0.17 6.2 34.0 29.0 85.0 155.0 155.0 322.0

5.5 0.47 9.5 20.0 56.0 111.0 133.0 288.0

11.0 2.0 1.0 5.9 28.0 72.0 100.0 222.0

34.0 15.0 6.1 1.2 13.0 46.0 88.0 188.0

88.0 47.0 32.0 11.0 24.0 60.0 122.0 233.0

133.0 93.0 91.0 52.0 77.0 111.0 200.0 300.0

122.0 111.0 133.0 77.0 122.0 155.0 255.0 344.0

(f) Distance between states. Rows and columns represent

states of HMM2 and HMM1 respectively

S11 S14

S22

S12 S13 S15 S16 S17 S18

S23 S24 S25 S26 S27

(g) Merging step 1. S21 is merged with S11.

S11 S14S12 S13 S15 S16 S17 S18

S23 S24 S25 S26 S27

(h) Merging step 2. S22 is merged with S12.

S11 S14S12 S13 S15 S16 S17 S18

S24 S25 S26 S27

(i) Merging step 3. S23 is merged with S13

S11 S14S12 S13 S15 S16 S17 S18

S25 S26 S27

(j) Merging step 4. S24 is merged with S14 (k) State sequences of sequences

Figure 3: Illustration of the complete process with simulated data. Data was generated with mouse

clicks.
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(l) Extracted primi-

tives

(m) Primitive graph (n) Extracted grammar (o) Points as primitives

Figure 3: Illustration of the complete process with simulated data. Data was generated with mouse

clicks.

Figure 4: (Left)Trajectories from tracking data. Each type is colored differently. Values along the axes

represent pixels. Only a part of the whole data is shown. (Right)The results of the covering procedure

with the Gaussian mixtures. The numbers shown are the state numbers in the final model. Merged

states are not shown. Hence some data points might appear to be unassigned.

unknown sequence. It can also be used to predict the future observation of a partially observed sequence.

Results of primitive segmentation for push sideways, push forward, move, and grasp actions are

shown in the tables 2 and 3. The numbers given in the tables represent the primitive numbers shown in

Fig. 8 . The sequences that are identified correctly have a white background and the sequences that are

not classified correctly have light gray background. We can see that all the correctly identified sequences

start and end with the same primitive as expected. In Tab:3 on the right, Person 1 and Person 4 are

marked with a dark color to indicate that they differ in end and start primitive respectively from the

correct primitive sequence. This might be due to the variation in the starting and end position in the

sequence. We could still see that the primitive sequence is correct for them.
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Person Push Aside

Person 1 3 2 9 4 1

Person 2 3 5 8 4 1

Person 3 3 5 8 4 1

Person 4 3 5 8 4 1

Person 5 3 5 8 4 1

Person 6 3 5 8 4 1

Person 7 3 5 8 4 1

Person 8 3 5 8 4 1

Person 9 3 2 9 4 1

Person 10 3 2 9 4 1

Person Push Forward

Person 1 3 5 7 1

Person 2 3 5 7 1

Person 3 3 5 7 1

Person 4 3 5 7 1

Person 5 3 5 7 1

Person 6 3 5 8 4 1

Person 7 3 5 7 1

Person 8 3 5 7 1

Person 9 3 5 8 4 1

Person 10 3 5 8 4 1

Table 2: Primitive segmentation and recognition results for Push aside and Push Forward action.

Sequences that are identified incorrectly are marked in light gray.

Person Move

Person 1 3 2 9 4 1

Person 2 3 5 8 4 1

Person 3 3 2 9 4 1

Person 4 3 2 9 4 1

Person 5 3 2 9 4 1

Person 6 3 5 8 4 1

Person 7 3 2 9 4 1

Person 8 3 2 9 4 1

Person 9 3 2 9 4 1

Person 10 3 2 9 4 1

Person Grasp

Person 1 3 2 6

Person 2 3 2 6 1

Person 3 3 5 7 6 1

Person 4 2 6 1

Person 5 3 2 6 1

Person 6 3 2 6 1

Person 7 3 2 9 4 1

Person 8 3 2 6 1

Person 9 3 2 6 7 1

Person 10 3 2 6 1

Table 3: Primitive segmentation and recognition results for Move Object and Grasp actions. Sequences

that are identified incorrectly are marked in light gray.
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Figure 5: This figure shows the detected primitives. Each primitive is denoted by a letter.

3.6 Chess movements data

To further illustrate the application of our algorithm, we have tested our algorithm in a chess movements

learning scenario. The aim of this experiment is to learn the different type of movements from the

trajectory data. An object was placed on a chess board and was subjected to movements similar to that

of chess pieces. We have recorded horizontal and vertical movements for the rook and queen at different

lengths and the L-shape movements by the knight and diagonal movements for bishop. Some sample

tracks are shown in Fig. 9. Only 8 out of the 12 knight moves were considered. In the collected dataset,

we do not know how many types of movements are allowed, and what are the types of movements in

there. Each of the recorded sequences were fed to the model and the primitives were extracted and the

resulting structure is shown in Fig. 10. In this figure P1 represent moving one square to the right and

P1-P2 represent moving two square to the right etc. Each path with a green primitive followed by a blue

primitive represents an L-shaped movement for the knight. Thus P1-P25-P11 is moving one square to

the right and moving 2 square to the top. Note that all of our primitives represent moving one square

each. Paths along a brown primitive followed by a blue primitive represent diagonal moves for bishop.

3.7 Effect of Parameters

In this section we give a brief discussion on the effects of various parameters that we have used. One

parameter of interest is the number of Gaussians that we have used to cover the sequences. This number
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Reach Move Retrive

P3 P2 P6 P1

Figure 6: Comparing automatic segmentation with manually segmented primitives for one grasp se-

quence. The horizontal axis represents the length of the sequence. The plot compares a grasp sequence

with length 119. Using the above diagram with Fig. 8, we can infer that P3 and P2 together constitute

approach primitive, P6 refers to grasp primitive and P1 corresponds to remove primitive.

Grasp move Push Forward
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Figure 7: Comparing primitive segmentation with ground truth data. Average comparison results are

shown. Height represents sequence length. Each of the segments in the bars represent a primitive.
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P3

P6

P1

P5 P7

P2

P8

P9

P4

m,g

pf,ps

g

pf

ps
pf

ps

m

g

m

m,ps

Figure 8: The temporal order for primitives of hand gesture data. Node number corresponds to different

primitives. All actions start with P3 and end with P1 .

Figure 9: Some sample tracks for the chess data. Movements for rook, bishop and knight are shown.

16



START P1 P2 P3

P20

P25

P11

P29

P4

P5

P21

P24

P14

P12 P30

P6

P19

P26

P15P27

P7P8

P22

P23

P16P31

P9

P10

P17

P18 P13

Figure 10: Extracted primitives for the chess data. Straight line paths represent moves for the rook and

the queen. L-shaped paths represent moves for the knight. Paths along the diagonals represent diagonal

moves for bishop.

and size of the Gaussians are inversely related. The effect of size of the Gaussians in the final result

can be illustrated with the simulated data that we have used in Sec. 3.5.2. Allowing a small variance

along the main diagonal of the estimated covariance matrix results in a covering as shown in Fig. 3(c).

Allowing more variance will result in less number of Gaussians as shown in Fig. 11. In Fig. 11(a)-Fig.

11(c) the result of a particular covering is shown. Here we have exactly one Gaussian to cover the shared

region and 2 more Gaussians to share the rest of the data. The final result matches the one shown in

Fig. 3(o). Further decrement in the number of Gaussians will fail to discover the structure in the data

as shown in Fig. 11(d)-Fig. 11(f). In this case one sequence is covered with a single Gaussian. This

sequence cannot be modeled with a single Gaussian. Thus the size of Gaussians should be such that

they do not violate the assumption of normality for the underlying data. The Gaussians should be big

enough so that in any repetition of the same sequence, it should pass through the same state sequence.

To analyze the size of Gaussians further we can look at the chess scenario. If each of the Gaussians

cover 2 squares, we will not be able to differentiate between moving one square and two squares.

Therefore the value should be chosen such that it will not exceed the smallest primitive we expect

to find.

Another parameter of interest is θ which is the threshold for deciding if two states should be merged

or not. We chose this value to be half of average distance of adjacent pair states in a sequence. This
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(a) A good covering (b) resulting primitive segmen-

tation

(c) primitive graph

(d) A bad covering (e) resulting primitive segmen-

tation

(f) primitive graph

Figure 11: Illustration of the effect of parameters

ensures that states with good overlap are combined and represented by a single state.

4 Conclusions

We have presented and tested an approach for automatically computing a set of primitives and the

corresponding stochastic context free grammar from a set of training observations. Our stochastic

regular grammar is closely related to the usual HMMs. One important difference between common

HMMs and a stochastic grammar with primitives is that with usual HMMs, each trajectory (action, arm

movement, etc.) has its own, distinct HMM. This means that the set of HMMs for the given trajectories

are not able to reveal any commonalities between them. In case of our arm movements, this means that

one is not able to deduce that some actions share the grasp movement part. Using the primitives and

the grammar, this is different. Here, common primitives are shared across the different actions which

results into a somewhat symbolic representation of the actions. Indeed, using the primitives, we are

able to do the recognition in the space of the primitives or symbols, rather than in the signal space

directly, as it would be the case when using distinct HMMs. Using this symbolic representation would

even allow to use AI techniques for, e.g., planning or plan recognition. Another important aspect of

our approach is that we can modify our model to include a new action without requiring the storage of

previous actions for it.

Our work is segmenting an action into smaller meaningful segments and hence different from [16]
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where the authors aim at segmenting actions like walk and run from each other. Many authors point

at the huge task of learning parameters and the size of training data for an HMM when the number of

states are increasing. But in our method, transition, initial and observation probabilities for all states

are assigned during our merging phase and hence the use of the EM algorithm [17] is not required. Thus

our method is scalable to the number of states. Our approach of using states have a close connection

to [18] but our method is superior in preserving the temporal order and hence in recognition.

In [19] primitives are found by thresholding angular velocities. In this work 4 dimensional data of

joint trajectories were segmented and the resulting segments for each of the joints were interpolated with

100 elements. Elements of each joint were concatenated to form 400 dimensional vectors and PCA was

applied to reduce the dimension to 11. k-means clustering was then performed in the latent space to find

the control points. Reproduction was performed by projecting points back to the input space. The use

of PCA was unnecessary complication in this case since the input space was only 4 dimensional. Another

disadvantage with this method is that strong assumptions must be made about the segmentation of the

data, and the duration of the primitives. We have provided a higher level abstraction of primitives using

grammar which is not possible with the approach in [19]. In [20] human motions are represented as a

binary tree. Actions are recognized by finding the optimal node transitions in the tree. The binary tree

construction approach in [20] is not suitable for sequential learning. Each node in the tree is modeled

with a single Gaussian. Such a modeling is not suitable for the initial levels of the tree since the nodes in

those levels will contain many frames from observation sequences. Takano and Nakamura [21] have also

approached the problem of finding motion primitives using HMMs. They have modeled each actions via

a discrete Hidden Markov model. In their approach primitives are assumed to be known where as our

approach learns primitives from the data. In [22] subgoals are detected from trajectories by detecting

regions that the agent visits frequently on successful trajectories but not on unsuccessful trajectories.

This paper addresses a reinforcement learning scenario and appears to be quite different. They use a

diverse density approach which requires positive and negative instances.

It is interesting to note that stochastic grammars are closely related to Belief networks [23] where the

hierarchical structure coincides with the production rules of the grammar. We will further investigate

this relation ship in future work.

In future work, we will also evaluate the performance of normal and abnormal path detection using

our primitives and grammars.
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