I p Information Society
perception, action and cognition Tedinologios
through leaming of object-action complexes

mandag, 05 januar 2009 13:02 Page 1 of 3
IST-FP6- IP-027657 / PACO-PLUS
Last saved by Alejandro Agostini Public
Project no.: 027657
Project full title: Perception, Action & Cognition through
Learning of Object-Action Complexes
Project Acronym: PACO-PLUS
Deliverable no.: D6.7
Title of the deliverable: Publication of neuronally motivated

disturbance compensation learning methods on a
multi-joint arm

Contractual Date of Delivery to the CEC: 31 Jan 2009

Actual Date of Delivery to the CEC: 01 Dec. 2008

Organisation name of lead contractor for this deliverable: CSIC

Author(s): Woérgotter, F. Manoonpong, P. and
Schroder-Schetelig, J

Participants(s): BCCN

Work package contributing to the deliverable: WP6

Nature: R/D

Version: 1.0

Total number of pages: 37

Start date of project: 1% Feb. 2006 Duration: 48 month

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)
Dissemination Level

PU Public X
PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO ~ Confidential, only for members of the consortium (including the Commission Services)

Abstract:

This deliverable contains two publications on the creation of two different adaptive (hence
learnable) neural forward models for disturbance compensation. Different from the plan, these
models have been developed for a multi-joint walking machine (RunBot) and not for an arm, but
the principles and the learning methods are transferable also to multi-joint arms. This is due to the
fact that we are using generally applicable neural network learning methods, which do not rely on
the actual mechanical structures on which they are employed.

Keyword list: Adaptive neuronal forward models. Error back-propagation.

Page 2 of 3
IST-FP6-1P-027657 /| PACO-PLUS

Publication of neuronally motivated disturbance
compensation learning methods on a multi-joint arm

altered to

Publication(s) of neuronally motivated disturbance
compensation learning methods on a biped walking robot.

Worgotter F., Manoonpong, P. and Schrdder-Schetelig, J.

Index

PUBLICATION OF NEURONALLY MOTIVATED DISTURBANCE COMPENSATION
LEARNING METHODS ON A MULTI-JOINT ARM ALTERED TO PUBLICATION(S)
OF NEURONALLY MOTIVATED DISTURBANCE COMPENSATION LEARNING

METHODS ON A BIPED WALKING ROBOT......ccccoiiiiiiic s 2
INDEX ..o 2
INTRODUCTION ... s 2

APPENDIX: PAPER 1: PORAMATEMANOONPONG AND FLORENTINWORGOTTER
(2009) EFFERENCE COPIES IN NEURAL CONTROL OF DYNAMIC BIPED WALKING
SYSTEM STRUCTURE, SUBMITTED TO RAS.......ccciii s 3

APPENDIX: PAPER 2: JOHANNES SCHRODER-SCHETELIG, PORAMATE
MANOONPONG AND FLORENTINWORGOTTER (2009) USING EFFERENCE COPY
AND FORWARD INTERNAL MODEL FOR ADAPTIVE BIPED WALKING, SUBMITTED
TO AUTONOMOUS ROBOTS..... oot 3

Introduction

This deliverable consists of two submitted papers (Manoonpong and Waorgotter, 2009;
Schroder-Schetelig et al., 2009) which use neural methods to learn and employ forward
models for disturbance compensation.

We have chosen our dynamic walking robot RunBot instead of (the kinematically
controlled) ARMAR to implement disturbance compensation because this problem is
more difficult for dynamic than for kinematic machines. Furthermore, there are
currently no neuronal control mechanisms implemented on ARMAR and its control
relies so far still on conventional controllers.

Thus, this deliverable and the two submitted papers have to be considered as a
contribution to basic research on neuronal control and learning with possible future use
on ARMAR.

Future use of the powerful techniques shown in this deliverable will rely on a decision
to implement some neuronal control methods on ARMAR, too.

Page 3 of 3
IST-FP6-1P-027657 /| PACO-PLUS

Background: It has long been known that ego-motion will always lead to the (self-)
stimulation an animal’s sensor system. Normally, however, such self-induced stimuli
will not be experienced and compensation mechanisms lead to stable percepts. This is
especially pronounced for our vision and/or vestibular system, which receive
continuously changing stimulation when we walk. In spite of this our world is perceived
as stable and unmoving. Hence, some “error-correction” mechanisms are implemented
in our brain to remove unwanted signals from self-stimulations. Powerful nausea can
arise from the disturbance of such error-correction systems (often from direct sensor
impairments like the blocking of a semi-circular canal). The mild form of travel
sickness is associated to a mismatch between a stable visual percept and the conflicting
vestibular perception of movement also upsetting the error-correction by the assumption
of a wrong “set-point”.

Novel Contribution: The idea roots back to von Holst and Mittelstaedt (1950), who
proposed that motor commands copied within the central nervous system (efference
copy) help to distinguish ‘reafference’ activity (afference activity due to self-generated
motion) from ‘exafference’ activity (afference activity due to external stimulus). Based
on biological findings, paper 1 shows two experimental studies using “RunBot” where
such principles together with neural forward models are applied to RunBot’s dynamic
locomotion control. The main purpose of this paper is to discuss how the inherent
dynamic properties of the different modules lead to the required signal processing. As a
result, the first experiment shows that an efference copy can be applied to eliminate
external and self-generated sensory noise. In the second experiment, we demonstrate
that the robot can determine terrain condition changes through efference copies; i.e., it
can detect a slope by the deviation of its own gait from the normal gait-pattern observed
on flat ground.

In the second paper we present an application of the principle of efferent copies together
with network learning use an error back-propagation algorithm in a small network to
compensate for self-generated acceleration during walking. The difference to the
actually measured acceleration is then used to stabilize the walking on terrains with
changing slopes. While the idea is similar to the one of paper 1, the second paper uses
an entirely different set of network methods and is — different from paper 1 — also able
to be trained to the default situation (flat terrain) and then use the learned default for
comparison with the actual situation for error calculating and compensation.

Appendix: Paper 1: PoramateManoonpong and FlorentinWoérgotter
(2009) Efference Copies in Neural Control of Dynamic Biped Walking
System structure, submitted to RAS.

Appendix: _Paper 2: Johannes Schroder-Schetelig, Poramate
Manoonpong and FlorentinWaorgétter (2009) Using Efference Copy and
Forward Internal Model for Adaptive Biped Walking, submitted to
AUTONOMOUS ROBOTS.

Efference Copies in Neural Control of
Dynamic Biped Walking

P. Manoonpong?, F. Worgotter &*

@ Bernstein Center for Computational Neuroscience (BCCN), University of
Gottingen, D-37073 Gottingen, Germany

Abstract

In the early 1950s, von Holst and Mittelstaedt proposed that motor commands
copied within the central nervous system (efference copy) help to distinguish ‘reaf-
ference’ activity (afference activity due to self-generated motion) from ‘exafference’
activity (afference activity due to external stimulus). In addition, an efference copy
can be also used to compare it with the actual sensory feedback in order to suppress
self-generated sensations. Based on these biological findings, we conduct here two
experimental studies on our biped “RunBot” where such principles together with
neural forward models are applied to RunBot’s dynamic locomotion control. The
main purpose of this article is to present the modular design of RunBot’s control
architecture and discuss how the inherent dynamic properties of the different mod-
ules lead to the required signal processing. We believe that the experimental studies
pursued here will sharpen our understanding of how the efference copies influence
dynamic locomotion control to the benefit of modern neural control strategies in
robots.

Key words: Legged robots; Recurrent neural network; Adaptive walking; Dynamic
walking; Internal model

1 Introduction

Neural networks have become a versatile tool in many application like pattern
recognition, function approximation and others. Until recently networks, how-
ever, have not been used so often for the control of machinery (e.g., robots).

* Corresponding author. Tel.: +49 (0) 551 5176-528; fax: +49 (0) 551 5176-449.
Email addresses: poramate@nld.ds.mpg.de (P. Manoonpong),
worgott@nld.ds.mpg.de (F. Worgdtter).

Preprint submitted to Elsevier 7 October 2008

The difficulty in relaying network output to the end-effectors in a coordinated
way and the complex structure of motor control networks may explain why
they are still not much used for solving complex motor control problems so far.
Recently, a few studies suggested, however, that small networks can be very
powerful for addressing such problems. The works of Ijspeert et al. (2007) [12],
Bem et al. (2003) [1], and Meyer et al. (2003) [24] have shown that in robots
complex movement patterns like swimming and walking can be controlled and
coordinated by neural network activity. The employed machines (lamprey or
salamander like robots) are this way able to produce undulatory movements
navigating through their environment. In our own studies, we have used an
adaptive neural network to control a dynamic biped robot, called “RunBot”
[7], [21]. This machine is able to walk and learn to adapt its posture and gait
parameters to different terrains, e.g., when walking up a slope.

While this shows the power of network control, at least one important problem
has so far not been addressed: All moving system are - on the sensor side -
faced with noise. This could be random noise from various sources in the
environment (external noise) but also disturbances which are introduced by
the ego-motion (internal noise). For example, every step stimulates our own
vestibular system in an unwanted way. Both noise sources mask other more
relevant stimulus events and lead to reduced performance of the sensor system.

The brains of animals have developed strategies to compensate for these noise
sources and the goal of this study is to show that these strategies can also be
copied efficiently into robots allowing the machines to ignore external as well
as internal noise. More than that: As internal noise is repetitive while walking
it is predictable. This leads to the situation that the robot can recognize the
disturbance. The comparison between the expected internal noise and the one
actually measured can be used as an error signal which drives network learning
as will be shown below. To this end we will employ the idea of “efferent copies”.

Around the mid-19th century, von Holst and Mittelstaedt (1950) [9] demon-
strated in animal models that motor commands are copied within the central
nervous system (CNS). These copies help to distinguish ‘reafference’ (afference
activity due to self-generated motion) from ‘exafference’ (afference activity due
to changes in the external world). They can be also used for comparison with
the actual sensory feedback in order to subtract self-generated sensations for
maintaining stable perception. Similarly, Sperry (1950) [30] presented evidence
which supported this idea. He showed that sensory areas receive discharge pat-
terns (efference copy) with respect to the expected sensory feedback. In the
early 1960s, Held (1961) [§] indicated that efference copies and the reafference
generated by self-motion cannot be directly compared due to the different di-
mensionality between motor commands and sensory feedback. Therefore, he
proposed a neural structure that transforms an efference copy signal into an
expected sensory input to be able to compare it to the actual incoming sensory

signal. This neural transformation mechanism is known as “internal model”
[35]. As described by Kawato (1999) [17], internal models or internal loops of
biological systems are classified into three types: Inverse internal model (the
system calculates a motor command from a desired trajectory/state informa-
tion), forward internal model (the system predicts sensory consequences from
efference copies), and integrated internal model (the system integrates both
inverse and forward models).

Based on the biological findings described above, several robot experiments
have been performed applying efference copy and internal model concepts
employing these ideas for arm control [25], visuo-acoustic coordination [29]
as well as leg control [5],[19] (see the Discussion section for details). These
studies show that the efference copy principle together with an appropriate
internal model can be successfully applied to a wide range of robot control
problems. The work presented here extends this line of research to problems
in dynamic walking control. In the present study we conduct two experiments
on “RunBot”: 1) The first experiment shows that an efference copy can be
applied to eliminate external and self-generated sensory noise. Normally such
perturbations destabilize the activation parameters for the gait and cause
unstable walking. This can be successfully avoided by using an efference copy
signal. 2) In the second experiment, we demonstrate that the robot can detect a
slope by the deviation of its own gait from the normal gait-pattern observed on
flat ground. This deviation signal can be used for learning the new parameter
set, applicable to slope-walking.

The employed networks in general consists of three components: A network
for basic walking, a learning control network as well as an efferent copy and
internal model building network. In total this leads to a somewhat higher com-
plexity of the network structure. As compared to the original control network
of RunBot [7] the three modules, however, can be understood one by one,
which makes network design simple. Thus, the main purpose of this article is
not only to present the applications of the efference copy for dynamic locomo-
tion control. In addition to this, some emphasis is put on the modular design
and the aspect how the inherent dynamic properties of the different modules
lead to the required signal processing.

In the following section, we give a general overview of the RunBot system. Af-
terwards biomechanics and adaptive reflex neural locomotion control forming
the system’s basic behavior are presented in brief where the complete descrip-
tions can be found in our previous publications [7], [21]. Sections 3 and 4 show
experimental studies for the application of the efference copy for improving
locomotion control and determining terrain condition changes which is the
main contribution of the article. Discussion and conclusions are provided in
Sections 5.

2 RunBot system

The RunBot system (see Fig. (1)) [2I] uses the design principle of multiple
nested loops to couple its biomechanics with adaptive reflex neural locomo-
tion control through an environment. Employing this hierarchical architecture,
RunBot exhibits the self-stabilizing and passive properties [7] reflected by its
biomechanics. It can stably walk with different speeds regulated through its
reflexive neural control [7]. Furthermore, it can adapt its gaits to different ter-
rains by means of a neural learning process using adaptive neural control [21].
An overview of biomechanics and adaptive reflex neural locomotion control
are provided in the following, for more details see [21].

Adaptive reflex neural locomotion control

Software (Adaptive neural control)

}

Software (Reflexive neural control)

A

A

v

Biomechanics

Hardware (Mechanical Setup of RunBot) <«—Environment
| t

Fig. 1. The RunBot system. It is divided into three levels (Biomechanics, Reflexive
neural control, and Adaptive neural control) organized as a hierarchical structure
and coupled via the environment.

2.1 Biomechanics

RunBot is a planar dynamic biped robot (see Fig. . It consists of four actu-
ated joints: left hip, right hip, left knee and right knee. Each joint is driven by
a modified servo motor where the built-in Pulse Width Modulation (PWM)
control circuit is disconnected, while its built-in potentiometer is used to mea-
sure the joint angles (S). RunBot has no actuated ankle joints, resulting in
very light feet and efficiency for fast walking. Its feet were designed having a
small circular form (4.5 cm long). Each foot is equipped with a ground con-
tact sensor (G). A mechanical stopper is implemented on each knee joint to
prevent it from going into hyperextension. Approximately seventy percent of
the robot’s weight is concentrated on its trunk and the parts of the trunk are
assembled in a way that its center of mass is located forward of the hip axis.

In addition, it has an upper body component (UBC), which can be actively
moved to shift the center of mass backward or forward for walking on different
terrains, e.g., level floor versus up or down a ramp. It leans backwards during
walking on a level floor (see Fig.) and this position is also suitable for walk-
ing down a ramp [22]. On the contrary, it will lean forwards (reflex action)
when RunBot falls backwards or after it successfully learned to walk up a
ramp (see Fig.) The corresponding reflex is controlled by an accelerometer
sensor (AS) functioning as its simple vestibular system. The AS is installed on
top of the right hip joint. In addition, one infrared (IR) sensor is implemented
at the front part of RunBot pointing downwards to detect a ramp. Here, the
IR sensor serves as a simple vision system, which can distinguish between a
level floor with black color and a painted ramp with white color (see Fig. [2b).
This sensory signal is used for adaptive control. All sensory and motor sig-
nals are converted through a AD/DA converter board (USB-DUX[T)) with the
update frequency of 250 Hz.

Linux PC
(Controller)

i TUSB interface

USB-DUX
D/A| A/ID
‘_——'I:'”_‘, ’ - / \\
€g eg
LEE motors||sensors IR AS
'NB F Tl :«N
Input (1)&5\ (2)@\% B.E
signals - o
% extensor
Output /™ “&} \
Signals (<] \ Knee] \
<----- . \, \\ flexorw /.. \\\
e:tZisor \ \
i m
Black level floor White 1@ P

Fig. 2. (a) The planar dynamic robot RunBot. UBC, upper body component; IR,
infrared sensor; AS, accelerometer sensor; G, ground contact sensor. (b) Schematic
set-up of the RunBot system. Leg sensors consist of joint angle and ground contact
switch sensors, leg motors are the motors of the left and right hip and knee joints.
The detection range of the IR sensor for slope sensing is shown in the lower figure
where the thick dashed ray of the IR sensor (1) indicates that the sensor gives a high
output signal while the thin dashed ray (2) means a low signal. Hence the sensor
responds more strongly to the white color. Ng r, body flexor (leaning backwards);
Ng,g, body extensor (leaning forwards).

We constrain RunBot in the sagittal plane by a boom of one meter length.
RunBot is attached to the boom via a freely rotating joint in the x-axis, while

L http://www.linux-usb-dag.co.uk.

the boom is attached to the central column with freely rotating joints in the y
and z axes (see Fig. [2h). The mechanical design of RunBot has the following
special features that distinguish it from other powered biped robots and that
facilitate high-speed walking and exploitation of natural dynamics: (a) small,
curved feet allowing for rolling action; (b) unactuated, hence light, ankles; (c)
lightweight structure; (d) light and fast motors; (e) proper mass distribution
of the limbs; and (f) properly positioned mass center of the trunk. Utilizing
all these properties, RunBot can perform self-stabilization of gaits and it also
exhibits passive walking characteristics reflected by the fact that during one
quarter of its step cycle all motor voltages remain zero [7].

2.2 Neural locomotion control

The neural locomotion control (see Fig. [l]) consists of two main structures: the
adaptive and reflexive neural control circuits. All neurons in the circuits are
modeled as rate-coded neurons with the standard sigmoid transfer function.
They are simulated on a Linux PC with an update frequency of 250 Hz.

2.2.1 Reflexive neural control

The reflexive neural control is based on several reflex mechanisms. It is com-
posed of two submodules. One is for leg control and the other is for UBC
control. Both leg and UBC controls are independent but they are indirectly
coupled through the biomechanics of RunBot (see Figs. [2/ and .

The leg control, simulated as mono-synaptic connections, contains motor neu-
rons (N), which are linear and can send their signals unmodified to the motors
(M) (see Figs. |3 and . There are several local sensor neurons (propriocep-
tor), which, by their conjoint reflex-like actions, trigger different gaits, e.g.,
slow and fast. These local sensor neurons can be classified into three loops:
joint control (Local 1, see Fig. 3)), intra-joint control (Local 2, see Fig. |3) and
leg control (Local 3, see Fig. . Joint control arises from angle sensors S at
each joint, which measure the joint angle and influence only their target mo-
tor neurons. Intra-joint control is achieved from sensors A, which measure the
anterior extreme angle (AEA) at the hip and trigger an extensor reflex at the
corresponding knee. Leg control comes from ground contact sensors G, which
drive the motor neurons of all joints.

The UBC control represents a long-loop reflex, which is indirectly modulated
by its AS through the adaptive neural control network (see Fig. [3). In general
situations like when walking on flat terrain, the AS is inactive and the flexor
body motor neuron Ng r is activated to lean the body backwards (see Fig.)
while the extensor motor neuron Ng g is inhibited. This situation is reverted

Adaptive reflex neural locomotion control

NpF

v i
| 1
I 1
| 1
1 | A -
1 R . NBE | >
! eflexive neural : ! >
i control NRHE | <
' NiHF | <
| H ! >
! NRHE | » Motors M
! N HE ! <
! NRKF ! <
! NLKF ! ;
! Body control Neke | >
1 NLKE i [
i T = »
I . | R3]
| Adaptive neural : =
! o
! control ! 85
1
i <« < ! 2
| < L) !
! < earning |
|
! Leg control I control circuit I
! ' Environment
l <« i
‘ !
|
= a
|
. AA
Sensors
IR
AS
Local 1 s
Local 2 A
Local 3 G

Fig. 3. Neural locomotion control (see text). Reflexive walking behavior arises from
the interaction of three local sensorimotor loops (reflexive neural control) together
with the passive properties (biomechanics). Additionally, adaptation is achieved by
a learning mechanism. A gray arrow represents RunBot’s physical embodiment elic-
iting its passive dynamic walking properties. IR, infrared sensor; AS, accelerometer
sensor; S, joint angle sensor of hips and knees; A, stretch receptor for anterior ex-
treme angle (AEA) of the hips; G, ground contact sensor; Ny p, flexor body-motor
signal; N g, extensor body-motor signal; Ng y r, flexor leg-motor signal of the right
hip; Ny, 11, r, flexor leg-motor signal of the left hip; Ng 1 i, extensor leg-motor signal
of the right hip; Ny, g, extensor leg-motor signal of the left hip; Ny k r, flexor
leg-motor signal of the right knee; Ny, k r, flexor leg-motor signal of the left knee;
Nrk,E, extensor leg-motor signal of the right knee; Ny, k g, extensor leg-motor sig-
nal of the left knee. In general, indices are omitted below the last relevant level,
e.g., Nr applies to flexor and extensor of the hip and knee of the right leg.

when a strong signal from the AS exists, which happens only when RunBot
falls backwards, e.g., RunBot tries to walk up a ramp. This will trigger a lean-
ing reflex of the UBC. More detailed descriptions of all neuron models together
with the neural network structures and the discussion of their parameters can
be found in [21].

2.2.2 Adaptive neural control

RunBot’s task was to learn walking up a ramp and then continue again on a
level floor. The learning goal is to avoid the leaning reflex and thereby learn

to also change gait parameters in an appropriate way to prevent RunBot from
falling. We use adaptive neural control to change the leaning action of the
UBC by learning and to also influence several other leg control parameters
for gait adaptation. This is accomplished by using six learner neurons chang-
ing activation parameters of their target neurons (see Fig. . Our learning
algorithm (described in details later) applies a correlation based differential
Hebbian learning rule [27] where the modification of all those parameters will
be controlled by two kinds of input signals: one is an early input (called pre-
dictive signal) and the other is a later input (called reflex signal). In general,
we use the IR signal as a predictive signal while the AS signal serves as a
reflex signal (see Fig. . At the beginning, the connections between the pre-
dictive signal and learner neurons converge with zero strengths (dashed arrows
in Fig. . In this situation, parameters of the target neurons will be altered
only by the reflex signal (solid arrows between the reflex signal and learner
neurons in Fig. [4)); i.e., the leaning reflex of the UBC together with the gait
adaptation will be triggered by the AS signal as soon as RunBot falls. Hence,
RunBot will begin to walk up the ramp with a wrong set of gait parameters
and an inappropriate posture of the UBC. Thus, it will eventually fall leading
to a signal at the AS, which will change RunBot’s parameters but too late
(when it already lies on the ground). Due to learning the modifiable synapses
(pt,....p%, dashed arrows in Fig. {4f), which connect the predictive IR signal with
the learner neurons (L, ..., Lg), will grow. Consequently, after 3-5 falls during
the learning phase, gait adaptation together with posture control of the UBC
will finally be driven by the predictive IR signal instead. Correspondingly,
RunBot will adapt its gait together with leaning the UBC in time. The used
learning algorithm has the property that learning will stop when the reflex
signal is zero [27]; i.e., when RunBot does not fall anymore. On returning to
flat terrain, the IR output will get small again and RunBot will change its
locomotion and posture back to normal for walking on a level floor.

Learning algorithm: In general, each learner neuron L, requires two input
signals (ug, u1) with synaptic weights (pg, p1) (see solid frame in Fig. [4]). Here,
we use the AS and the IR signals as ug and u;, respectively. Only p; (dashed
arrows in Fig. 4)) is allowed to change through plasticity while py (solid arrows
connecting the AS neuron with learner neurons in Fig. 4 is set to a positive
value, i.e., pg = 1.0. The output activity v of L, and the learning rule for the
weight change p] are given by:

U(Ln> :PSUO‘FP?Ula n = 17"'767 (1>
dp? dug

7, — MUl =]-776a 2
ar g 2)

where we here use only input signals and correlate them with each other
[27]. p1, is the learning rate. It is independently set for each learner neuron,

i ﬂfﬁ' Adaptive neural control
« TR T
‘-@ d/dt p1 Sensor
Uy
v

Neurons

AS
L1 s
Learner
Neurons
Targeti
Neurons
. UBC Hip Knee
______ E_Tqy_.___. J vy Rightleg
Motors M M M M M

Fig. 4. Adaptive neural control where the neural learning mechanism is shown in the
solid frame (top left, L, see text for details). Note that all learner neurons have the
same learning mechanism. Connections between learner neurons and target neurons
of the right leg, which are identical to those of the left leg, are not shown. pi,...,p%
are synaptic weights connecting the predictive IR signal with the learner neurons
(L1, ..., Lg).

which defines the desired equilibrium point and how fast the system can learn.
In neurons with multiple inputs such a mechanism can be used to modify
the synaptic strengths according to the order of the arriving inputs. As a
consequence, the predictive input will get strengthened if the predictive signal
uy is followed by the reflex input ug, where the reflex drives the neuron into
firing. This rule will lead to weight stabilization as soon as uy = 0 [27], hence,
when the reflex has successfully been avoided. As a result, we obtain behavioral
and synaptic stability at the same time without any additional weight-control
mechanisms.

All in all, through the tight coupling of the biomechanics with the adaptive
reflex neural locomotion control, RunBot can autonomously walk with a high
speed (> 3.0 leg length/s), self-adapting to minor disturbances, and reacting
in a robust way to abruptly induced gait changes. At the same time, it can
learn walking on different terrains, requiring only few learning experiences. All
these experimental results have been presented in [21].

3 Experiment 1: Efference copy for external and self-generated sen-
sory noise cancellation

As described above, RunBot uses IR (infrared eye) and AS (vestibular) infor-
mation for posture and gait adaptation during walking up a painted slope. Due
to the IR sensor characteristic, the sensor responds more strongly to the white
color (see Fig.) Thus, in our first experimental study on the application
of the efference copy for locomotion control, the walking path of RunBot is
modified by adding white spots on its black level tracks (compare Figs. [2b and
Bh) in order to simulate disturbances to the IR sensor. As a consequence, the
IR sensor gives unwanted periodic noise (see Fig. , gray areas). In addition,
RunBot’s egomotion causes the AS to produce self-generated sensory events
(see Fig. , gray areas). These periodic perturbations will destabilize the ac-
tivation parameters for the gait and lead to a wrong set of gait parameters
as well as an inappropriate posture of the UBC. In other words, after a few
learning experiences for walking up the slope, RunBot will perform upslope
gait with leaning its UBC forwards during walking on level floors (location
(1) or (3) shown in Fig. ph). As a consequence, it will fall forwards before
approaching a slope or after leaving it (see Sect. for experimental results).

(@) wy~UBC B)s 12 v v
o %+ IR . 508]
AS N Side view 2
S 045]
® 0.0" .
(c)s 12
§ 0.8
204
=
& 0.0
20 40
(1) (2) (3) Time (s)

Fig. 5. (a) Walking path on which white spots are added at positions (1) and (3).
They lead to a disturbance of the IR sensor. Note that the spots are empirically
placed in the way that the IR sensor generates the unwanted noise every second
step; i.e., periodic noise. Adding more spots (high density), the sensors will give
continuous noise which makes the system impossible to discern between a slope
detection signal and this continuous noise. (b, ¢) Raw sensor signals. Solid arrows
in (b) depict the situation where RunBot detects a slope and dashed arrows in (c)
where RunBot falls backwards. It falls over backwards, as it has not yet learned to
react to its IR input with a change in gait.

To solve such problems, we need to filter the unwanted noise. By doing so,
we copy the periodic motor signals, transform them into noise expectation

10

through so-called neural forward models (see Fig. @ These expected sen-
sory noise signals are fed into compensator units (see Fig. @ to subtract the
unwanted noise from the actual sensory feedback. Finally, we use neural post-
processing units (see Fig. @ to smooth and shape the compensated signals
of the IR and AS sensors in order to obtain appropriate correlations for the
learning mechanism. The details of this noise cancellation process is described
in the following.

NeF

A -
NBE -
»
NRHF
NLHF __.:
ZR“E ——=» Motors
LHE ———
NRKF ———
NLKF »
NRKE ;
Reflexive neural ————— —— L — —— > -
control Forward Q
-] - c
Postpro- . |Compen model |« Efference o8
cessing sator |« AS copy @8
< . £
<« Adaptive
< neural 4
: control Postpro-[“-|Compen- F?nr‘o”(?éfj Environment
cessing sator IR
-
A iNoise cancellation circuits
Sensors
L R
L AS <
s <
A

G

Fig. 6. Adaptive reflex neural locomotion control with external and self-generated
sensory noise cancellation circuits. It applies an efference copy for eliminating sen-
sory noise (compare Fig. [7)).

3.1 Modeling noise cancellation circuits

To filter the unwanted noise of the IR signal, we copy all extensor and flexor
motor signals (Ng, Ny, efference copy) of the leg joints (see Fig. [6)). These
motor signals are then transformed into a noise expectation through the neural
forward model (forward model IR, see Figs. [6] and [7]). This forward model is
manually constructed as a series of 12 hysteresis elements (see Fig. [7). Apart
from filtering the noise it shapes the motor signals to match to the noise of the
IR signal for subtraction afterwards. We create a hysteresis by using a single
neural unit with a “supercritical” self-connection (wger > 4) [26], modeled as
a discrete-time, rate-coded neuron with activity that develops according to:

a;(t+1) Z N+6; i=1,...,n (3)

11

where n denotes the number of units, a; their activities, ©; represents a fixed
internal bias term together with a stationary input to neuron 7, and W;; the
synaptic strength of the connection from neuron j to neuron 7. The output of
the neurons is given by the standard sigmoid o(a;) = (1+e~%)~!. Input units
are linearly mapped onto the interval [0, 1].

Forward model AS
O OO
TRKE P T B
,&AH F2, " F3s | |Post processing AS
Nk | RS e o o P J
L 6.3 ‘-6.0 ‘ 1-6.0 ‘ 55
) - Reflex
6.5 65 , 65 O signal
6.5 \0‘ % 1.0 P 1.0 _ ,
Raw-AS “® e Plas < Learning
45 control
Compensator AS circuit
Pre_dictive
Forward model IR __signal __
8.8 9.0 90 1.0
Negse s () () (0 ()
R.,H F 60) “.[y»»\\ B _
S Tl /.F1IR /.F2IR o o 12R Post processing IR
NLke | 63 |60 ‘ 1-6.0 ‘
)
-0.25 <0.25 7 20.25 O O O
50 \.\.—../ 10 6.0 \'
Raw-IR] < ‘P1IR P2 ."[/’“P1&R
e .
-5.25
Compensator IR

Fig. 7. Noise cancellation circuits of IR and AS signals. Each circuit is composed
of three subunits: forward model, compensator, and postprocessing units. Ng and
Ny, indicate motor signals of leg joints (efference copy). Note that one can optimize
these noise cancellation circuits, for instance by using an evolutionary algorithm
[11], but for the purposes here, manual adjustment was sufficient.

The neural parameters of the forward model network were empirically adjusted
as follows. First we combined all motor signals at the first recurrent neuron
Flir (see Fig.[7) and then we adjusted the combined motor signals such that
they will cross forward and backward through the hysteresis domain [20], [26]
for mainly filtering the noise of the motor signals. Hence, we set the synaptic
weight, connecting between all motor signals and the recurrent neuron Flg,
to a positive value, i.e., 3.35, to amplify the signals. Afterwards, we shifted the
amplified signals by a negative bias term, i.e., —6.3. Consequently, the modified
signals sweep over the input interval between —6.3 and —2.95. Finally, we
tuned the self-connection weight of the neuron to derive a reasonable hysteresis

12

interval (see Fig.) on the input space; i.e., 8.8. This hysteresis effect allows
the output to show high (= 1.0) and low (= 0.0) activations at different points
(see Fig.) By utilizing this feature, the recurrent hysteresis neuron Flig
acts as a low pass filter, which can eliminate unwanted motor noise (see Fig. .

T T T T T T ,\12
(@) 1.0} - | (b)x3
— T 508
T B 5
0.8} ; = 204
v 1 £3
0.0
0.6}
5 14
g i
]
O 04} -
(C) n_:é 1.2
] o2
0.2} A 5500
o w— O
----- N L 1Y
0.0} 7 =]
I I I I I I © éoo
0.0 0.2 0.4 0.6 0.8 1.0 14 Time (s) 30

Input

Fig. 8. (a) Hysteresis effect between the input and output of the recurrent neurons
Flig and Flag (see Fig.[7)). The input varies between 0.0 and 1.0 while the output
shows high activation when the input increases to values above 0.97. On the other
hand, it will show low activation when the input decreases below 0.165. Utilizing
this hysteresis property, high frequency motor noise is eliminated. In other words,
these recurrent neurons Flig and Flag act as a low pass filter. (b) Raw motor
signals. (c) Filtered motor signals after passing through the recurrent neuron Flig.
Note that the raw and filtered motor signals at the recurrent neuron F1lag, having
similar patterns to those of (b) and (c), are not shown.

After that, the output of the recurrent neuron Flir is provided to a series
of single recurrent neurons F2ig, ..., F12|g (see Fig. [7)). The structure of each
single recurrent neuron was configured in the same manner as the recurrent
neuron F1lg but the neural parameters were set differently. We chose them in
the way that they provide the hysteresis effect (see Fig. [Jh) that will shape
the filtered motor signals to match the periodic noise of the IR signal. As a
result, the connection weight between neurons, the bias term, and the self-
connection weight are set as 6.0, —6.0, and 9.0, respectively. Eventually, the
output of each recurrent neuron (Flg,...,F12|g) is transmitted to subtract
the unwanted noise of the actual IR sensory feedback at a compensator unit
(compensator-IR, see Fig. [7)) through a connection weight set to -0.25. The
compensator unit is simply modeled as a standard additive neuron with a
linear transfer function. Subsequently, the compensator output is postpro-
cessed at another series of recurrent neurons. All neural parameters of this
postprocessing unit (postprocessing-IR, see Fig. [7)) are set to similar values
as F2ig, ..., F12g, described above, except the first unit (P1g). Its neural pa-
rameters are given as: connection weight from the compensator unit IR to this

13

first neurons = 1.0, bias term = —5.25, and the self-connection weight = 6.5.
This postprocessing unit will smooth the signal at the recurrent neuron Plig
and through the remaining recurrent neurons P2y, ..., P131g it will derive the
appropriate correlation with the reflex signal for our learning mechanism. The
final output of each postprocessing neuron is then summed up at the neuron
P141g before applying to the learning circuit as a predictive signal.

. , . |
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Input Input Input

Fig. 9. Hysteresis diagrams of different recurrent neural parameters. All hystereses
have an input which varies between 0.0 and 1.0 while their output shows low and
high activations at different points. (a) Hysteresis loop of the recurrent neurons
F2IR, ..., F121r, F24g, ..., F5ag, and P2R, ..., P131r (see Fig. . The output shows
high activation when the input increases to values above 0.49 while it will show low
activation when the input decreases below 0.015. We use this hysteresis property
for prolonging the activation time to obtain appropriate correlation of the signals,
i.e., matching between the unwanted sensory noise and motor signals as well as
correlating between the reflex (noise free AS) and predictive (noise free IR) signals.
(b) Hysteresis loop of the recurrent neuron Plig (see Fig. [7)). The output shows
high activation when the input increases to values above 0.71. On the other hand, it
will show low activation when the input decreases below 0.57. This hysteresis effect
is applied to smooth the output of the compensator-IR. (¢) Small hysteresis loop
of the recurrent neuron Plag (see Fig. [7). Its output gives high activation when
the input increases to values above 0.9 and it will show low activation when the
input decreases below 0.88. This hysteresis effect is for smoothing the output of the
compensator-AS.

So far we have discussed the filtering process of the IR signal. To cancel self-
generated noise at the AS signal, we use the same technique as above but here
only the extensor knee-motor signals of the left (N k) and right (Ngxg)
legs are copied. Then they are transmitted to the neural forward model (for-
ward model AS, see Figs. |§] and . Here the forward model AS consists of five
recurrent neurons Flag, ..., Fbag (see Fig. . They are configured similar to
the ones of the forward model IR. As a consequence, they lead to the same
hysteresis phenomena (see Figs. [Sh and [Ja) which are used to filter motor
noise and also transform the motor signals into the expected sensory noise
signal in order to subtract the unwanted noise from the actual AS sensory
feedback (self-generated sensation). The subtraction is done in the compen-
sator unit (compensator-AS) where the output of each recurrent neuron is
amplified and sent to this compensator-AS by means of a connection weight
of —6.5. Note that the compensator-AS is modeled similar to the compensator-

14

IR. Finally, the compensator output is shaped at the recurrent neuron Pl,g
(postprocessing-AS, see Fig. before applying to the learning circuit as a
reflex signal. The neural parameters of this postprocessing unit are set as:
connection weight from the compensator-AS to its postprocessing neuron =
1.0, bias term = —4.5, and self-connection weight = 5.5. With these neu-
ral parameters, this postprocessing unit shows an appropriate hysteresis loop
(see Fig. @c) for refining the signal and providing proper correlation with the
predictive signal for our learning mechanism.

3.2 Results

Figure|10|shows experimental results where the noise cancellation circuits (see
Fig. @ described above are employed. As a consequence, the external and self-
generated sensory noiseﬂ are eliminated. Thus RunBot can successfully learn
to walk up an eight-degree painted slope after 3-5 falls and stably adapts its
gait for walking on different terrains, i.e., level floors versus up the slope. For
this demonstration, we refer the reader to the video clip at
http://www.nld.ds.mpg.de/~poramate/RAS /EfferenceCopy.mpg.

On the other hand, when the noise cancellation circuits were not applied to the
control, the sensory noises destabilize the activation parameters for the gait
after a few learning experiences because the synaptic connections (pi,...,p9,
dashed arrows in Fig. between the IR signal and the sites of movement
control get strengthened. Once these connections are established, RunBot will
react to its IR input with a gait change as soon as it gives a high activation
value (either detecting the white slope or the white spots on the floors). In
addition, the weights also show small glitches arising from the self-generated
noise of the AS. Such glitches lead to a weak correlation with the IR signal and
to minor weight changes (see Fig. . As a result, these perturbations make
RunBot change its gait and UBC posture and make it fall forwards during
walking (see Fig. . For this demonstration, we refer the reader to the video
clip at

http://www.nld.ds.mpg.de/~poramate/RAS /EfferenceCopy.mpg.

2 Recall that the external noise occurs from responding of the IR sensor to white
spots placed on the level floors (see Fig. bp) while the self-generated noise comes
from the AS due to RunBot’s ego motion.

15

(@)

Raw AS Signal

Preprocessed AS Signal

(e)

Right Knee Joint Angle (deg)

(9)

Weights

Fig. 10. Real-time data of an adaptive walking experiment when the noise can-
cellation circuits were applied to the control. (a), (b) Raw sensor signals. (c), (d)
Corrected sensor signals showing a clear improvement. (e), (f) Right knee and hip
joint angles for all situations. (g) Growing synaptic strengths during the learning
phase. (h) Posture of the UBC where 0 degree means learning backwards while 120
degrees means leaning forwards. The data was recorded while RunBot was initially
walking from a lower floor (light gray areas) to an upper floor (dark gray areas)
through a ramp (gray areas). Arrows depict the situation where RunBot falls back-
wards and white areas where RunBot was manually returned to the initial position.
Note that in this walking experiment we set the learning rate of each learner neuron
(Eq.) as p1 = 10.0, po = 7.0, p3 = 10.5, g = 0.14, ps = 3.0, ug = 10.0.

1.2

I
®
:

N
~
:

_
N

o
®
‘

<o
~
:

o
o

N
o
o

-

D

o
T

-

N

o
T

40

151

10+

R

'

| I

T

()

E

l

S (]

(]

20 40 60 80
Time (s)
Lower Floor

Ramp

= Upper Floor

100

50 cm

(b)

Raw IR Signal

' (d)

Preprocessed IR Signal

(f)

Right Hip Joint Angle (deg)

(h)

UBC (deg)

1.2

0.8r
0.4+

0.0

1.2

0.8
0.4+

0.0F

150

120+

90 7]

60

120

801

40F

R

'

20

40

_goom

Time (s)

70 cm
8°) |

80

100

16

1.2

(@)

0.8r

0.4r

Raw AS Signal
Raw IR Signal

0.0r

(c)

150

1201

90

60 |

Right Hip Joint Angle (deg)

24 36 48 60 72 24 36 48 60 72
Time (s) Time (s)

Fig. 11. Real-time data of an adaptive walking experiment when the noise can-
cellation circuits were not applied to the control. (a), (b) Raw sensor signals. (c)
Growing synaptic strengths during the learning phase showing small glitches arising
from the self-generated noise of the AS. (d) Right hip joint angle for all situations.
The data was recorded while RunBot was initially walking from a lower floor (light
gray areas) to an upper floor (dark gray areas) through a ramp (gray areas). Arrows
depict the situation where RunBot falls backwards and white areas where RunBot
was manually returned to the initial position. Dashed white arrows indicate the sit-
uation where RunBot’s gait was disturbed. * means the situation at which RunBot
falls forwards. Note that here RunBot performs a few steps before falling forwards
while walking on the upper floor. In this walking experiment we set the learning
rate of each learner neuron (Eq. [2)) as p; = 10.0, o = 7.0, pug = 10.5, pg = 0.14,
us = 3.0, ug = 10.0.

4 Experiment 2: Efference copy for slope detection

Due to gravitation, which excerts a different effect during walking up a slope,
RunBot’s forwards motion will be resisted. Consequently, the gait period of its
walking cycle will be enlarged. This can be measured at the motor signals (see
Fig. because they are basically derived from the proprioceptive feedback,
i.e., foot contact and joint angle sensors.

According to this effect, the experimental study here will show the use of

only the motor signals for discerning an unpainted slope (see Fig. . This
can replace the use of the IR signal, where the slope needs to be painted

17

o
1) @
AT

-
-
————

-
-

: o
M e NLKF

nie
Lower floor (Black) \Une?'

Fig. 12. Observed flexor-knee motor signals of the left (Np, x r) and right (Ng k r)
legs during walking from a lower floor (1) to an eight-degree unpainted slope (2).
They show that the gait period of RunBot’s walking cycle is increased (gray areas
in windows) while walking on the slope. In this situation, RunBot walks a few steps
on the slope before it falls over backwards, as it has not yet learned to detect the
slope and react to it with a change in gait and its UBC posture. Note that for this
experiment we set its UBC posture in a more upright position (75 degrees) in order
to allow it to walk a few steps on the slope before falling backwards.

as shown in the previous experiment. However, before applying the motor
signals as a predictive signal to our learning mechanism (see Fig. , they
need to be transformed into a signal (called slope detection signal) which can
appropriately correlate with the reflex signal (AS). Hence a so-celled slope
detection circuit is developed and employed for this purpose (see Fig. as
described in the following.

4.1 Modeling a slope detection circuit

To obtain the slope detection signal derived from the efference copy, we use
here the knee flexor-motor signals of the right Ny x p and left N, x ¢ legs and
feed them into the motor signal transformation circuit (see Fig. , which
was empirically constructed. It consists of 15 neurons M1, ..., M15 where the
neural parameters of M1, ..., M14 together with their function are similar to
those of the neural forward model IR. That is the first recurrent neuron filters
the motor noise while the rest shape the motor signals by prolonging their
activation time. Eventually the output of each recurrent neuron is combined
at the neuron M15. Consequently, the pulse shaped motor signals will become

18

NBF
NBE

NRHF
NLHF
NRHE
NLHE
NRKF
NLKF
NRKE
NLKE

Motors

VVVlV YYVYYVYY

Reflexive neural

control Forward 8
Postpro-| |Compen- model Efference 58
cessing sator |« AS co ne

< py 2
:Adaptive
< neural Motor
: calrllie] Postprocessing | [tSrlng:flor- Environment
mation
A Slope detection circuit
Sensors
IR
L As <
s <

A
G

Fig. 13. Adaptive reflex neural locomotion control with noise cancellation and slope
detection circuits. This control enables RunBot to detect an unpainted slope through
the change of its own motor signals rather than through the IR signal. As a result,
it can successfully learn to walk up the slope by utilizing only AS and motor infor-
mation.

continuous and smooth. In other words, they show continuous high activation
(=~ 1) during walking on level floors rather than spikes. But they will show a
drop to about zero of their continuous activation while walking on the slope
due to increasing the gait period of its walking cycle or they will become
completely deactivated if RunBot falls backwards on the slope. Such a drop
and/or deactivation enables the system to recognize the slope. However we
need to convert this into a positive value for correlation with the AS signal
in our learning mechanism. Thus, a postprocessing unit is used to invert the
signal via neuron P1ly;. As a result, the drop and deactivation will turn into
a positive value (= 1) while the continuous high activation will become zero.
Subsequently, the recurrent neuron P2, enlarges the response time of the
inverted drop and deactivation signals. The resulting signal will be sent to
the learning control circuit, which allows RunBot to learn to walk up the
unpainted slope. Note that all neurons are modeled as additive neurons with
a standard sigmoid transfer function (Eq. [3) except the neuron P2y which has
a linear transfer function with its output restricted to the interval [0, 1].

4.2 Results

Figure |15 shows experimental results where the motor signals together with
the slope detection circuit described above is employed (see Fig. instead

19

Motor signal transformation Noise cancellation
circuit AS Reflex
[signal
NLkrp 3% OG OO O 1.0
35 —< oui ,4) .
N ,J/A.M1 /.MZ "o M14 Postprocessing Predicive Learning
RKF | 53 T signal control
N ; 5 0.99 circuit
s 1.0
6.5 65/ 65 5.0 O :
< N
-10.0 001,
45 ®M15 ® P1,—P2;

Fig. 14. Slope detection circuit. It consists of two subunits: motor transformation
and postprocessing units. In the postprocessing unit the neuron P1y; performs as a
signal inverter while the recurrent neuron P2y; with a linear transfer function acts
as a low pass filter. N, x ¥ and Ny i r indicate motor signals of the left and right
knee flexors, respectively. Note that one can optimize this slope detection circuit, for
instance by using an evolutionary algorithm [11], but for the purposes here, manual
adjustment was sufficient.

of using the IR signal for discerning a slope. As a consequence, RunBot can
successfully learn to walk up an eight-degree unpainted slope after 2-5 falls.
After that it can stably adapt its gait and UBC for walking on different ter-
rains, i.e., level floors versus up the slope. For this demonstration, we refer the
reader to the video clip at

http://www.nld.ds.mpg.de/~poramate/RAS /EfferenceCopy.mpg.

5 Discussion and conclusions

Here, we concisely discuss and conclude some remaining issues following the
presented experiments while most of the relevant discussion points have been
described alongside the experimental sections above. In this study, we have
addressed the exploitation of an efference copy together with internal mod-
els for dynamic locomotion control in terms of sensory processing and terrain
determination. The first experiment has shown the relationship between affer-
ence (sensory information) and efference (motor command). That is a copy of
the efference after modification through neural forward models is used to sub-
tract external and self-generated sensory mnoise (sensory processing) in order
to obtain perceptual stability for correctly guiding locomotion.

In the second experiment, we have demonstrated that efference copy signals
derived from a reflexive mechanism [2I] are capable of determining terrain
condition changes, e.g., level floor versus up a slope. Due to gravitation, which
excerts a different effect during walking up a slope, RunBot’s forwards motion
will be resisted. In other words, the gait period of its walking cycle will be
enlarged which can be measured at the motor signals.

20

R A LoV v

1.2 1.2
(@) (b)~
X
T 2
S 0.8} z
A N
= 3
z 04 -
5]
0.0 i
_ 12
©) & (d)_
e g
2]
2 08 B
c
a Q
Q -
§ 04+)
& 2
& 3
0.0
3200 S 140
)8 (") 3
() [0]
= S 120
% 160 g |
< E
s S 100
(0]
] 120 %
4 = 80
% 80 & 60
(9) 25] ‘ : (h) 160
20¢ 1
120 |
g " 8
2 1o 7 I g
P, 80 [
D
= B
l_
0 : ‘ ‘ ‘ ,
0 24 48 404 24 48 72 96
Time (s Time (s)
Lower Floor 70 cm

Ram 50 cm 80 cm
p p/so';ﬁ

= Upper Floor

Fig. 15. Real-time data of an adaptive walking experiment where RunBot detects an
unpainted slope through its motor signals. (a) Raw AS signal. (b) Knee flexor-motor
signals of the right Ng x ¢ (solid line) and left Ny, x r (dashed line) legs used for
slope detection. (c¢) Preprocessed AS signal (reflex signal). (d) Slope detection signal
(predictive signal). (e), (f) Right knee and hip joint angles for all situations. (g)
Growing synaptic strengths during the learning phase. (h) Posture of the UBC.
It leans 75 degrees as an initial upright position, while 145 degrees means leaning
forwards. In this experiment, RunBot can successfully walk up the slope after two
learning experiences. The data was recorded while RunBot was initially walking
from a lower floor (light gray areas) to an upper floor (dark gray areas) through a
ramp (gray areas). Arrows depict the situation where RunBot falls backwards and
white areas where RunBot was manually returned to the initial position. Note that
in this walking experiment we set the learning rate of each learner neuron (Eq.
as u1 = 14.0, po = 3.5, us = 5.25, pg = 0.07, us = 1.5, ug = 5.0.

21

The employed dynamic locomotion controller of RunBot in these experimental
studies was modeled as artificial neural networks using discrete-time dynam-
ics. The networks consist of three main components or modules: Reflexive
network for basic walking, adaptive network for learning capability, and in-
ternal model building networkE] for transforming efference copy signals into
desired sensory signals. All in all this leads to a certain higher complexity of the
control structure. The three modules, however, can be understood one by one,
which makes network design analyzable. In addition to this, we have shown
that hysteresis effects of a single recurrent neuron could be utilized for de-
signing forward model, motor signal transformation, and postprocessing units
(internal model building units). Although most units consist of several single
recurrent neurons in series (see Figs. [7]and [14), they give understandable and
analyzable network characteristics which can be applied to other applications
[10] requiring high and low output activations at different points on the input
space (hysteresis effects, see Figs. [8| and @ If desired, all manually adjusted
parameters of these units can be optimized by an evolutionary algorithm [I1]
or entire units can be constructed as feedforward neural networks by an error
back-propagation technique.

To a certain extent the experimental studies pursued here sharpen our under-
standing of how the efference copy influences the dynamic locomotion control.
They also emphasize how biological findings (efference copy and internal mod-
els) can be beneficially used in robotic systems. To date, efference copy and
internal model concepts have been applied to a number of robot control prob-
lems in different approaches. For example, Namiki et al. (2003) [25] presented
a hierarchical parallel control architecture for high-speed visual servoing (arm
motion control system with visual perception). The architecture is based on
an interaction model between efferent and afferent signals in a motor control
network used for a parameter adaptation mechanism. As a consequence, it
allows the robot to perform high-speed tracking, grasping, handling, and col-
lision avoidance tasks. Russo et al. (2005) [29] simulated phonotaxis (auditory
orientation towards sound sources) and an optomotor reflex (a visual capabil-
ity compensating for external disturbances to maintain a straight trajectory)
on a robot. The smooth integration of auditory and visual stimuli is achieved
via a forward model. It takes acoustically driven motor command signals (ef-
ference copy) and tries to predict the reafferent visual signal such that the
optomotor reflex is inhibited during phonotaxis behavior. In the domain of
walking robot control, Lewis and Bekey (2002) [19] used innate internal mod-
els to transform an efference copy from a central pattern generator (CPG)
unit into the sensory expectation. This expected sensory information is com-
pared with the actual sensory feedback and an adaptive rule then modifies
the CPG to coordinate the limbs of a quadruped robot. Duerr et al. (2003) [5]

3 Here we call the noise cancellation circuits (see Fig. [7)) and the slope detection
circuit (see Fig. as the internal model building network.

22

purposed a neural three-joint leg control mechanism for a hexapod robot for
leg searching movement. In addition, they also provided a generalized form of
their mechanism where the internal model and the efference copy are applied
for central pattern control. Compared to many of these approaches, here we
focus on showing the usefulness of the efference copy and internal model in
dynamic locomotion control which, to the best of our knowledge, has not been
investigated so far.

Although our approach cannot be directly related to how biological systems
solve similar tasks, there is ample evidence suggesting that biological systems
use efference copy and internal model mechanisms to maintain stable percep-
tion as well as to perform fast, robust, and adaptive behavior [3], [4], [31],
[33]. For example, as described in [9], flying insects can discern self-generated
sensation (i.e., rotation of the visual field caused by tracking a target) from ex-
ternal sensation due to changes in the external world (i.e., visual rotation due
to air disturbances). This could be done by using motor outputs transformed
into the expected visual inputs to suppress the self-generated sensation. In
male grasshoppers, an auditory interneuron activity (G-neuron) is inhibited
during stridulation (making a shrill sound by rubbing hind legs and wings)
[32]. This is because proprioceptive feedback and efference copy signals of the
hind legs act together to switch-off the interneuron response during stridu-
lation. In crickets, interneurons sensitive to movement of the antennae give
less activation during active motion by the cricket itself [6]. Another classic
example is that moving our eyes causes the image on the retina to move, but
we obtain stable image perception because the image movement is predictable
from the eye movement command [23] (but see [2]). Furthermore, Cullen and
Roy (2004) [28] showed that in primates vestibular signals arising from self-
generated head motions are inhibited by an internal model mechanism for
perceptual stability and accurate behavior control.

Finally, we would like to discuss our locomotion control network (see Figs. |§]
and [13]) with respect to the general concept of internal models [17], [34]. Inter-
nal models or internal loops, systems that imitate the behavior of a biological
process, have appeared as an important theoretical concept in motor con-
trol. They are generally divided into two main categories [17], [34]: Inverse
internal model and forward internal model. In addition, the combination of
inverse and forward internal models is called integration of multiple internal
models. The inverse internal model is a system that transforms a desired tra-
jectory/state information into a motor command for generating movements.
Such a model can be described as a controller. By contrast, the forward inter-
nal model is a system that predicts the next state (state estimation) and/or
sensory consequences (expected sensory feedback) from the current state and
motor command (efference copy). In other words, it can be viewed as a predic-
tor. The integration of multiple internal models proposes that multiple pairs
of inverse and forward internal models are tightly coupled as functional units.

23

Additionally, from neurophysiological and biological studies, it is known that
in movement control forward and inverse models involve the dynamics of the
motor system changing under different conditions. Thus it has been suggested
that the internal models must be adaptable and learnable by, e.g., supervised
learning [I3], feedback-error-learning [16], direct inverse modeling [I8], and
auto-imitatively adapting inverse modeling [14], [15].

Compared to the different types of the internal models described above, the
reflexive neural network of our robot can be implicitly understood as the
inverse model that calculates motor commands from sensory inputs rather
than desired trajectories. Note that the RunBot system does not use any
trajectory control, instead only a pure sensor-driven mechanism is employed
[21]. On the other hand, the internal model building network is comparable to
the forward internal model that estimates sensory feedback (see experiment
1) and walking state (see experiment 2) from motor commands. This internal
network was designed as a non-adaptable network where a motor learning
mechanism is executed separately in the adaptive neural networkE], which
results in locomotor adaptation; i.e., adaptive walking on different terrains.

Acknowledgments

This research was supported by the PACO-PLUS project as well as by BMBF
(Federal Ministry of Education and Research), BCCN (Bernstein Center for
Computational Neuroscience)-Gottingen W3.

References

[1] T.Bem, J. M. Cabelguen, O. Ekeberg, S. Grillner, From swimming to walking:
a single basic network for two different behaviors, Biological Cybernetics 88
(2003) 79-90.

[2] B. Bridgeman, Efference copy and its limitations, Computers in Biology and
Medicine 37 (7) (2007) 924-929.

[3] J. M. Camhi, A. Levy, Organization of a complex movement: fixed and
variable components of the cockroach escape behaviour, Journal of Comparative
Physiology A 163 (1988) 317-328.

[4] K. E. Cullen, Sensory signals during active versus passive movement, Curr.
Opin. Neurobiol. 14 (6) (2004) 698-706.

4 Recall that the learning algorithm applies a correlation based differential Hebbian
learning rule.

24

[5] V. Duerr, A. Krause, J. Schmitz, H. Cruse, Neuroethological concepts and their
transfer to walking machines, International Journal of Robotics Research 22
(2003) 151-167.

[6] M. Gebhart, H. W. Honnegger, Physiological characterisation of antennal
mechanosensory descending interneurons in an insect (Gryllus bimaculatus,
Gryllus campestris) brain, Journal of Experimental Biology 204 (2001) 2265
2275.

[7] T. Geng, B. Porr, F. Woergoetter, Fast biped walking with a sensor-driven
neuronal controller and real-time online learning, The International Journal of
Robotics Research 25 (3) (2006) 243-259.

[8] R. Held, Exposure history as a factor in maintaining stabilitity of perception
and coordination, Journal of Nervous and Mental Disease 132 (1961) 26-32.

[9] E. v. Holst, H. Mittelstaedt, Das Reafferenzprinzip, Naturwissenschaften 37
(1950) 464-476.

[10] M. Huelse, S. Wischmann, P. Manoonpong, A. Twickel, F. Pasemann,
Dynamical systems in the sensorimotor loop: On the interrelation between
internal and external mechanims of evolved robot behavior, in: M. Lungarella,
R. Pfeifer (eds.), Proceedings of 50 Years of Artificial Intelligence, vol. 4850,
Springer-Verlag, 2007.

[11] M. Huelse, S. Wischmann, F. Pasemann, Structure and function of evolved
neuro-controllers for autonomous robots, Connection Science 16 (4) (2004) 249—
266.

[12] A. J. Ijspeert, A. Crespi, D. Ryczko, J. M. Cabelguen, From swimming to
walking with a salamander robot driven by a spinal cord model, Science
315 (5817) (2007) 1416-1420.

[13] L. Jordan, Supervised learning and systems with excess degrees of freedom,
Technical Report COINS 88/27 (1998) 1-41.

[14] K. T. Kalveram, The inverse problem in cognitive, perceptual and
proprioceptive control of sensorimotor behaviour: Towards a biologically
plausible model of the control of aiming movements, International Journal of
Sport and Exercise Psychology 2 (2004) 255-273.

[15] K. T. Kalveram, A. Seyfarth, Learning the inverse model of the dynamics of a
robot leg by auto-imitation, Springer Berlin Heidelberg, 2007.

[16] M. Kawato, Feedback-error-learning neural network for supervised motor
learning, Advanced neural computers (1990) 365-372.

[17] M. Kawato, Internal models for motor control and trajectory planning, Curr.
Opin. Neurobiol. 9 (1999) 718-727.

[18] M. Kuperstein, Neural model of adaptive hand-eye coordination for single
postures, Advanced neural computers 239 (1998) 1308-1311.

25

[19] M. A. Lewis, G. A. Bekey, Gait adaptation in a quadruped robot, Autonomous
Robots 12 (3) (2002) 301-312.

[20] P. Manoonpong, Neural preprocessing and control of reactive walking machines:
Towards versatile artificial perception-action systems, Cognitive Technologies,
Springer, 2007.

[21] P. Manoonpong, T. Geng, T. Kulvicius, B. Porr, F. Woergoetter, Adaptive,
fast walking in a biped robot under neuronal control and learning, PLoS
Computational Biology 3 (7) (2007) e134.

[22] P. Manoonpong, T. Geng, F. Woergoetter, Exploring the dynamic walking
range of the biped robot “Runbot” with an active upper-body component, in:
Proceedings of the Sixth ITEEE-RAS International Conference on Humanoid
Robots (Humanoids 2006), 2006.

[23] L. Matin, Eye movements and perceived visual direction, Springer, New York,
1972.

[24] J.-A. Meyer, S. Doncieux, D. Filliat, A. Guillot, Evolutionary approaches to
neural control of rolling, walking, swimming and flying animats or robots,
Physica-Verlag GmbH, Heidelberg, Germany, 2003.

[25] A. Namiki, K. Hashimoto, M. Ishikawa, A hierarchical control architecture for
high-speed visual servoing, International Journal of Robotics Research 22 (10—
11) (2003) 873-888.

[26] F. Pasemann, Dynamics of a single model neuron, International Journal of
Bifurcation and Chaos 2 (1993) 271-278.

[27] B. Porr, F. Woergoetter, Strongly improved stability and faster convergence
of temporal sequence learning by using input correlations only, Neural
Computation 18 (6) (2006) 1380-1412.

[28] J. E. Roy, K. E. Cullen, Dissociating self-generated from passively applied head
motion: neural mechanisms in the vestibular nuclei, J. Neuroscience 24 (9)
(2004) 2102-2111.

[29] P. Russo, B. Webb, R. Reeve, P. Arena, L. Patane, A cricket-inspired
neural network for feedforward compensation and multisensory integration, in:
Proceedings of the 44th IEEE Conference on Decision and Control, and the
European Control Conference 2005, 2005.

[30] R. Sperry, Neural basis of the spontaneous optokinetic response produced
by vision inversion, Journal of Comparative and Physiological Psychology 43
(1950) 482-489.

[31] B. Webb, Neural mechanisms for prediction: Do insects have forward models?,
Trends in Neurosciences 27 (2004) 278-282.

[32] H. Wolf, O. von Helversen, 'Switching off’ of an auditory interneuron during
stridulation in the acridid grasshopper Chorthippus biguttulus L., Journal of
Comparative Physiology A 158 (1986) 861-871.

26

[33] D. M. Wolpert, Z. Ghahramani, Computational principles of movement
neuroscience, Nature Neuroscience 3 (2000) 1212-1217.

[34] D. M. Wolpert, Z. Ghahramani, M. I. Jordan, An internal model for
sensorimotor integration, Science 269 (5232) (1995) 1880-1882.

[35] D. M. Wolpert, M. Kawato, Multiple paired forward and inverse models for
motor control, Neural Networks 11 (1998) 1317-1329.

27

Manuscript compiled as PDF

Click here to download Manuscript: manuscript_compiled.pdf

O©CoO~NOOOITA~AWNPE

Autonomous Robots, SI Robot Learning manuscript No.
(will be inserted by the editor)

Using Efference Copy and Forward Internal Model for Adaptive Biped

Walking

Johannes Schroder-Schetelig - Poramate Manoonpong - Florentin Worgotter

Received: date / Accepted: date

Abstract To behave properly in an unknown environment,

animals or robots must distinguish external from self-generated

stimuli on their sensors. The biological inspired concepts of
efference copy and internal model have been successfully
applied to a number of robot control problems. Here we
present an application of this for our dynamic walking robot
RunBot. We use efference copies of the motor commands
with a simple forward internal model to predict the expected
self-generated acceleration during walking. The difference
to the actually measured acceleration is then used to stabi-
lize the walking on terrains with changing slopes.

Keywords Efference copy - forward internal model - neural
network - biped robot - dynamic walking - walking machine

1 Introduction

In the early 1950s, it was proposed that in the central ner-
vous system (CNS) motor commands are copied to predict
the expected sensation (v. Holst and Mittelstaedt 1950). A
motor signal going from the CNS to the periphery is called
an efference and a signal from the peripheral sensors to the
CNS is called an afference. An efference copy, which is an
internal reference signal, can be used to distinguish reaffer-
ence (sensory signals resulting from an animal’s own ac-
tions) from exafference (sensory signals arising from exter-
nal stimuli).

Later, Held (1961) indicated that efference copies and
the reafference cannot be directly compared due to the dif-

Johannes Schroder-Schetelig - Poramate Manoonpong - Florentin
Worgotter (=)

Bernstein Center for Computational Neuroscience (BCCN), University
of Gottingen, Bunsenstraflie 10, D-37073 Géttingen, Germany

E-mail: j.schroeder-schetelig@bccn-goettingen.de, poramate@bccn-
goettingen.de, worgott@bccn-goettingen.de

Tel.: +49-(0)551-5176-528; Fax: +49-(0)551-5176-449

ferent dimensionality between motor commands and sen-
sory feedback. Therefore, he proposed a neural mechanism
that transforms an efference copy signal into an expected
sensory input to compare to the actually incoming sensory
signal. This neural transformation mechanism is known as
a forward internal model (Kawato 1999). The second large
class of internal models is called inverse internal models. An
inverse internal model takes a desired trajectory and trans-
forms it into an appropriate motor command for generating
the movement.

Based on these biological findings, we apply the prin-
ciples of efference copy and forward internal model to our
biped walking robot RunBot (Manoonpong et al. 2007) to
cleanse the signal from an accelerometer sensor off the self-
generated noise from the walking movement (reafference).
The remaining exafference signal is then used to stabilize
the walking on terrains with different slopes. This way Run-
Bot is able to adapt to terrain changes ‘blindly’, i.e. without
the use of the infrared sensor, which was necessary for slope
detection previously (Manoonpong et al. 2007).

2 Materials and methods
2.1 Mechanical Setup of RunBot

Following we give a short description of RunBot’s mechan-
ical setup. For details see (Manoonpong et al. 2007). Run-
Bot is a planar biped walking robot, 23 cm tall from foot to
hip joint axis (see Fig. 1). It is held sagittally by a boom of
1 m length, so that it cannot fall sideways, while the freely-
rotating joint of the boom influences the walking dynamics
in no way other than that RunBot is constrained on a circular
path.

Its legs have four actuated joints: left hip, right hip, left
knee and right knee. Each joint is driven by a modified RC

Click here to view linked References

http://www.editorialmanager.com/auro/download.aspx?id=25860&guid=b0c2a4be-5ff0-4061-a145-681ab5443fbb&scheme=1
http://www.editorialmanager.com/auro/viewRCResults.aspx?pdf=1&docID=601&rev=0&fileID=25860&msid={F1411748-4626-4B62-B9E7-D81F6743D0CF}

O©CoO~NOOOITA~AWNPE

»
>

- \J

Fig. 1 a, b: The planar dynamic robot RunBot with its active upper
body component (UBC) and the accelerometer sensor (AS). The UBC
is drawn strongly in the zero position (Oypc = 54.5°) and faintly in the
minimum and maximum positions.

servo motor where the built-in pulse width modulation (PWM)

control circuit is disconnected while its built-in potentiome-
ter is used to measure the joint angles. A mechanical stop-
per is implemented on each knee joint to prevent it from
going into hyperextension, similar to the function of hu-
man kneecaps. Approximately seventy percent of the robot’s
weight is concentrated on its trunk and the parts of the trunk
are assembled in a way that its center of mass is located
forward of the hip axis. RunBot’s design also relies on the
principles of passive walkers (Collins et al. 2005).

RunBot has no actuated ankle joints resulting in very

light feet being efficient for fast walking. Each foot is equipped

with a switch sensor to detect ground contact events. The
mechanical design of RunBot has some special features, e.g.
small curved feet and a properly positioned center of mass
that allow the robot to perform passive walking during some
stage of its step cycles. Hip and knee joints are driven by
output signals of the leg controller (running on a Linux PC)
through a DA/AD converter board (USB-DUX).

To extend its walking capabilities for walking on differ-
ent terrains, e.g. level floor versus up or down a ramp, one
servo motor with a fixed mass, called the upper body com-
ponent (UBC), is implemented on top. The UBC has a total
weight of 98 g (including servo). The position of the UBC is
controlled by the body controller. It leans back in its “zero
position” (see Fig. 1b) for walking on a level floor, while it
is necessary to lean forward when RunBot walks up a ramp.
The body controller relies on an accelerometer sensor (AS)
serving as a vestibular organ. The AS is installed on top of
the right hip joint and measures the acceleration in the di-
rection of walking. In our set-up, the AS signal is fed to the
USB-DUX for digitalization providing it to the body con-
troller afterwards.

Foot contacts | (2) efference

Push-pull
postprocessing

Leg motor 8)
neurons [

Leg joint
angles ﬂ

Sensors

Leg Controller|

efference

AS signal
copy (8)

Internal forward model

1) AS prediction U]

(1)L

uBC
position

Body
Controller

Fig. 2 Schematic diagram of leg and body control. Numbers in paren-
theses indicate the number of information channels going through the
arrows.

2.2 Control structure

Fig. 2 schematically shows the structure of RunBot’s leg and
body control. For the generation of the walking movements
the leg controller gets input from the feet’s ground contact
sensors and the legs’ hip and knee joint angle sensors. Its
motor neurons drive the leg motors (trough push-pull post-
processing) and via the environment a closed loop is formed
back to the sensors.

The body controller drives the UBC motor and indirectly
influences the walking process trough the environment. It
is necessary to lean the UBC forward in order to walk up
a slope. For slope detection the body controller only relies
on the accelerometer sensor and has no input from a long
range sensor like an infrared eye. The AS signal is domi-
nated by the acceleration arising from RunBot’s ego-motion
(see Fig. 5d) and cannot directly be used for slope detection.
To distinguish reafferent signals (arising from ego-motion)
from exafferent signals (arising from external influences like
slope changes) the body controller additionally receives in-
put from the forward internal model (IM).

The role of the IM is to predict the expected accelera-
tion (of the next time step) that is caused by RunBot’s own
motor commands (of the present time step). To do so the
IM receives an efference copy of the motor commands and
additionally has access to the hip and knee joint angles that
define the momentary posture.

The leg controller, the forward internal model and the
body controller are described in detail in the following sec-
tions.

2.2.1 Leg controller

The leg controller is a reflexive neural network with a hier-
archical design. It is unchanged, inherited from the original
work of RunBot (Manoonpong et al. 2007) and not subject
to this study. The reflexive locomotion generation works as
follows: When one foot touches the ground the hip extensor

O©CoO~NOOOITA~AWNPE

Hidden
layer

Input layer Output

layer

Leg motor
neurons

a
™M

Leg angle

sensors

Fig. 3 Forward internal model. Three-layer feed-forward neural net-
work with linear activation functions for input and output neurons
and sigmoid activation functions in the hidden layer. The connection
weights are trained by a backpropagation algorithm (see Sec. 3.1).

and knee flexor of the other leg (swing leg) are triggered, as
well as the hip flexor and knee extensor of the stance leg.
When the hip stretch receptor of the swing leg is activated,
the extensor of the knee joint in this leg is triggered. Finally
the foot of the swing leg touches the ground and the swing
leg and the stance leg swap their roles thereafter. The net-
work is designed with flexor and extensor neurons for each
hip and knee motor.

Further details of the leg controller are not necessary for
this study, but can be found in (Manoonpong et al. 2007).
For the reader it is sufficient to know, that there exists a leg
controller and that we have access to the generated motor
commands, upon which we can build the internal model.

During walking on different terrains RunBot’s walking
patterns remain unchanged (i.e. the weights of the leg con-
troller’s neural network are constant) while adaptation is done
only through active UBC control.

2.2.2 Forward internal model

We designed the forward internal model (Fig. 3) as a very
simple three-layer (including input layer) feed-forward neu-
ral network. It has 12 input neurons, three hidden neurons
and one output neuron. Input and hidden layer have one ad-
ditional bias neuron each. The output of every single artifi-
cial neuron is defined by

y(x)=¢g <i wm) . (1
i=0

The neuron has n input ‘dendrites’ (x .. .x,) and one output
‘axon’ y(x). The weights (@y...®,) determine, how much
the inputs are transmitted, and the activation function g does
a transformation of the output. The bias neurons are special,
they receive no input and emit a constant output of 1.0. The
inputs of the IM are given by efference copies of the eight
leg motor neurons (range [0, 1]) and the actual posture of the
legs via the joint angle sensors (range [-1, 1]). The activation

1
Apg~4w
Nyge
-w

apy

Fig. 4 Body controller. aag is the actual acceleration signal from the
sensor and ayy is the predicted acceleration signal from the internal
model. The neuron computes the difference of both signals, weighted
with the UBC control weight w, and integrates them over time via the
recurrent connection. The activation function is linear, but hard limited
to the range [0, 4].

function of the input and output neurons is linear, while the
hidden layer neurons have a symmetrical sigmoid activation
function g(x) = tanh(x).

The internal model not only relies on efference copies
from the leg motor neurons, because the outputs of all leg
motor neurons are rectangular shaped (compare Fig. 5a).
Using only these as inputs of the IM the output would also
have had a very stair-like appearance and would not match
the AS signal very well. So we additionally used the leg joint
angle sensors as inputs, and with this the prediction becomes
good (see Fig. 8). For this just three hidden neurons were
sufficient.

The IM was trained with data obtained during RunBot
walking on a level floor, where the UBC was positioned in
its “zero position” Gypc = 54.5° (compare Fig. 1). The out-
put of the IM serves as a reference signal for the body con-
troller.

2.2.3 Body controller

The body controller (Fig. 4) drives the motor of the UBC. It
consists of just one motor neuron which gets input from the
accelerometer sensor and from the internal model. To ob-
tain the exafference acceleration signal, it simply computes
the difference of the two signals weighted with the factor w,
which is set to a fixed value during experiment. These pre-
diction error values are proportional to the (de-)acceleration
caused by the slope of the track and the UBC posture, i.e.
they are mostly positive, when RunBot is deaccelerated by
the slope, and mostly negative, when RunBot is getting too
fast compared to the reference signal of the internal model.
The prediction error values are then integrated over time by
means of the neuron’s recurrent connection having synaptic
strength of 1.0. This causes the UBC to move forward (back-
ward), as long as the prediction error is positive (negative).
When the prediction error vanishes, the UBC has reached
a new equilibrium position. As a consequence such mech-
anism enables RunBot to stably continue walking on an al-
tered terrain.

The activation function of the neuron is piecewise lin-
ear, so that the output of the neuron is clamped to the range
[0, 4], which linearly corresponds to a setting of the UBC
position in the range 19.0° to 157.4° given by its physical

O©CoO~NOOOITA~AWNPE

a 1F 1w
05 | 135
b 12
0 | + + |
b 1lf]
-1 1 1 1
c 1 F 1
-1 Il 1 1
d 02 "
0r 1&
-0.2 | 1 1 1 1 .
0.0 0.5 1.0 1.5 2.0
time [s]

Fig. 5 Typical recordings for walking on a level floor with the UBC in
its zero position. a: left hip extensor motor neuron (N gg). b: left hip
angle sensor neuron (ary). ¢: left knee angle sensor neuron (a k). d:
accelerometer sensor neuron (das).

limits (compare Fig.1). The output N{5~ of the UBC motor
neuron at time-step ¢ is calculated according to:

4 for Nijpc >=14
Nipc =9 Nijpe for 0 <Nip. <4
0 for Nijp <=0
where Nijpc =w- (dyg —diy) +Nige)

aas and apy are the output signals of AS and IM respectively
and w is the UBC control weight.

The output asg of the accelerometer sensor neuron is
modeled according to:

-1
aps = (] +eaAS(9AS*CASVAS)) 3)

where Vg is the output voltage signal from the accelerom-
eter sensor. Oas and oas are the threshold and a positive
constant which are set to 4.0 and 2.0, respectively. Cag is a
positive amplification of the input signal set to 6.0.

3 Experiments and Results
3.1 Training of the forward internal model

The network of the forward internal model was implemented
using the Fast Artificial Neural Network Library (FANN,
version 1.2.1). For training we recorded data from ten runs
of Runbot walking on a level floor. The UBC was posi-
tioned in its zero position Gygc = 54.5° (corresponding to
Nusc = 1.0), where it stayed all the time during recording.
Fig. 5 shows typical outputs of some sensor and motor
neurons during walking on a level floor. The training was
done off-line, after all irrelevant data (manual return of Run-
Bot to the start position and the transient phase) had been re-
moved from the recorded files. The remaining training data

Table 1 Connection weight matrix of the internal model. The column
index gives the originating neuron and the row index the target neuron.
The symbol — means, that there is no connection between the neurons.

N 1 2 3 4 5 6
14 -0.454 -4.000 0.136 0.463 -0.139 0.102
15 -1.732 4235 -0995 -0.110 0402 0.134
16 0.253 -2581 -0.830 -0.211 -5.286 -0.136
N 7 8 9 10 11 12
14 0.204 0401 0.058 -0.685 1.050 -2.177
15 -0.017 -0.640 -2.831 0.528 1.143 3.361
16 -4282 1618 2454 2766 1598 -0.250
N 13 14 15 16 17
14 1.276 — — — —
15 -3.887 — — — —
16 1.619 — — — —
18 — 039 0363 0347 0.245
% Track part I I 11 1A%

£ a=0°
1

214 cm 80 cm

80 cm
|AIBICIDIEIFIG

section

Fig. 6 Track layout. The slope of the track parts II, IIT and IV can be
adjusted via the angles oy, oqpp and ogy. Parts III and IV are divided in
six sections A to F (each 35.5 cm long), while G stands for the end of
the track.

then was shuffled randomly to avoid local minima during
training and to get an over-all good prediction. First the net
was initialized with random weights in the range [0.01, 0.05]
and then trained incrementally to predict the accelerome-
ter data of the next time step using a standard backpropaga-
tion algorithm. It was trained for approximately 2000 epochs
up to a mean squared error of 0.00127 (one epoch = every
data point used once for training). Because this error value
is just a mean, we repeated the training several times with
new random initialized weights, until the network showed a
good over-all prediction, e.g. the prediction had a symmetri-
cal shape for left and right steps. The connection weights of
the resulting network are given in Table 1 (compare Fig. 3).

3.2 Walking experiments

Walking experiments were performed on a circular track,
which consists of four parts (I, ..., IV), whose lengths are
214 cm, 80 cm, 80 cm and 134 cm (see Fig. 6). The first part
(D is a level floor (o = 0°). The parts II to IV have angles
agr, oqp and oy which are given in Table 2 for different
track configurations.

O©CoO~NOOOITA~AWNPE

55
B33
80 - .
RIS
e
sSoteteotos|
r s ;
- Lz
L ks !
= 60 R Y
S s
= — S [XXXX]
=] S550e|
o 40 tzzz71
B] =
S Seeew

UBC control weight w

>WOoOMTQO

Track #2
100

% of total

&

0.0 0.025 0.05 0.075 0.1 0.15 0.2
UBC control weight w

Fig. 7 Stacked histograms of the results of Experiment 1 on Track #1 and Track #2. The labels A to F stand for the section in which RunBot falls
backwards (compare Fig. 6). G means that RunBot reached the end of the track.

Table 2 Different configurations of the tracks. oy, oqpp and ogy are the
angles of track parts IL, III and I'V.

Track | agr [°] | am [°] | oav [°]
#1 0.6 1.9 3.7
#2 0.8 2.6 4.7
#3 0.9 2.6 4.7
#4 0.9 2.6 2.6
#5 0.9 1.3 1.3

3.2.1 Experiment 1: Body control performance

This experiment was performed on tracks #1 and #2 in or-
der to see how efficient the trained body controller is with
respect to the weight w. We set up the parts of the tracks
to have gradually increasing angles up to 3.7° for track #1
and 4.7° for track #2. The angles have to increase gradu-
ally, because this type of body control only is reactive, and
large and sudden changes in the slope of the track would
cause RunBot to fall. To see how good control performs, we
divided the last two parts of the track into six sections of
length 35.5 cm each, labeled A to F (Fig. 6). For each value
of the weight w we performed 20 runs and looked in which
section RunBot falls. The results are shown in the stacked
histograms in Fig. 7. A section value of G means that Run-
Bot did not fall and instead successfully reached the end of
the track. RunBot was placed manually at the beginning of
the track with the UBC approximately in its zero position.
So part I of the track had the purpose to let RunBot enter its
regular walking process and to allow relaxation of the UBC
to the zero position.

First we discuss the results for track #1 shown in the
left histogram in Fig. 7. The first stack shows the results for
w =0, i.e. no body control, where the UBC stayed in its zero
position. Here we can see that without body control RunBot
always falls backwards at a certain point of the slope, which

is in 90% of the cases section D, and in 10% section E. This
is because the slope decreases the velocity of RunBot until it
falls. For w = 0.025 we see that in 20% of the cases RunBot
successfully reaches the end of the track (section G) and that
the amount for section D has decreased to 20%. We also
see that in some cases RunBot only got to section A and B.
This is because the activation of the body control (w # 0)
also introduces a certain degree of variability, and in some
cases the UBC position might be below the zero position
when RunBot is reaching the slope, causing it to fall earlier.
Best results were obtained for w = 0.05 with 90% success.
Larger values of w led to lower success rates (60%-65%)
with higher instability.

The results for track #2 are shown in the right histogram
in Fig. 7. Here the angles are larger than on track #1, so we
expect that we have to use larger values for w to get simi-
lar results. For w = 0 we see again that RunBot is falling,
this time a little bit earlier at section B (80%). With w =
0.025 RunBot gets up to section D but still falls in all tri-
als. Results are getting better for w = 0.05 and are best for
w = 0.075 with 45% success. For w = 0.1 and w = 0.15
performance drops again. w = 0.2 shows good results com-
parable to w = 0.075. This is due to the effect that with this
strong weight, even already on the level floor, sometimes the
UBC went directly to the front and stayed there, because it
cannot go further. Although the IM prediction actually was
not good in this situation, RunBot was able to easily reach
the end of the track, because of its self-stabilizing properties
(Manoonpong et al. 2007).

3.2.2 Adaptive walking example

Fig. 8 presents the results of a walk on track #1 with control
weight w = 0.05 taken from Experiment 1. RunBot leaned
its UBC forward and successfully reached the end of the
track without falling. Fig. 8a shows the outputs of the ac-

O©CoO~NOOOITA~AWNPE

time [s]

Fig. 8 Recordings of a walk on track #1 with control weight w = 0.05.
RunBot leaned his UBC forward and successfully reached the end of
the track without falling. a: Outputs of AS and IM. b: Resulting dif-
ference of actual and predicted acceleration signal. ¢: Output of UBC
motor neuron.

celerometer sensor neuron and the internal model, while Fig.
8b magnifies the difference of these actual and predicted AS
signals (prediction error). A positive/negative error drives
the output of the UBC motor neuron up/down (compare Fig.
8c). The first 4.6 seconds Runbot was walking on a level
floor and one can see how the difference of the actual and
the predicted acceleration signal (prediction error) drives the
UBC position to the zero position, where is was during train-
ing (dashed line in Fig. 8c). Because the AS signal now
nearly resembles the reference signal of the IM, the predic-
tion error is becoming small and the UBC oscillates around
the zero position. As RunBot reaches the slope the predic-
tion error is getting positive most of time and consequently
the UBC position increases. But because the slope of the
track still is getting steeper, this goes on till the end of the
track is reached. If the slope had continued with a fixed an-
gle, the UBC position would have converged to a certain
value, as can be seen from the following Experiment 2.

The supplementary Video 1 shows some walks of Run-
Bot on track #3.! First it is shown that with deactivated body
controller (w = 0) RunBot falls backwards at a certain point
of the track, when the slope is getting too steep. Then the
controller is activated (w = 0.1) and RunBot is able to reach
the top end of the track. Also note that here the initial posi-
tions of the UBC are just roughly set to the zero position.

3.2.3 Experiment 2: UBC equilibrium position for different
slopes

With this experiment we wanted to check if the UBC po-
sition converges to a specific value for a track with a cer-
tain slope. For this we used track configurations #4 and #5,

4 . . _
Track #4, w=0.10 e - 1 150 &

3.5 | Track #5, w=0.05 | 135 §

3 | UBC zero position - A o0 2
M o

2.5 1105 &
2l
% 15| il HM“ TR
|||| ||| |.-|. | A L e0 - 2

L i
i ..
0.5 il 1L 1o 8

0 115 8

Fig. 9 Converging of the mean UBC position to new equilibrium po-
sitions for tracks with different slopes. The shaded areas around the
mean curves give the standard deviations.

where the last two parts III and IV had equal slopes oy =
apy. Again we recorded several runs of RunBot like in Ex-
periment 1. For track #4 (oyn = ogy = 2.6°) we recorded
n = 18 successful runs with weight w = 0.1, for track #5
(am = oy = 1.3°) we got n = 19 runs with w = 0.05. The
positions of the UBC differ from run to run and are quite
sensitive to the initial values, but on average a clear tendency
is observable In Fig. 9 the mean UBC position (Nugc) =
1): N{pc is shown for both tracks.? The shaded areas

give the standard deviations o = \/ L3 (Nige — (Nusc))?
of the curves. In track part I the UBC position rises from the
initial position and oscillates around the zero position as be-
fore. In part II it begins to rise together with the track slope.
This continues in part III, and in part IV the UBC finally sta-
bilizes and oscillates around the new equilibrium positions,
which are approximately 122° for track #4 and 63° for track
#5. As expected the equilibrium position takes larger values
for steeper slopes. For track #4 the UBC position for a few
times reached its upper limit, where the output of the body
controller neuron was clamped to Nygc = 4.0. Nevertheless
this is a real new equilibrium position and not just an artifact
of the clamping.

4 Discussion and Outlook

We have demonstrated the use of biologically inspired prin-
ciples of signal processing in a walking robot. Based on ef-
ference copies of motor commands it was possible to predict
the afferent signals of an accelerometer sensor using a sim-
ple forward internal model. This acceleration signal predic-
tion was subtracted from the actual acceleration signal to ob-
tain an exafference, which was successfully used to stabilize
the walking on terrains with changing slopes. The depen-
dence of the body control performance on the UBC weight

! The supplementary video can be downloaded at: http://www.
nld.ds.mpg.de/~poramate/AutonomousRobots/Videol.mpg

2 The index i in N{'JBC here denotes the index of the run and not the
time-step as in Eq. (2).

http://www.nld.ds.mpg.de/~poramate/AutonomousRobots/Video1.mpg
http://www.nld.ds.mpg.de/~poramate/AutonomousRobots/Video1.mpg

O©CoO~NOOOITA~AWNPE

w was studied. Finally we verified, that the UBC position
settles to new equilibrium positions for different slopes.

The approach is simple yet quite powerful, but there could
be several ways for improvement: i) The IM is designed as a
feed-forward network with access only to the actual sensory
data, but it might perform better if it had access also to the
history or if it were designed as a recurrent network. ii) The
training of the IM was done off-line. It would be useful if
it could be trained during walking. iii) The body controller
does only control the posture of the UBC. If also the weights
of the leg controller neurons responsible for step length had
been adapted, it should be possible for RunBot to walk up
much steeper slopes as shown in (Manoonpong et al. 2007).
iv) The UBC weight w now has to be adjusted by hand. It
would be preferable, that it adapts automatically.

Finally, we would like to discuss our approach with re-
spect to other applications of efference copies and internal
models in robotic systems. For example Lewis and Bekey
(2002) presented a model for a quadruped robot, that — like
a newborn foal — can learn to walk several minutes after in-
ception. They used an efference copy from a central pat-
tern generator (CPG) that was transformed into the sensory
expectation via innate internal models. This information is
compared to the actual sensory feedback and an adaptive
rule tunes the CPG to coordinate the limbs. Diirr et al. (2003)
proposed a neural control mechanism for three-joint legs
of a hexapod robot for leg searching movement. They also
present a generalized form of the mechanism, where the in-
ternal model and the efference copy are applied for central
pattern control. Russo et al. (2005) simulated a robot with
phonotaxis (auditory orientation towards sound sources) and
optomotor reflex (visual capability allowing to maintain a

straight trajectory against disturbances). The motor commands

driven by the phonotaxis reflex (efference copies) are trans-
ferred to the expected reafferent visual signal via a forward
model. This way it is possible to smoothly integrate the vi-
sual and auditory stimuli, filtering out the optical distur-
bances caused by the phonotactic reflex, while still react-
ing to external stimuli. Compared to such approaches our
study to a certain extent shows how efference copy and for-
ward models can be applied in dynamic locomotion control,
which, to the best of our knowledge, has not been investi-
gated so far.

References

S. Collins, A. Ruina, R. Tedrake, M. Wisse, Efficient Bipedal Robots
Based on Passive-Dynamic Walkers, Science 307, 1082 (2005).

V. Diirr, A. Krause, J. Schmitz and H. Cruse, Neuroethological Con-
cepts and their Transfer to Walking Machines, International Jour-
nal of Robotics Research 22, 151-167 (2003).

FANN: Fast Artificial Neural Network Library, available at: http://
www.sourceforge.net/projects/fann

R. Held, Exposure history as a factor in maintaining stabilitity of per-
ception and coordination, Journal of Nervous and Mental Disease
132, 26-32 (1961).

E. v. Holst and H. Mittelstaedt, Das Reafferenzprinzip, Die Naturwis-
senschaften 37, 464-476 (1950).

M. Kawato, Internal models for motor control and trajectory planning,
Current Opinion in Neurobiology 9, 718-727 (1999).

M. A. Lewis, G. A. Bekey, Gait Adaptation in a Quadruped Robot,
Autonomous Robots 12(3), 301-312 (2002).

P. Manoonpong, T. Geng, T. Kulvicius, B. Porr and F. Worgétter, Adap-
tive, Fast Walking in a Biped Robot under Neuronal Control and
Learning, PLoS Computational Biology 3(7), e134 (2007).

P. Russo, B. Webb, R. Reeve, P. Arena, L. Patan, A cricket-inspired
Neural Network For FeedForward Compensation and Multisen-
sory Integration, Proceedings of the 44th IEEE Conference on De-
cision and Control and European Control Conference (2005).

http://www.sourceforge.net/projects/fann
http://www.sourceforge.net/projects/fann

	Manoonpong-RAS08_efferenceSubmit.pdf
	Introduction
	RunBot system
	Biomechanics
	Neural locomotion control

	Experiment 1: Efference copy for external and self-generated sensory noise cancellation
	Modeling noise cancellation circuits
	Results

	Experiment 2: Efference copy for slope detection
	Modeling a slope detection circuit
	Results

	Discussion and conclusions
	References

