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Abstract: 
This deliverable contains a technical report about an on-line learning method for learning action 
rules for planning. A journal publication based on this report is being prepared. The learning 
system proposed uses a probabilistic approach of a constructive induction method that combines a 
beam search with an example-based search over candidate rules to find those that more concisely 
describe the world dynamics. The approach permits a rapid integration of the knowledge acquired 
from experience. Exploration of the world dynamics is guided by the planner, and – if the planner 
fails because of incomplete knowledge – by a teacher through action instructions.  
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Introduction 

In the last years service robot applications are widening with the improvements in 
computer science techniques and the development of new technologies. These 
applications range from simple chores, like vacuum cleaners, to complex tasks requiring 
complex cognitive capabilities, similar to those forming the human capacity of 
performing complex tasks in real environments. 
In this work we face the problem of decision making for a multitask service robot 
embedded in a human environment that should rapidly learn to perform tasks in an on-
line way, and without any previous knowledge of the world dynamics or the tasks to be 
performed. 
The selection of which paradigm to apply relies on the characteristic of the problem 
faced. In general, there are two alternative approaches used to build an intelligent agent: 
the deliberative and the reactive approaches. The deliberative approach is based on the 
principle of rationality [1], and involves planning techniques in which actions are 
executed in accordance to plans built after reasoning about possible sequences to reach 
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the goal. In reactive approaches [2] actions are not longer driven by the rationality 
principle, but just executed from already coded behaviours that lead to the goal without 
deliberation.  
Both paradigms have drawbacks and advantages. In planning approaches the amount of 
deliberation could be very large even for the simplest kind of problem, mainly when the 
environment has complex dynamics. Additionally, deliberative techniques require a 
model of the dynamics of world, which in many cases is extremely difficult to code. 
This is not usually the case for reactive techniques which learn dynamics of the world 
automatically. Nevertheless, in reactive approaches drawbacks are caused by the 
limitation of their applicability to single goal tasks and by the requirement of large 
experience to reach an acceptable convergence. We propose a decision making 
technique that combines both approaches with the aim of diminishing the drawbacks of 
either one of them using the advantages of the other.  
In general, reactive approaches have proved to be valid for many low-level repetitive 
tasks, while deliberative approaches are more suitable for high-level tasks where 
specified goals are rarely repeated. Usually, it is observed that high-level tasks can be 
performed by a succession of simpler low-level tasks. 
We develop a method to learn on-line action rules that permit to reactively perform low-
level tasks when they are executed as planning operators of high-level plans. These 
rules could significantly relieve the amount of deliberation as they might merge 
repetitive sequences of actions, or plans found with large computational cost. One 
remarkable aspect of the method is that there is no need for codification of the world 
dynamics as they are learned automatically while acting.  
The learning method generates action rules using a constructive induction approach that 
combines a beam search with an example-based search [3] over candidate action rules 
to find those that more concisely describe the world dynamics. The approach permits a 
rapid integration of the knowledge acquired from experience. Exploration of the world 
dynamics is guided by the planner, and – if the planner fails because of incomplete 
knowledge – by the teacher through action instructions. 
It is very simple for humans to know which action to perform in a situation given a 
plain task. But it could be much more complicated to explain a priori all the sequences 
of actions that should take place in all the possible situations. We take benefit of the 
human capabilities of knowing which action to perform in currently observed situations 
to efficiently generate knowledge for decision making in a multitask robot.  
The idea of learning cause-effects is based on Piaget's theory of cognitive development 
[4] which claims that children gradually acquire knowledge of cause-effect relations by 
repeatedly executing processes and sequencing actions to reach goals. As we will see, 
action rules are created using learned cause-effect relations observed from experienced 
situations after actions executions. Cause-effects are not only expressed as a unique set 
of conditions that afford changes, but also as multiple set of conditions that have 
different chances to afford a change. 
As suggested in previous works [5], [6] the explicit coding of the world conditions and 
actions through rules and cause-effects presented above is one possible instantiation of 
the concept of object-action complexes (OACs) [7], which is considered as the main 
block for building cognitive systems for a complex service robot [8]. In a few words, 
the OAC concept claims that the world contains undistinguished “things” meaningless 
for the agent that only become meaningful “objects” through actions and tasks, where 
the objects are described by the properties relevant for the fulfilment of the final desired 
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outcome through the action. We believe that the contribution of this work is another 
step toward a formalization of the OAC concept as the probabilistic approach of cause-
effect could be seen as how likely a thing is an object, where an object description now 
is not restricted to a unique set of conditions but multiple set of conditions that have 
different chances of affording the object functionality. 
The learning module is embedded in a more general decision making system containing 
a planning module that uses the learned action rules as planning operators. The global 
system is based on a previous study [5] where the teacher guides the exploration of 
actions and also explains the world dynamics at the level of currently experienced 
cause-effects. The current contribution is an extension of [5] where dynamics of the 
world are automatically learned while performing the required tasks. 
Other approaches propose a decision-making system that permits fast agent responses to 
new situations using reactive layers while the deliberative layers generate behaviors 
used later by the reactive modules [9]. Some let the low-level action control to be driven 
by reactive behaviors, which are selected or modulated by a higher deliberative layer 
[10], [11]. Finally, others focus mainly on the generation of behaviors such as macro-
actions [12], primitive behaviors [13], or activation rules [14], which store sequences of 
actions frequently used or difficult to calculate, to use them later as macro planning 
operators in a deliberative system. 
In any of the previous cases a large amount of computation is usually required due to 
the need of exploring different acting behaviors to select the one suitable for the task. 
The problem turns to be more complicated if the robot has no previous knowledge of 
the world dynamics and should perform learning while predicting what would occur 
with different behaviors. Incomplete knowledge has been tackled using techniques like 
incomplete planning [15], learning planning operators [16], [17], [18] or policy learning 
[19], but the drawback of computational complexity derived of the application of AI 
techniques is still not surmounted. 
 

System structure 

As mentioned before, the decision making system has two main modules: a learning 
module that provides action rules in the form of planning operators, and a planning 
module that uses the learned operators. The action rules learned have a STRIPS like 
structure [20] suitable to be used by any planner that can deal with them. 
A general overview of the method is the following. Given a goal, the agent tries to 
generate a plan using the existing rules. If the planner fails to return a behavior, as a 
consequence of an incomplete knowledge, the agent asks the teacher about which action 
or actions to perform. The agent executes every instructed action and generates what we 
denote as a probabilistic cause-effect used to estimate the probability of the occurrence 
of changes under different sets of conditions. A probabilistic cause-effect is the main 
structure for learning and generation of STRIPS like cause-effects for planning 
purposes. 
When the agent is able to find a plan then it executes and evaluates it at the level of each 
cause-effect. During cause-effects execution relevant experiences are stored as example 
situations which are used to learn the conditions that afford desired changes. For 
instance, if any of the outcomes obtained after a cause-effect execution is different from 
the one expected, a fact referred to as surprise, the experienced situation is memorized 
as a negative example for obtaining the expected change.  
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Whenever a sequence of cause-effects is successfully executed it could be memorized 
into a rule to relieve the reasoning load of the planner. Rules are essentially similar to 
cause-effects but instead of an action they contain sequences of actions, each one in turn 
expressed as cause-effect. 
Figure 1 illustrates a general schema of the system. 

 
Figure 1. General architecture of the decision making system. 

 
Notation 
We assume that the agent has a set of N detectors di, i=1...N, that could take different 
discrete values dij, j=1..|di|, called conditions. A state s is constituted by a set of 
conditions dij, s={d1j, d2k,…,dNl}. Any set of state conditions is denoted as a subspace ss. 
At every moment the agent is able to perform any of the k actions from the set A={a1, 
a2,…, ak}. 
We formally represent a cause-effect ceci using a tuple that consists in a subspace Pi 
called the preconditions, an action ai, and a subspace Oi denoted as the expected 
outcome of the ceci. The preconditions indicate under which conditions the cause-effect 
can be applied, and the expected outcome reflects the effects that will be obtained after 
its execution. 
 

ceci = <Pi={dgj,…,dml}, ai , Oi={dkl,…,dpq}> 
 
Thus, a cec can be seen as a formal instantiation of the more abstract OAC as discussed 
in the Introduction. 
In the same way, a rule Rj is described using a tuple that consists in a subspace Pj called 
the preconditions of the rule Rj, a sequence of cec’s CECS=(ceck, ceci,…, cecm), and a 
subspace Oj denoted as the expected outcome of the rule, 
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Rj = <Pj={dih,…,dml}, CECS , Oj={dkl,…,dpq}> 
 
Rules can therefore be considered as chains of OACs. In our approach, the expected 
outcome serves two purposes: it will be used by a goal-achieving deliberative system 
for planning and to evaluate the outcomes.  
We now define another structure called a probabilistic cec (pcec). A pcec is formed by a 
tuple containing two set of subspaces, the set of working subspaces SSw and the set of  
candidates subspaces SSc. Additionally, it  contains, an action apcec, and a subspace 
called the expected outcome Opcec of the pcec. 
  

pcec=< {SSw, SSc}, apcec, Opcec> 
 
Each subspace ss in SSw and SSc has associated three numbers,  

- n+
 ss , counter for positives examples covered by ss. 

- n-
 ss , counter for negatives examples covered by ss.  

- n ss , total number of possible states in the region covered by ss. 
 
Where positive and negative examples are those states experienced, and stored under 
which the expected change Opcec occurs after the execution of apcec or fails to be 
obtained, respectively. In a similar way, we refer to the probability of a positive 
example as the probability of obtaining the expected change, and the probability of a 
negative one for the converse. 
 

Generating cecs from pcecs 

It is not possible to use the probabilities estimations directly for planning because the 
system is not designed for a probabilistic planner but for a deterministic one. Thus, for 
plan generation only cecs and rules can be used. In this section it is explained how cecs 
are obtained from pcecs. 
To generate cecs from pcecs we only use subspaces of the set of working subspaces 
SSw. First, an estimation of the probabilities for a positive and a negative example for 
each subspace in SSw need to be obtained. There are many ways of estimating these 
probabilities. Due to the problem that small numbers for the example can bias statistical 
estimators much we propose using the following estimator, which is robust against this 
effect.  
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where 2 accounts for the number of classes. 
In the general case the probability of a class i is, 
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where K is the total number of classes and j accounts for all the classes except i. 
This model consists in a function which outcome ranges in [0, 1], hence with 
probabilistic interpretation, that not only takes into account the class examples to 
determine the probability of that class (positive or negative in our case), but also other 
classes examples. Additionally, it also takes into account the densities of examples for 
different classes. 
Calculating the probability in this way is similar to assuming that, in lack of any 
evidence, each state in the subspace has the same “proportion” of a positive and a 
negative example (uniform distribution). This proportion will change as new evidence is 
gathered as a function of the density of classes. For instance, the probability for a 
positive example could range from 0, when there are no positive examples covered by 
ss, to 1 when the whole subspace is occupied with positive instances.  
It is evident that every subspace considered for the estimations should at least contain 
the conditions of the detectors that have changed with the action apcec to have some 
chance of obtaining Opcec. 
After these definition we can continue with the cec generation procedure: After 
calculating the probabilities for a working subspace, if the probability of a positive 
example is nonzero, a cec is created and added to the list of cecs that will be used for 
planning. Every new cec is composed of,  
 

cecnew=<Pnew=ssw, apcec, Onew={ssw
’∪Opcec}>, 

 
where ssw is the working subspace, and ssw’ is similar to ssw but only containing the 
conditions of detectors not involved in Opcec (changed detectors). 
The process of cec generation is performed whenever a pcec is created and for every 
recently promoted working subspace that have nonzero probability for a positive 
example. 
 
About Exploration 
In the decision making system exploration of actions is dictated by the teacher and the 
planner. Nevertheless, as the planner generates plans using cecs, which not yet 
completely evaluated we use forced exploration that permits learning a more complete 
model of the world dynamics. 
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Learning Module 

The learning module of the decision making system learns rules and pcecs evaluating 
under which conditions a change would occur after an action execution. Incomplete 
knowledge of the conditions necessary to afford changes lead to uncertainties about the 
occurrence of the change under a situation. Nevertheless, it is possible to estimate the 
probability for that change to occur given a subspace. In the next section we present 
how these estimations are improved, and how the minimal set of conditions is found 
that affords the expected changes.  
Learning pcecs 
The core of the method for learning pcecs is the estimation of probabilities for a positive 
and a negative example for different subspaces. The estimations and subspaces 
generation procedures are guided by experienced states stored in memory. The aim is to 
find the smallest sets of conditions for which the expected change has a high probability 
to occur. 
The learning process consists in selectively storing positive and negatives examples 
related to each pcecs, and refining the SSw representation by promoting candidate 
subspaces from SSc to SSw. 
Initialization 
The generation of a pcec occurs after executing an instructed action. The initial structure 
of a pcec consists in the expected outcome Opcec, which involves the changed conditions 
after the action execution, the action itself apcec=instructed action, and the initial set of 
working and candidate subspaces.  
The initial set of working subspaces SSw is composed by one subspace formed with the 
conditions changed following the action apcec. In the case of SSc, the initial set of 
subspaces is composed by subspaces formed with the conditions changed with apcec, and 
one additional condition of a detector not involved in the changes. It is considered one 
candidate subspace for each condition of those detectors. 
Memorizing Examples 
Whenever there is a surprise the experienced state after the cec execution is stored as a 
subspace, with all the state conditions, in the SSw of the pcec used to create the cec. 
Clearly, the counters are set to 1 for negative examples and 0 for positive ones.  
Conversely, if there is no surprise after a cec execution but the probability of error Pe 
(probability of misclassification) corresponding to the working subspace ssw that 
generated the cec is above a threshold Pc

+, the state is stored as a positive example in 
the set of working subspaces SSw. The probability of the error is calculated as [21], 
 

[ ]www ssssss
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where δ is the density calculated as, 
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and Pe
max is the maximum possible probability of error. 

In this way, for low density subspaces the probability error is less significant and 
examples are then stored to reduce the uncertainty in the estimations, while, as the 
density becomes larger, the probability of the error becomes more meaningful. 
Note that both storing criteria imply that every cec should have a pointer to the pcec, 
from which it originated and to the working subspace of that pcec, which was used to 
set all its conditions. 
Finally, after an example is stored, all the counters of the subspaces in SSw and SSc, the 
conditions of which are included in the stored example, are updated. 
Promoting Candidate Subspaces 
The necessity of improving the estimation by promoting candidate subspaces is also 
measured using the probability of the error and the density of the subspaces. The 
promotion of candidate subspaces occurs when enough examples were stored but the 
estimation capability of the system is still bad. To consider this requirement we propose 
using a threshold for the probability of the error that is a linear decreasing function of 
the density. In this manner, when the evaluated working subspace has a few examples 
the uncertainty is high and more evidence should be accumulated before promoting any 
candidate subspace. On the other hand, when the working subspace is densly occupied 
with examples, higher probabilities of the error are more trustable as indicators of the 
necessity for refining the representation. Then, the threshold for the probability of the 
error is calculated as, 
 

( ) maxmaxmin
eee

prom
c PPPP +−= δ  

 
where Pe

min is the highest error allowed, which plays the role of an upper bound for the 
precision in the estimation, preventing over-fitting, and allowing a better treatment of 
noisy data.  
After the calculation, if the probability of error of the evaluated working subspace is 
above the threshold, then, from all the candidate subspaces from SSc involving the 
evaluated working subspace, the one with lowest probability of error is promoted. To 
save computational resources, only working subspaces related to cecs that produce 
surprises are evaluated. 
Generating Candidate Subspaces 
Every time a candidate subspace is promoted new candidate subspaces are generated.  
The generation takes place for each consistent combination of the recently promoted 
subspace with the conditions of another working subspace of the pcec. All the possible 
combinations will produce new candidate subspaces. 
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Finally, once the candidate subspaces are generated, the counters of examples are 
initialized in accordance to the positive and negative examples covered by them.  
 
Learning Rules 
So far, we have explained how pcecs are learned from experience and how cecs are 
generated from pcecs. Now, we will explain how to relieve the job of the planner by 
memorizing sequences of successfully executed cecs into a macro planning operator 
called rule. 
To guarantee successful execution of a sequence, the precondition of the to-be-executed 
rule should ensure the occurrence of the cec-preconditions in the proper order. This is 
achieved firstly by accumulating (in the precondition part of the rule) the preconditions 
of the cecs needed to afford the changes. In case a detector takes more than one 
condition value during the sequence, the condition closer to the start of the sequence is 
considered as it should occur first. 
On the other hand, the outcome of the rule should enumerate the results obtained after 
the execution of the whole sequence. This is done by accumulating the outcomes of 
each cec into the outcome-part of the rule. As latest outcomes in the sequence cancel 
early ones when the same detectors are involved, the rule outcome should consider for 
each detector the condition of the those cec later in the sequence whenever the same 
detector is involved.  
It is important to remark that, in this first approach, we let the teacher control the rule 
generation by the instruction given. The teacher will instruct a single action when no 
sequence is convenient to be merged into a rule, and he/she will instruct a sequence of 
actions whenever he/she knows that this sequence will be need many times during the 
task or could be difficult to find for the planner. 
Cecs and Rules Correction 
When a surprise arises, the pcec from which the cec was obtained is evaluated. For this 
we require that there is a working subspace in the pcec that has higher probability for 
being a positive example than the subspace from which the cec originated. Furthermore 
this subspace has to be consistent with the whole sequence of cecs stored in the rule. 
Only then an update is performed. This is done by replacing the conditions of the cecs 
with the conditions of the working subspace with the highest probability. 
Consistency in the sequence requires that the changes produced by previous cecs in the 
sequence as well as all the preconditions of posteriors cecs are contemplated in the 
situations where a cec should be applied. Additionally, changed affordance may require 
conditions that do not change by themselves but are nonetheless necessary for the 
execution of the cec. Those conditions should also be guaranteed. Thus, to update a cec 
in a rule, all the previous restrictions need to be verified. 
If the cec results are modified, the rule correction is simply performed by updating the 
rule preconditions and outcomes with the new added conditions. This is done following 
the procedure of rule generation but applied only to the modified parts. 
 

Outline of the Algorithm 

In this section we present the algorithm of the decision making system using a pseudo-
code.  
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Pseudo-code 
INIT system 

Define GOAL 

WHILE goal is not reached 

  { 

  IF PLAN found 

    { 

    Execute PLAN 

    } 

  ELSE (plan not found) 

    { 

    Teacher instructs actions 

    FOR each action instructed,  

      { 

      Execute action  

      GENERATE new pcec  

      GENERATE new cec from new pcec 

      APPEND new cec to LCECS 

      } 

    GENERATE RULES using LCECS 

    } (else if plan found) 

}(end while GOAL is not reached) 

Execute PLAN 
FOR each cec in PLAN 

  { 

  Execute action 

  IF surprise 

    { 

    STORE negative example 

    If necessity of promoting candidate subspace 

      { 

      PROMOTE best candidate subspace 

      GENERATE new candidate subspaces       

      CORRECT cec with promoted subspace 

      CORRECT rules containing cec 

      } 

    EXIT FOR (stop plan execution and replan) 

    } 

  ELSE (no surprise) 

    { 

    IF high uncertainty in the estimations  

       { 

STORE positive example 

} 

    } 

  } (end for) 

 
The learning module procedures are detailed in figure 2. To contextualize see that these 
procedures are those that take place inside the learning box in the schema of figure 1. 
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A) 

 

B) 

 

C) 

Figure 2. A) Learning when there is a surprise; B) Learning after action instructions; C) Learning after a successful 
execution of a cec. 

 

Conclusions 

The contribution of this work is an extension of the previous system presented in [5]. 
The general architecture of the previous system is maintained but there is a significant 
improvement in the process of learning cause-effects. In [5] the cause-effects were 
learned with the help of human explanations about relevant conditions that afford 
changes. Now this process is completely automatic permitting not only to learn of 
cause-effects without the help of the teacher but also to estimate the chances of 
producing the desired outcome for any set of conditions. Hence, the learning method 
could be now applied to stochastic and non-stationary environments. On the other hand, 
this probabilistic approach may constitute another step toward a possible formalization 
of the OAC: an object description is not restricted to a unique set of conditions but 
multiple set of conditions with different chances of affording the object functionality. 
Nevertheless, there are still many other pending issues to treat like the evaluation of the 
method in real scenarios and the automatic explorations of actions whenever the planner 
fails to find a plan. Other topics are the definition of a criterion for plan memorization 
into rules and the integration of the learning method with an advanced planner module.  
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