
 
Wednesday, 10 August 2009, 22:16                                       Page 1 of 2

IST-FP6- IP-027657 / PACO-PLUS 

Last saved by Florentin Wörgötter  Public

 

 

 
Project no.:  027657 
Project full title:    Perception, Action & Cognition through  
    Learning of Object‐Action Complexes 
Project Acronym:    PACO‐PLUS 
Deliverable no.:    D6.8 

Title of the deliverable:  Scientific Publication on the analytical solution for the weight  
growth in time‐continuous spike‐timing‐dependent plasticity 

 
Contractual Date of Delivery to the CEC:  
Actual Date of Delivery to the CEC 
Organisation  name  of  lead  contractor  for  this  deliverable: 
Authors:  
 
 
Participants: 
Work package contributing to the deliverable  
Nature:  
Version  
Total number of pages:  
Start date of project:  
Duration: 

31. July 2009 
10. August 2009 
BCCN 
Wörgötter, F. and Kolodziejski, C. 
 
 
BCCN 
WP6  
R/D 
1.0 
6 
1st Feb. 2006 
48 month 

 
 

Project co‐funded by the European Commission within the Sixth Framework Programme (2002‐2006)
Dissemination Level

PU  Public  X
PP  Restricted to other programme participants (including the Commission Services) 
RE  Restricted to a group specified by the consortium (including the Commission Services) 
CO  Confidential, only for members of the consortium (including the Commission Services) 

 

Abstract: 

This deliverable contains a publication (currently rejected and to be submitted) on the analytical solution 
of  the  weight  change  of  the  time‐continuous  version  of  spike‐timing‐dependent  plasticity  which  is  a 
biologically realistic learning rule. For the first time it is now possible to calculate plasticity analytically for 
continuously  changing  inputs.  This  is of  relevance  for  all behaving  systems  (machines,  robots,  animals) 
which interact with their environment leading to widely varying neural activation.  

Keyword list: Spike‐timing‐dependent plasticity, non‐stationary inputs, multi‐input systems. 



 
Page 2 of 2 

IST-FP6-IP-027657 / PACO-PLUS Confidential 

 

 2

Scientific Publication on the analytical solution for the 
weight growth in time-continuous spike-timing-dependent 

plasticity. 
Wörgötter F. and Kolodziejski, C. 

 

Executive Summary 

This deliverable consists of a paper (Kolodziejski and Wörgötter, 2009) which derives 
an analytical solution to multi-synapse systems under Hebbian plasticity rules which are 
the time-continuous correlate of spike-timing-depend plasticity. This paper had 
originally been submitted to Phys. Rev. Letters, but recently been rejected. It will be 
resubmitted to a different journal in due time (before the end of PACO+). 
 
Background: The theory of neural networks has become a large and influential field not 
only in neural computation but was also applied to many different areas like for instance 
to machine learning or to robotics. It is, thus, intriguing that several, quite fundamental 
aspects remain unresolved, in particularly, the temporal dynamics of these systems. For 
example, so far it has not been possible for most networks to analytically calculate the 
temporal development of synaptic weights from known input patterns particularly if 
those patterns are temporally changing in a complex way. This generically applies to all 
systems (animals, machines, robots, etc.) which interact with their environment as their 
own behavior will lead to continuously changing inputs and, thus, to an ongoing 
synaptic weight change. So far the investigation of such non-stationary systems relied 
fundamentally on numerical calculations or estimations. 
 
Here we have derived an analytical solution for the biological realistic class of linear, 
correlation based (”Hebbian”) learning rules. In these rules the change of a synapse 
follows the correlation between pre- and postsynaptic activity at a neuron. Using the 
derivative of the postsynaptic input leads directly to the spike-timing-depend plasticity, 
however, with the advantage of time-continuous input patterns. Another very important 
feature of correlation based rules is the straightforward usage of many inputs at the 
same time which is a compulsory requirement for an adaptive system that deals with 
closed-loop systems. 
 
Novel Contribution: This is to our knowledge the first time that the plasticity of systems 
described above can be calculated analytically. This makes it possible to overcome the 
need of numerical calculations and expansive robotic simulations.  
One possibility in which neural networks control closed-loop systems is by their 
dynamics. However, usually the synaptic wiring of such networks is fixed and the 
tuning of those connections is a demanding task. With the analytical method developed 
in this paper we will next investigate arbitrary networks in their dynamical behavior 
which allows us to define the parameters in an appropriate way leading to specific robot 
behavior.  

Appendix 

Christoph Kolodziejski and Florentin Wörgötter (2009) Plasticity of many-synapse 
systems. (originally submitted to PRL, the rejected and planned for a submission at 
some other journal soon). 



Plasticity of many-synapse systems

C. Kolodziejski∗ and F. Wörgötter
Bernstein Center for Computational Neuroscience, Göttingen

Georg-August-University Göttingen, Germany

(Dated: October 24, 2008)

The dynamics of neural systems is influenced by synaptic plasticity which alters the network
connections. Better analytical understanding of plasticity is needed for predicting learning and
adaptation in such systems. Here we derive a non-stationary solution of the weight development
of many synapses for correlation based learning rules. For the first time it is now possible to
calculate plasticity analytically for continuously changing inputs. This is of relevance for all behaving
systems (machines, animals) which interact with their environment leading to widely varying neural
activation.

PACS numbers: 87.10.Ca, 87.18.Sn, 87.19.lw, 89.75.Fb, and 05.10.-a

The theory of neural networks, developed since around
1943 [1], has become a large and influential field in
physics as well as other disciplines. It is, thus, intrigu-
ing that several, quite fundamental aspects remain un-
resolved, in particularly, the temporal dynamics of these
systems. For example, so far it has not been possible
for most networks to analytically calculate the temporal
development of synaptic weights from known input pat-
terns. Specific solutions for certain types of networks and
learning rules have been provided, all of which however
need to constrain structure or dynamics of the system in
different ways [2–8]. Constraining the dynamics often ap-
pears to be problematic as most neural networks receive
complex temporally changing input patterns, which lead
to an ongoing weight change. So far such non-stationary
systems can only be treated numerically.

Here we will focus on the large class of linear, corre-
lation based (”Hebbian”) learning rules. In these rules
the change of a synapse follows the correlation between
between pre- and postsynaptic activity [9] at a neuron.
They are probably the most basic class of all network
learning rules and related to plasticity in the brain [10].
The aim of this paper is to present an analytical, non-
stationary solution of Hebbian plasticity for arbitrary
numbers of changing synapses at one given neuron.

With this method ongoing synaptic plasticity can be
calculated for temporally changing inputs. This is of high
relevance as it is known that in behaving animals sen-
sory inputs are highly non-stationary [11]. This generi-
cally applies to all systems (animals, machines, robots,
etc.) which interact with their environment as their own
behavior will lead to continuously changing inputs and,
thus, to an ongoing synaptic weight change. This com-
prises a very large and important class of dynamic sys-
tems and the solution provided here may allow for the
first time calculating Hebbian plasticity in such systems
without restrictions.

The general system is shown in Fig. 1 on the right
side. It consists of N synapses with strength ωi that re-
ceive input from neurons i with its continuous value xi.

Each input produces an excitatory post synaptic poten-
tial (EPSP) which is modeled by Kernel functions hi (see
inset in Fig. 2 for an example). The output of the neuron
is, thus:

v(t) =

N
∑

i=1

(xi ∗ hi)(t) · ωi(t) (1)

where (ξ ∗ η)(t) =
∫∞

0 ξ(τ) η(t − τ) dτ describes a convo-
lution.
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FIG. 1: This figure shows our general setup and example
input values that are fed to the neuron. Inputs are denoted
as xi, Kernel functions as hi, synaptic strength as ωi and
the output of the model neuron as v. The example inputs
shown on the left side are spike trains, although any arbitrary
continuous function can serve as an input.

The synapses change according to a general formalized
Hebbian plasticity rule

ω̇i(t) :=
dωi(t)

dt
= µ F [xi ∗ hi](t)G[v](t) (2)

where µ is the plasticity rate and F [ · ] and G[ · ] are linear
functionals.

Important are conventional Hebbian learning with F =
G = 1 (where 1 is the identity) and differential Hebbian
learning [12], which allows for the learning of temporal
sequences of input events [13], with F = 1 and G = d

d t
.
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To avoid that weight changes will follow spurious ran-
dom correlations one generally assumes that learning is
a slow process, where inputs change much faster than

weights, with
ω′

i

ωi

≪ (xi∗hi)
′

xi∗hi

, µ → 0. This simplifies Eq. 2
and we neglect all temporal derivatives of ωi on the right
hand side:

ω̇i(t) = µ F [xi ∗ hi](t)

N
∑

j=1

ωj(t)G[xj ∗ hi](t) (3)

where we used G[
∑

ξi] =
∑

G[ξi] as G[ · ] is linear.
If we take ωi as the i-th component of a vector ωωω, we

write

ω̇ωω(t) = µAAA(t)ωωω(t) (4)

with Aij(t) = F [xi ∗ hi](t)G[xj ∗ hi](t) or in matrix form

AAA(t) = F [x ∗ hx ∗ hx ∗ h](t) ·G[x ∗ hx ∗ hx ∗ h](t) where ξξξ denotes the trans-
position of matrix ξξξ.

The solution of Eq. 4 is not trivial as the matrix AAA(t)
is also a function of time. This problem is often found
in quantum mechanics and the main problem is that ma-
trices usually do not commute. However, there exist a
solution which includes an infinite series, called the Mag-
nus series (see [14] for more details), with

ωωω(t) = expΩΩΩ(t) ·ωωω0 (5)

where ωωω0 is the synaptic strength before plasticity and
ΩΩΩ(t) is the solution of following equation

Ω̇ΩΩ(t) =

{

µAAA(t),
ΩΩΩ(t)

1 − exp (−ΩΩΩ(t))

}

=

∞
∑

n=0

βn {AAA,ΩΩΩn}.

(6)
Here the braces {η, ξn} = [· · · [[η, ξ], ξ] · · · ξ] are nested
commutators [η, ξ] = η ξ − ξ η and βn are the coefficients
of the Taylor expansion of ΩΩΩ

1−exp (−ΩΩΩ) around ΩΩΩ = 0.

Eq. 6 is solved through integration by iteration to the
Magnus series:

ΩΩΩ(t) = µAAA(t) +
µ2

2

∫ t

0

[AAA(τ),AAA(τ)] dτ

+
µ3

4

∫ t

0

[

AAA(τ),

∫ τ

0

[AAA(σ),AAA(σ)] dσ

]

dτ

+
µ3

12

∫ t

0

[[AAA(t),AAA(τ)] ,AAA(τ)] dτ

+ o(µ4) (7)

with AAA(t) =
∫ t

0
AAA(τ)dτ . Thus, Eq. 5 combined with Eq. 7,

gives us analytically the time development of all weights
connected to a neuron under Hebbian plasticity in the
limit of small plasticity rates µ. With this we are able
to calculate without simulations in principle directly the
synaptic strengths of N synapses given N different spike
trains, membrane potentials, or firing rates.

Next we transform the solution into a computable form
and provide error estimates. As the commutators in the
infinite series in Eq. 7 are generally non-zero we truncate
the series and neglect iterations above degree (k). We
write the truncated solution as:

ωωω(k)(t) = expΩΩΩ(k)(t) ·ωωω0 (8)

For two synapses this is solved directly in the appendix,
most often, however this needs to be calculated by ex-
panding the exponential function. We denote this ap-
proximation with a prime, i.e. (k′)

ωωω(k′)(t) =

(

III +

p·q≤k
∑

p=2,q=1

(

ΩΩΩ(p)(t)
)q

)

·ωωω0 = BBB(k′)(t) ·ωωω0

(9)
where III is the identity matrix and BBB(k′)(t) the transfor-
mation of order (k) from the initial synaptic strength ωωω0

to the synaptic strength at time t. Notice that in the
limit k → ∞ the approximation (Eq. 8) transforms into
the general solution (Eq. 5). This solution is computable
for arbitrary input patterns.

Now as we know the complete analytical solution of
Eq. 4 we investigate approximations and their errors in
order to judge their usefulness for further considerations.
Therefore, we will use in the following spikes as the inputs
to the system and assume that all hi = h are equal. The
spikes are modeled as delta functions δ(t − ti) for spike
time ti which simplifies the convolution to a temporal
shift in the Kernel function h: h(t − ti) =

∫∞

0
δ(t − ti −

τ)h(τ) dτ . This leads for elements of AAA(t) to Aij(t) =
F [h](t − ti)G[h](t − tj) where ti and tj are the spike
timings of neuron xi and xj respectively. We will use the
Kernel, shown in the inset of Fig. 2, given by

h(t) =
1

σ
(e−α t − e−β t)Θ(t) (10)

The different approximation errors are exemplified in
Fig. 2. For this we are using a single spike pair at
two synapses for which we calculate the final synaptic
strength ω̃ωω = lim

τ→∞
ωωω(τ) (Eq. 5). This has been per-

formed for differential Hebbian learning, but we remark
that the error is identical for Hebbian learning. This
is explained in the appendix where all details for the
error calculations are provided. For this setup, weight
changes are computed in three ways: without any ap-
proximations, yielding ω̃ωω (Eq. 5 and Eq. 7); using the
truncated solution only, yielding ω̃ωω(k) (Eq. 8); and using
the truncated solution while also expanding the exponen-
tial function, yielding ω̃ωω(k′) (Eq. 9). Thus, we use ω̃ωω and
compare it to approximations ω̃ωω(·), calculating the error

as: ∆(·) =
∣

∣ω̃ωω(·) − ω̃ωω
∣

∣. This is plotted in Fig. 2 for dif-
ferent approximations against the plasticity rate µ on a
log-log scale where we set the timescale of the input Ker-
nel h to 1. As approximations (k) and (k′) become very
similar for k > 2 only four curves are shown. We observe
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that the behavior of the difference-error ∆(·) follows the
order of the approximation used. The error for the linear
expansion approximation (k = 2′, Eq. 9) is slightly higher
than that from its corresponding truncation approxima-
tion (k = 2, Eq. 8). However, using a plasticity rate of
µ = 0.001 which already results in a difference-error value
of 10−8 compared to 10−2 when using the same timescale
for µ and h. Therefore one can in most applications use
even the simplest possible linear approximation (k = 2′)
to calculate the change in synaptic strength.
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FIG. 2: Here we show the degree of consistency between our
general solution and the proposed approximations. To this
end we plot the difference ∆(·) between the approximation
and the exact solution of Eq. 4 for one input spike pair against
the plasticity rate µ on a log-log scale. A kernel function h

with α = 0.1, β = 0.2, σ = 0.25 and maxt h(t) = 1 is used.
It is shown in the upper left of this figure for two spikes at
times ti and tj . The temporal difference T = t2− t1, between
the two input spikes was varied over the length of the used
Kernel functions (here between 1 and 100 steps) and error
bars representing the standard deviation are given.

As this calculation has been based on two spikes at
two synapses only, we need to ask how the error devel-
ops when using N synapses and complex spike trains.
For this we first consider spike trains (see Fig. 1 left),
which are grouped ’vertically’ into groups with each in-
put firing at most once. Kernels of spikes within a group
will overlap but we assume that grouping is possible such
that adjacent groups are spaced with a temporal distance
sufficient to prevent overlap between kernel responses of
temporally adjacent groups. Thus we calculate ωωω in the
same way as above leading to: B̃BB(k′) = lim

τ→∞
BBB(k′)(τ) in

Eq. 9. Thus, when using such a temporal tiling, B̃BB(k′) de-
pends only on the spike timing matrix TTT with elements
Tij = tj − ti. Then, we get the synaptic strength after
M groups by calculating the product over all groups m:

ωωωM,(k′) =

M
∏

m=1

B̃BB(k′)(TTTm) · ωωω0. (11)

Physiologically such a grouping decomposition is per-
formed for so-called non-bursting neurons, which, for ex-
ample, constitute the majority of cortical cells. The so-
lution (Eq. 11) is easy to compute. Because a product of
matrices results in a summation of matrix elements, the
error does not increase exponentially but only linearly
in M . Because of this it follows that even after 10000
spikes the error is still of an order of only 10−4 given the
example above (see Fig. 2).

Finally we estimate how the error behaves when ker-
nels overlap. This mainly happens during bursts of spikes
with temporarily high spiking frequencies, which are, in
general, rare events. However, using the solution which
assumes independent temporal intervals (Eq. 11) instead
of the time-continuous calculation (Eq. 9) only includes
an additional error of order (k = 2) due to the linearity
of the Kernel functions h. The error after matrix multi-
plication (Eq. 11) results in the square of the lowest term
of the Magnus series (Eq. 7).

Thus, the easily computable group decomposition sug-
gested by Eq. 11 will yield accurate enough results even
for long, non-bursting spike trains.

Real neurons often display rich, non-stationary, firing
patterns by which all synaptic weights will be affected.
The same is true for neurons in artificial neural networks,
especially when being embedded in closed-loop (acting,
behaving) systems. The so far existing solutions which
describe Hebbian learning, on the other hand, constrain
the temporal dynamics of the system or limit plasticity to
a subset of synapses. With the solution presented here we
calculate weight changes for the first time without these
restrictions. This is a valuable step forward in our un-
derstanding of synaptic dynamics in different networks.
Specifically, we have presented the time-continuous so-
lution for the synaptic change of general Hebbian plas-
ticity (Eq. 5 and Eq. 7), its approximation for general
spiking or continuous inputs (Eq. 8 and Eq. 9) as well as
a specific solution for non-bursting spike trains (Eq. 11).
Of practical importance is the fact that the error of the
computable approximations (Eqs. 8, 9, 11) remains small
even for long spike trains.

The temporal development of multi-synapse systems
and the conditions of stability are still not well under-
stood. Some convergence conditions have been found
(see for example [2–8]), however in general the synap-
tic strengths of such networks will diverge or oscillate.
This is undesired, because network stability is impor-
tant for the formation of (e.g.) stable memories or recep-
tive fields. Using the time-continuous solution for linear
Hebbian plasticity described here could serve as a start-
ing point to better understand mechanisms, structures
and conditions for which stable network configurations
will emerge. The rich dynamics, which govern many
closed-loop adaptive (network based) physical systems
can, thus, now be better understood and predicted, which
might have substantial future influence for the guided de-
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sign of network controlled systems.
The authors are grateful to B. Porr, M. Tamosiu-

naite and M. Timme for helpful discussions. F.W. ac-
knowledges the support of the European Commission,
IP-Project PACO-PLUS.

Appendix: Here we calculate the solution for the two
synapse system using differential Hebbian learning which
is an important analytically fully solvable special case on
which we have based the error analysis provide in the
main text. Note, the order of the error is not affected by
the actual (linear) Hebbian rule used as the only source
of the error is the plasticity rate µ, which is independent
of the choices of F and G.

If we now concentrate on F = 1 and G = d
d t

the matrix
BBB(t) results in

BBB(t) =

(

1 + 1
2h2(t) ν−1

T (t)
ν+1

T (t) 1 + 1
2h2(t − T )

)

(12)

where ν−1
T (t) =

∫ t

0 h(τ) ḣ(τ−T ) dτ and ν+1
T (t) =

∫ t

0 h(τ−

T ) ḣ(τ) dτ .
Using the Kernel function h (Eq. 10) we analytically

integrate the secondary diagonal entries of Eq. 12 which
are:

νκ
T (t) =

Θ(t − T )Θ(t)

2 (α + β)σ2
(κ sign(T )σ (α − β)h(|T |)

− 2e−t(α+β)(αeα T + βeβ T )

+ (α + β)(e−α(2 t−T ) + e−β(2 t−T ))). (13)

In the limit of t to infinity matrix BBB(t) changes into B̃BB

and so do the secondary diagonal elements

ν̃κ
T = lim

t→∞
νT (t) = κ sign(T )

α − β

2 (α + β)σ
h(|T |) (14)

and find that ν̃T = ν̃+1
T = −ν̃−1

T . For the considered
Kernel function ν̃T is positive definite as α is smaller
than β. Therefore ÃAA results in

ÃAA = lim
t→∞

AAA(t) =

(

0 ν̃T

−ν̃T 0

)

= νT

(

0 1
−1 0

)

. (15)

The diagonal elements become zero as the chosen Kernel
function decays to zero in the limit to infinity.

As the square is ÃAA
2

= −ν̃2
T III we further calculate the

exponential solution Eq. 8 for an error of order (k = 2).

The exponential function is then:

B̃̃B̃B(2) = exp ÃAA =

∞
∑

n=0

1

n!
AAA

n
∞

=

∞
∑

n=0

(−1)n

(2n)!
ν̃2n

T III +

∞
∑

n=0

(−1)n

(2n + 1)!
ν̃2n+1

T JJJ (16)

= cos ν̃(T )III + sin ν̃(T )JJJ =

(

cos(ν̃T ) sin(ν̃T )
− sin(ν̃T ) cos(ν̃T )

)

where JJJ =

(

0 1
−1 0

)

. This results into

ω̃ωω(2) = B̃BB(2) ·ωωω0 =

(

cos(ν̃T ) sin(ν̃T )
− sin(ν̃T ) cos(ν̃T )

)

ωωω0. (17)

Both, Eq. 16 and Eq. 17, were used to calculate the dif-
ference ∆(·) for different values of T in Fig. 2.

∗ Electronic address: kolo@bccn-goettingen.de

[1] W. McCulloch and W. Pitts, B Math. Bioph. 5, 115
(1943).

[2] J. J. Hopfield, Proc. Nat. Acad. Sci. 79, 2554 (1982).
[3] K. D. Miller and D. J. C. MacKay, Neural Comput. 6,

100 (1994).
[4] M. C. W. van Rossum, G. Q. Bi, and G. G. Turrigiano,

J. Neurosci. 20, 8812 (2000).
[5] P. D. Roberts, Phys. Rev. E 62, 4077 (2000).
[6] R. Kempter, W. Gerstner, and J. L. van Hemmen, Neural

Comput. 13, 2709 (2001).
[7] A. N. Burkitt, M. Gilson, and J. L. van Hemmen, Biol.

Cybern. 96, 533 (2007).
[8] C. Kolodziejski, B. Porr, and F. Wörgötter, Biol. Cybern.

98(3), 259 (2008).
[9] D. O. Hebb, The organization of behavior: A neuropsy-

chological theory (Wiley, Oxford, England, 1949).
[10] L. F. Abbott and S. B. Nelson, Nature Neurosci. 3, 1178

(2000).
[11] C. Kayser, R. Salazar, and P. König, J. Neurophysiol.

90, 1910 (2003).
[12] A. H. Klopf, Psychobiol. 16, 85 (1988).
[13] B. Porr and F. Wörgötter, Neural Comput. 15, 831

(2003).
[14] W. Magnus, Commun. Pur. Appl. Math. VII, 649

(1954).


