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1. Executive Summary

A central contribution of WP4.3 is to provide the high-level action representation and planning appara-
tus needed to support plan generation and execution in low-level robotics domains (WP1 and WP4.1) and
higher-level domains requiring language and communication (WP5). The attached UEDIN technical re-
port, Integrating Low-Level Robot/Vision with High-Level Planning and Sensing in PACO-PLUS, describes
ongoing integration work in support of this goal.

We investigate two robot domains from the planning-level point of view, as the basis for our integration
work: an object manipulation task in the UniKarl kitchen domain using the ARMAR robot platform [3, 2],
and an object stacking problem using SDU’s robot/vision system [14]. A high-level action representation
is developed for each integration scenario for the purpose of goal-directed planning, by abstracting the
capabilities of the robot and its working environment. Although different high-level action specifications
are required due to differences in the low-level functionality of the UniKarl and SDU robots, the core
representations are nevertheless similar.

High-level planning is provided by the PKS planner [18, 19], a state-of-the-art knowledge-level planner
which UEDIN is extending for use in robotic and linguistic domains (WP4 and WP5). Unlike traditional
planners, PKS constructs plans at the ‘“knowledge level”, by representing and reasoning about how the
planner’s (incomplete) knowledge state changes during plan generation. Actions are specified in a STRIPS-
like [9] manner in terms of their preconditions and effects. PKS is able to construct conditional plans with
sensing actions, and supports numerical reasoning, run-time variables [8], and features like functions that
arise in real-world planning scenarios. As such, the work reported in this deliverable centres around the
design of high-level action representations usable by PKS.

A common message-passing and control architecture is also presented to facilitate communication between
the various levels of the integrated system. Furthermore, we demonstrate how PKS’s ability to reason about
incomplete information and sensing actions can be interpreted and executed by the lower system levels.
Finally, we have reserved a role for possible mid-level processes (WP4.2) which could be incorporated into
our architecture in the future.

This document also briefly describes how a number of tasks being pursued by UEDIN as part of WP4
and WPS5 (e.g., plan execution monitoring, high-level action learning, and dialogue planning) relate to this
integration work.

Overall, this deliverable reports a number of significant developments:

e In conjunction with UniKarl, UEDIN has developed a high-level action representation supporting
some of the sophisticated capabilities of the ARMAR robot, including object manipulation with mul-
tiple grippers, movement between workspaces in the UniKarl kitchen, and relocation of objects awk-
wardly positioned for grasping. High-level plans can currently be built to advantage of such function-
ality in the UniKarl kitchen domain.

e The UEDIN message passing protocol and control architecture has been successfully transferred to
the UniKarl robot platform, demonstrating the generality of our current approach. Work is ongoing to
identify possible extensions to this architecture, to support additional features of the ARMAR system.

e As previously reported in WP4/WPS5, the early integration of the SDU robot/vision system with the
PKS planner has been completed, allowing simple linear plans and conditional plans with sensing
actions to be generated by the planner and executed on the robot platform. More recently, work has
progressed on the addition of a plan execution monitor into this architecture. This component will
also be incorporated into the UniKarl system in the future.
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e A role for a mid-level memory component has been identified within the control architecture, offering
the prospect of improved high-level plan specification through mid-level plan refinement.

e This work provides a complete theoretical path from continuous low-level representations to high-
level models suitable for planning and language (as required in WP5). The practical implementation
of these systems currently supports plan generation using the full action representation, and plan exe-
cution using a restricted subset of the representation in both the SDU and UniKarl robot environments.

A number of tasks remain open at the time of this report and constitute ongoing and future work:

e The plan execution monitor currently being built by UEDIN has not yet been tested on the integrated
UniKarl/UEDIN or SDU/UEDIN systems.

e We are continuing to investigate the role of probabilistic models in high-level plan generation and
monitoring processes. Since nondeterminacy will undoubtedly arise as the result of perception and
action at the robot/vision level, we are studying how best to utilise such information at the higher
control levels. One technique we are experimenting with is the use of rapid replanning [23] (in
conjunction with our plan execution monitor) which has been successfully applied by planners in the
probabilistic track of the International Planning Competition [6].

e Previous work [15] reported in WPS5 describes a mechanism for learning high-level STRIPS-style
actions effects from world state snapshots of the form produced by our control architecture. In con-
trast to previous approaches (e.g., [22, 11, 20, 16, 7]) our approach uses kernel perceptrons [1, 10]
combined with deictic referencing [16] to reduce the complexity of the learning task. (We believe
this technique will also allow our approach to scale.) Using existing components described in this
document we are now ready to complete the “learn-plan-execute” loop and integrate high-level action
learning with PKS. The resulting system will let us build plans using learnt action models and execute
generated plans in real robot environments. A preliminary description of this proposed work is given
in [17].

e We have focused on robot-planner integration in this report, with an emphasis on standard action
planning in PKS. Using an approach that applies modern planning techniques to problems in natural
language generation (e.g., [12, 4, 13, 5]), we will generalize our existing apparatus for ordinary action
planning to dialogue planning with speech acts. Although the theoretical work required to extend
PKS to support dialogue planning (WP5) within our integration architecture is complete [21], the
implementation of this approach is only partially complete.

Besides the connections to WP1, WP4, and WP5 mentioned above, this workpackage also has interactions
with other workpackages including WP2, WP3, WP7, and WPS.

2. Papers Associated with D4.3.5

[A] Integrating Low-Level Robot/Vision with High-Level Planning and Sensing in PACO-PLUS
Ronald Petrick, Christopher Geib, and Mark Steedman
Internal PACO-PLUS Technical Report, January 2009.

Abstract: This document describes UEDIN’s contribution to ongoing integration work
in PACO-PLUS, to link low-level robot platforms with high-level planning systems. We
investigate two robot domains from the planning-level point of view, as the basis for our
integration work: an object manipulation task in the UniKarl kitchen domain using the
ARMAR robot platform, and an object stacking problem using SDU’s robot/vision sys-
tem. A high-level action representation is developed for each integration scenario, for the
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purpose of goal-directed planning, by abstracting the capabilities of a robot and its work-
ing environment. We also present a common message-passing and control architecture to
facilitate communication in the integrated system. High-level planning is provided by the
PKS planner, which UEDIN is extending for use in robotic and linguistic domains. We
also briefly discuss a number of related integration tasks being pursued by UEDIN, such
as plan execution monitoring, high-level action learning, and dialogue planning. This doc-
ument describes components developed as part of WP4 to provide high-level support of
low-level continuous control systems, and forms the basic infrastructure needed to support
language and communication in WP5. It also forms part of the project-wide integration
work reported in WP1, with connections to WPS.
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Appendix A

Integrating Low-Level Robot/Vision with High-Level
Planning and Sensing in PACO-PLUS
Technical Report

Ronald Petrick,” Christopher Geib, and Mark Steedman
University of Edinburgh
2009-01-29

Abstract

This document describes UEDIN’s contribution to ongoing integration work in PACO-PLUS, to link
low-level robot platforms with high-level planning systems. We investigate two robot domains from
the planning-level point of view, as the basis for our integration work: an object manipulation task in
the UniKarl kitchen domain using the ARMAR robot platform, and an object stacking problem using
SDU’s robot/vision system. A high-level action representation is developed for each integration
scenario, for the purpose of goal-directed planning, by abstracting the capabilities of a robot and
its working environment. We also present a common message-passing and control architecture
to facilitate communication in the integrated system. High-level planning is provided by the PKS
planner, which UEDIN is extending for use in robotic and linguistic domains. We also briefly discuss
a number of related integration tasks being pursued by UEDIN, such as plan execution monitoring,
high-level action learning, and dialogue planning. This document describes components developed
as part of WP4 to provide high-level support of low-level continuous control systems, and forms the
basic infrastructure needed to support language and communication in WP5. It also forms part of
the project-wide integration work reported in WP1, with connections to WPS.

Revision history

2009-01-29 : This report presents a status update on UEDIN’s integration work, extending and
replacing two previous UEDIN technical reports: A Scenario for Integrating Low-
Level Robot/Vision, Mid-Level Memory, and High-Level Planning with Sensing
(2008-07-20) and A Scenario for Integrating Low-Level Robot/Vision and High-
Level Planning with Sensing (2008-05-30).

*Contact: rpetrick@inf.ed.ac.uk
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1 Introduction

In this document we describe the state of integration work designed to link low-level
robot systems with high-level planning components as part of WP4. This work forms
part of the project-wide integration work reported in D1.1.2, and is connected to WPS.

We focus on two robot domains here, as the basis for our integration tasks: an object
manipulation task in the UniKarl kitchen domain using the ARMAR robot platform
[Asfour et al., 2006, 2008], and an object stacking problem using SDU’s robot/vision
system [Kraft et al., 2008]. In this document we will discuss UEDIN’s contribution to
ongoing integration efforts, from the point of view of the planning task and required
high-level representation in these scenarios.

High-level planning capabilities are supplied by the PKS planner [Petrick and Bacchus,
2002, 2004], which UEDIN is extending for use in robotic and linguistic domains as
part of WP4 and WP5. PKS is a state-of-the-art knowledge-level planner that constructs
plans in the presence of incomplete information. Unlike traditional planners, PKS builds
plans at the “knowledge level”, by representing and reasoning about how the planner’s
knowledge state changes during plan generation. Actions are specified in a STRIPS-like
[Fikes and Nilsson, 1971] manner in terms of action preconditions (state properties that
must be true before an action can be executed) and action effects (the changes the action
makes to properties of the state). PKS is able to construct conditional plans with sensing
actions, and supports numerical reasoning, run-time variables [Etzioni et al., 1992], and
features like functions that arise in real-world planning scenarios.

Like most Al planners, PKS operates best in discrete, symbolic state spaces described us-
ing logical languages. As a result, integration work between UEDIN and UniKarl/SDU
has centred around the design of high-level action representations that abstract the ca-
pabilities of a robot and its working environment for goal-directed planning. Integra-
tion also requires the ability to communicate information between system components.
To this end, UEDIN has developed a socket communication library and message pass-
ing protocol (WP4) that facilitates the exchange of messages between the planner and
lower-level system components.

Early integration efforts have established a link between SDU’s robot/vision system and
UEDIN’s high-level planning components. More recently, we have focused on combin-
ing the high-level planner with UniKarl’s ARMAR robot platform. Although differences
between the UniKarl and SDU systems require different high-level action representa-
tions, the “core” concepts in each representation are similar, and the communication
architecture is unchanged across platforms. We have also reserved a role for possible
mid-level processes which could be incorporated into our architecture in the future.

In the remainder of this document we describe the high-level planning representation
developed for each integration scenario, and the associated message-passing and con-
trol architecture. In Section 2, we discuss UEDIN’s integration work with UniKarl. In
Section 3, we focus on the SDU integration domain. In Section 4, we describe possible
extensions to our current action representations. In Section 5, we introduce the current
specification of the message passing protocol and communication architecture. In Sec-
tion 6, we briefly discuss a number of related integration tasks being investigated by
UEDIN as part of WP4 and WP5, including plan execution monitoring, action learning,
and dialogue planning. Finally, in Section 7 we mention future directions for this work.

Integrating low-level robot/vision with high-level planning and sensing in PACO-PLUS 4
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2 Object Manipulation in a Kitchen Domain (UniKarl/UEDIN Integration)

In this section we describe the state of ongoing integration work to link UEDIN’s high-
level planning components with UniKarl’s ARMAR robot platform [Asfour et al., 20006,
2008]. We primarily focus on the action representation used to support planning in the
UniKarl robot domain, and the kinds of plans we can currently build in this environment.

Our work centres around modelling the tasks that the ARMAR robot can perform within
the UniKarl kitchen environment (previously described as part of WP1 and WP8). This
domain is a real-world kitchen with commonplace objects and appliances (e.g., cereal
boxes, cups, plates, fridge, stove, etc.). The kitchen is divided into a number of dis-
crete workspaces (e.g., sideboard, cupboard, dishwasher, etc.), each of which support a
range of different activities and challenges for the robot. At an abstract level, the tasks
mainly involve manipulating the set of objects available in the domain, which may re-
quire moving between the workspaces (e.g., the robot may have the task of bringing a
juice container from the fridge to the sideboard).

The high-level representation must accurately model the dynamics of the robot’s inter-
action with the kitchen environment in order to enable directed, goal-driven planning to
be performed. As a result, there are a number of interesting complexities that must be
considered. For instance, both the robot and certain kitchen objects can move between
workspaces. Some objects can also be contained within other objects. Moreover, the
robot has multiple gripper hands and must decide which gripper it should use to manip-
ulate an object; due to the geography of the kitchen and the hardware limitations of the
robot, some objects require that a particular hand be used. The action specification must
also encode the robot’s ability to upright toppled objects or nudge flat objects to the edge
of a surface before grasping. As future work, we will also consider the situation where
the robot has incomplete information about the location of certain objects in the kitchen
and must therefore actively sense the world to find them.

Typically, we will use our domain representation to build plans that direct the robot to
relocate objects in the kitchen. For instance, the robot may be given the goal of clearing
all dirty dishes to the dishwasher, or collecting the ingredients needed to make breakfast.
As a result, our representation must be expressive enough to support such high-level
tasks, while permitting efficient planning in a real-world setting.

2.1 High-level domain description

Constants

To encode the above scenario, we formally define the sets of actions and properties we
require for the high-level planning domain. Our focus will be on building a STRIPS-
style representation [Fikes and Nilsson, 1971] that can be used with the PKS planner
[Petrick and Bacchus, 2002, 2004].

We begin by defining a list of special constants which denote certain aspects of our
domain, such as valid workspace locations, gripper hands, and kitchen objects. In par-
ticular, we make use of the following constants:

o Workspaces: cupboard, dishwasher, fridge, sideboard, stove,
e Gripper hands: 1lefthand, righthand,

e Objects: applejuice, calgonitsalt, graninijuice, measuringcup,
ricebox, vitaliscereal.

Integrating low-level robot/vision with high-level planning and sensing in PACO-PLUS 5
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Constants act as labels that let us reference designated objects within our representation
and generated plans. In this case, we define five discrete workspaces in the kitchen,
two gripper hands, and a set of six objects. Besides the special objects listed above, the
kitchen also contains a set of cups and plates, denoted by constants of the form cupl,
cup2, ..., cupN and platel, plate2, ..., platel, respectively. Some of the defined
constants also serve a dual purpose in our representation. For instance, the workspace lo-
cations also denote objects that can be manipulated in certain ways (e.g., the dishwasher
can be opened and closed). The constant list can easily be extended if new objects are
added to the domain.

Actions The set of available high-level actions is shown at the top of Table 1. All of these actions
are considered to be ordinary “physical” planning actions with effects that change the
state of the world. These actions correspond to (sets of) low-level motor programs that
the robot can execute in the domain. In our current domain specification, we do not con-
sider high-level “sensing” actions that enable the planner to direct the robot to observe
and return certain information about the state of the world. (The robot is assumed to have
its normal low-level sensors which provide it with world-level information, however.)

High-level actions divide the set of object manipulation tasks into context-dependent
operations. For instance, grasp can be used to pick up objects from the centre of
flat surfaces like the sideboard, while grasp-fromEdge is used to pick up (flat) ob-
jects from the edge of a surface. The remove-from action is used to take objects out
of other objects like the fridge. Once the robot is holding an object it can transfer it
between hands using the pass-object action. Actions also exist for placing objects
onto surfaces (put-down) or into other objects (put-in). Certain objects can be repo-
sitioned to enable grasping. For example, flat objects can be moved to the edge of a
surface (nudge-toEdge) and “toppled” objects can be placed in an upright position
(place-upright). The task of opening objects is also divided into multiple actions.
For instance, open is used to open objects that require a single-handed operation (e.g.,
opening the cupboard) while open-partial and open-complete allow a more com-
plex, two-step opening procedure (e.g., opening the fridge requires the robot to switch
hands halfway through the process). Objects can be closed in a single step using the
close action. Finally, the robot is able to move between workspaces in the kitchen.

All of the above actions are parametrized with variables denoting objects, locations, and
gripper hands. During planning, these variables are replaced with constants to produce
specific action instances. It is these action instances that will ultimately be passed to
the robot and converted into low-level motor programs for execution in the real world.
We note that many of these actions are object centric and modelled with a high degree
of abstraction: we do not provide plan-level actions that specify 3D spatial coordinates,
joint angles, or similar real-valued parameters. Details of the actual execution of these
actions are left to the robot controller. (E.g., grasp does not specify the gripper pose that
should be used to pick up an object, nor the spatial coordinates of the object’s location.)

Properties High-level properties (predicates and functions) model features of the world, robot, and
domain objects, and correspond to abstract versions of information available at the robot
level. High-level properties are typically formed by combining information from mul-
tiple low-level sensors in particular ways, and packaging that information into a logical
form. Like actions, high-level properties can be parametrized and instantiated by defined
constants.

Integrating low-level robot/vision with high-level planning and sensing in PACO-PLUS 6
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Actions

close(?1,?h)
grasp(?o0,?1,7?h)
grasp-fromEdge(?0,?1,?h)
move(?11,712)
nudge-toEdge(?0,7?71,?h)
open(?1,?h)
open-partial (?1,7?h)
open-complete(?1,?h)
pass-object(?0,?hl,?h2)
place-upright(?o0,?1,?h)
put-down(?0,?1,?h)
put-in(?o0,?1,7?h)

remove-from(?o0,?1,?h)

Close 7?1 with gripper 7h.

Grasp object 70 from 71 using gripper ?h.

Grasp object 7o from the edge of ?1 using gripper 7h.
Move the robot from location 7?11 to location ?12.
Nudge flat object 70 to the edge of 7?1 using gripper ?h.
Open 7?1 with gripper ?h.

Partially open ?1 with gripper 7h.

Finish opening ?1 with gripper 7h.

Pass object 7o from gripper ?hl to ?h2.

Put object 70 upright at 71 using gripper 7h.

Put object ?0 down at ?1 using gripper 7h.

Put object 70 into ?1 using gripper 7h.

Remove object 7o from ?1 using gripper 7h.

Properties

atEdge(?0)
flat(?0)
gripperEmpty(?h)
hand (?h)
inGripper(?o,?h)
location(?1)
object(?0)
objLocation(?0,71)
objOpen(?0)
objPartialOpen(?0)
robotLocation = 71

toppled(?0)

A predicate indicating that object 70 is at the edge of a surface.
A predicate indicating that object ?o is flat.

A predicate indicating that gripper ?h is empty.

A predicate indicating that ?h is a valid gripper hand.

A predicate indicating that object 7o is in gripper ?h.

A predicate indicating that ?1 is a valid location in the kitchen.
A predicate indicating that 70 is a valid object in the domain.
A predicate indicating that object 7o is at location ?1.

A predicate indicating that the door of object ?0 is fully open.
A predicate indicating that the door of ?o is partially open.

A function indicating that the robot is at location ?1.

A predicate indicating that object 70 is in a toppled state.

Table 1: High-level actions and properties in the kitchen domain

Integrating low-level robot/vision with high-level planning and sensing in PACO-PLUS
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The high-level properties in the kitchen domain are shown at the bottom of Table 1.
These properties capture the high-level dynamics of the world while leaving certain
lower-level properties to the robot system (e.g., 3D coordinates, gripper angles, etc.).
For instance, robotLocation denotes the location of the robot in the kitchen and
objLocation models object locations, in terms of the location constants defined above,
rather than spatial coordinates. The atEdge property indicates an object is at the edge
of a particular surface. The grippers’ states are modelled by two properties: inGripper
means that a particular object is in one of the robot’s grippers, while gripperEmpty
means that the gripper is empty. Object openness is represented by two properties
that track whether an object is partially open (objPartialOpen) or completely open
(objOpen). Certain object features are also captured in a binary way. For instance, ob-
jects may be flat or toppled. Finally, location, object, and hand are special “type”
predicates that map the range of constants into particular classes, letting us restrict the
constants that can be instantiated for a given parameter.

2.2 Representing actions for planning

Using the above constants, actions, and properties we can write planning operators for
the actions we require. Our current domain encoding is given in Table 2. These actions
are formalized for use with the PKS planner, however, we have simplified the syntax
here. We note that the & and | operators in certain action preconditions correspond
to conjunction and disjunction operations, respectively. Action effects are defined in
terms of the changes they make to the planner’s knowledge state, and so references to
Ky denote an update to a particular PKS database used to model its knowledge of world
facts (similar to a standard STRIPS database).

Restrictions Due to the physical layout of the kitchen environment and current hardware limitations
and  of the ARMAR robot, our high-level actions encode a number of constraints which limit
limitations  hejr operation. For instance, the close action can be used to close the cupboard, dish-
washer, or fridge, however the robot’s right gripper must be used to close the cupboard
and dishwasher; the left gripper must be used to close the fridge. Likewise, the open
action must be used to open the cupboard and dishwasher, while open-partial and
open-complete must be used to open the fridge. Similar types of constraints exist
for other actions in our representation. There are also constraints still under discussion
that haven’t yet been encoded in our current representation (e.g., can flat objects be in
a toppled state? Does the robot need to slide a plate to the edge of the cupboard before
removing it?). While some of these restrictions may be lifted in the future, others are

necessary for modelling the correct operation of the robot.

We also note that this action representation is preliminary and our encoding may be
extended in the future to accommodate new actions or properties. For instance, we
are considering the addition of two high-level sensing actions: an action that checks a
workspace for specific objects, and an action the determines whether an object is in a
suitable orientation for grasping or stacking. More discussions are needed with UniKarl
to properly define such actions.

Integrating low-level robot/vision with high-level planning and sensing in PACO-PLUS 8
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Actions Preconditions Effects
close(?11,7?h) ((?1l=cupboard & ?h=righthand) | del(K;,objOpen(?1))
(?1=dishwasher & ?h=righthand) | del (K;,objPartialOpen(?1))

(?1l=fridge & ?h=lefthand))
robotLocation=71
(objOpen(?1l) | objPartialOpen(?1)

gripperEmpty(?h)

grasp(?x,?71,7?h) object(?x) add(K;, inGripper(?x,7h))
(?l=sideboard | ?1l=stove) del(K;,gripperEmpty(?h))
hand(?h) del(K;,objLocation(?x,71))
—-flat(?x)
—toppled(?x)

robotLocation=71
objLocation(?x,?1)

gripperEmpty(?h)

grasp-fromEdge(?x,?1,?h) object(?x) add(K;, inGripper(?x,?h))
(?1=sideboard | ?l=stove) del (Ky,gripperEmpty(?h))
hand(?h) del(K;,objLocation(?x,71))
flat(?x) del(K;,atEdge(?x))
atEdge(?x)

robotLocation=71
objLocation(?x,7?71)
gripperEmpty(?h)

move(?11,712) location(?11) add (K, robotLocation=712)
location(?12)
711 # 712
robotLocation=711

nudge-toEdge(?x,71,?h) object(?x) add(K;,atEdge(?x))
(?1=sideboard | ?l=stove)
hand(?h)
flat(?x)
—-atEdge(?x)
robotLocation=71
objLocation(?x,?1)
gripperEmpty(?h)

open(?1,?h) (?1=cupboard | ?l=dishwasher) add(K;,objOpen(?1))
?h=righthand
robotLocation=71
—0objOpen(?1)
gripperEmpty(?h)

open-partial(?1,?h) ?1=fridge add(K;,objPartialOpen(?1))
?h=lefthand
robotLocation=71
-0objOpen(?1)
—-objPartialOpen(?1)
gripperEmpty(?h)

Continued on next page. ..
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Actions

Preconditions

Effects

open-complete(?1,?h)

?l=fridge
?h=righthand
robotLocation=71
-0objOpen(?1)
objPartialOpen(?1)
gripperEmpty(?h)

add(Ky,objOpen(?1))
del (K;,objPartialOpen(?1))

pass-object(?x,?hl,?h2)

object(?x)
hand(?h1)
hand(?h2)

?hl # ?h2
inGripper(?x,?hl)
gripperEmpty(?h2)

add(Ky,gripperEmpty(?h1))
add(K;, inGripper(?x,7h2))
del (K, gripperEmpty(?h2))
del (K;,inGripper(?x,7hl))

place-upright(?x,?1,?h)

object(?x)
location(?1)
hand(?h)
toppled(?x)
robotLocation=71
objLocation(?x,?1)
gripperEmpty(?h)

del (K, toppled(?x))

put-down(?x,?1,?h)

object(?x)

(?1=sideboard | ?l=stove)
hand(?h)

robotLocation=71
inGripper(?x,?h)

add(Ky, gripperEmpty(?h))
add(Ky,objLocation(?x,?71))
del (K;,inGripper(?x,?h))

put-in(?x,?1,7?h)

object(?x)

((?1=cupboard & hand(?h)) |
(?1=dishwasher & ?h=righthand) |
(?1=fridge & ?h=lefthand))

robotLocation=71

objOpen(?1)

inGripper(?x, ?h)

add(Ky,gripperEmpty(?h))
add(Ky,objLocation(?x,?71))
del (K;,inGripper(?x,?h))

remove-from(?x,?1,?h)

object(?x)
((?1=cupboard & hand(?h)) |
(?1=fridge & ?h=lefthand))
robotLocation=71
objOpen(?1)
objLocation(?x,?1)
—-toppled(?x)
gripperEmpty(?h)

add(Ky, inGripper(?x,?h))
del (K, gripperEmpty(?h))
del (K;,objLocation(?x,71))

Table 2: Representation of high-level actions in the kitchen domain

Integrating low-level robot/vision with high-level planning and sensing in PACO-PLUS
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2.3 Example plans

Common

In this section we give three examples of plans we can currently generate in the kitchen
domain using PKS and the above action descriptions.

In each example we consider a scenario with only 3 objects: the vitalis cereal, the apple

initial juice, and a plate. Initially, all the objects and the robot are located at the sideboard.

conditions

The plate is considered to be a flat object and the apple juice box is in a toppled state.
The cupboard, dishwasher, and fridge doors are all closed. Thus, we have the following
common initial conditions:

Objects names: vitaliscereal, applejuice, platel,

Initial object locations: objLocation(vitaliscereal, sideboard),
objLocation(applejuice,sideboard), objLocation(platel, sideboard),

Initial robot location: robotLocation = sideboard,

Object properties: flat(platel), toppled(applejuice).

In each example we consider the goal of returning particular objects to different locations
in the kitchen: the vitalis cereal to the cupboard, the plate to the dishwasher, and the
apple juice to the fridge. The plan in each case must also ensure that any objects opened
should be closed again by the end of the plan. Since our current action representation
does not include sensing actions, the resulting plans will be linear plans, i.e., simple
sequences of actions.

2.3.1 Example 1

Goal: The vitaliscereal should be in the cupboard.

Plan

grasp(vitaliscereal,sideboard,lefthand)
move (sideboard, cupboard)
open(cupboard, righthand)
put-in(vitaliscereal, cupboard,lefthand)
close(cupboard, righthand)

In this case, the object manipulation is straightforward. The plan directs the robot to
pick up the vitalis cereal with its left gripper, move to the cupboard, open the cupboard
door with its right gripper, place the cereal in the cupboard, and close the door.

Integrating low-level robot/vision with high-level planning and sensing in PACO-PLUS 11
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2.3.2 Example 2

Goal: platel should be in the dishwasher.

Plan

nudge-toEdge(platel,sideboard,lefthand)
grasp-fromEdge(platel,sideboard, lefthand)
move (sideboard, dishwasher)
open(dishwasher,righthand)
pass-object(platel,lefthand,righthand)
put-in(platel,dishwasher,righthand)
close(dishwasher,righthand)

Since platel is a flat object, the plan first directs the robot to nudge the object to the
edge of the table before grasping it with its left hand. The robot can then move to the
dishwasher and open it with its right hand. In this case, the robot must pass the plate
between its hands and put it into the dishwasher using its right hand. (This behaviour
results from the restriction that ensures the robot only manipulates the dishwasher with
its right hand.) The plan finishes by directing the robot to close the dishwasher door.

2.3.3 Example 3

Goal: the applejuice should be in the fridge.

Plan

place-upright (applejuice, sideboard,lefthand)
grasp(applejuice,sideboard, righthand)

move (sideboard, fridge)

open-partial (fridge,lefthand)
pass-object(applejuice,righthand,lefthand)
open-complete(fridge,righthand)
put-in(applejuice, fridge,lefthand)
close(fridge,lefthand)

Since the apple juice is initially in a toppled state, the plan directs the robot to upright
the object before grasping it with its right hand and moving to the fridge. In this case,
opening the fridge is a two-step operation that begins with the robot’s left gripper and
finishes with the robot’s right gripper. In between, the robot must pass the apple juice
between its hands. Once the fridge is open, the plan directs the robot to put the apple
juice in the fridge and close the fridge to complete the plan.

We note that instead of considering the individual goals in the above examples, we could
have given the planner the more complex goal of performing all of the above tasks in a
single plan (i.e., “clean up the kitchen). One possible solution that PKS could produce
in this case is a plan that conjoins each of the above plan fragments with appropriate
move actions inserted, to return the robot to the sideboard to retrieve the next object.
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3 Object Stacking with Sensing (SDU/UEDIN Integration)

In this section we discuss a second planning domain, which combines UEDIN’s high-
level architecture with SDU’s cognitive vision robot platform [Kraft et al., 2008] (part of
WP4.1). While we have recently focused on integration between UniKarl and UEDIN
systems, our work with SDU is ongoing. In particular, we continue to extend our high-
level architecture and protocols—which were initially developed for use with SDU (and
have been successfully transferred to the UniKarl system). The more mature state of
integration between SDU and UEDIN provides us with an opportunity to develop and
experiment with new components (e.g., high-level sensing actions and plan execution
monitoring) before deploying them on the UniKarl platform. Furthermore, by working
with multiple robot systems we can better ensure we develop general techniques that can
be transferred to other platforms—a requirement we believe is essential for cognitive
architectures to be successful.

The testing domain we have developed with SDU is a simple object manipulation sce-
nario. We assume a fable with a number of objects that are graspable by the robot. We
consider situations with no more than 10 objects and, initially, only 1-3 objects. For
simplicity we assume that objects are generally cylindrical in shape but not necessarily
identical. In particular, each object can have a different radius which determines its size.
Objects may or may not be open containers which, together with object size, determines
whether or not we can stack objects inside other objects.

The goal of the scenario is to clear all open objects from the table, by removing them to
some designated location (e.g., a shelf, a corner of the table, etc.). The location may also
be restricted in some way as to force object stacking in order to successfully complete
the task. For instance, there might only be room for 2 objects to sit side by side on a
shelf, meaning all other objects would have to be appropriately stacked. The high-level
planner will typically have only incomplete information concerning the openness of ob-
jects and must therefore plan explicit sensing actions to determine whether a particular
object is open or not. Unlike ordinary physical actions which change the state of the
world, sensing actions typically return information about the world state without nec-
essarily changing it. Object openness plays two important roles in this scenario: as a
goal condition that determines which objects should be removed from the table, and as
a prerequisite for stacking operations.

This scenario also reserves a role for mid-level memory components (WP4.2) within
a testing environment that lets us investigate the interaction between all three levels of
the system. For example, consider a plan that includes a high-level sensing action to
determine the openness of an object. At the low level, the robot/vision system may be
able to ascertain whether an object is open or not by one of two means: it can poke an
object in order to verify its concavity, or it can focus the vision system on the object at a
higher level of resolution. A mid-level memory component might be able to make a more
informed choice between poking and focusing operations and, thus, could refine a high-
level plan before passing it to the low level. The robot/vision system must then interpret,
understand, and execute the plans generated and refined by the upper levels. Although
we are currently interested in establishing a direct connection between the robot/vision
system and planner, the opportunity remains for integrating mid-level components in the
future.
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SR

(a) Grasp Type A (b) Grasp Type B (c) Grasp Type C (d) Grasp Type D

Figure 1: Robot grasp types available to the planner

3.1 High-level domain description

Physical
actions

To encode the above scenario, we define a set of high-level actions and properties, as
described in Table 3. In contrast to the domain description of the previous section, our
representation will include both ordinary “physical” actions that change the state of the
world, and high-level “sensing” actions that observe the state of the world, but don’t
necessarily change it. Furthermore, the set of defined actions differs from that of the
UniKarl scenario (e.g., the UniKarl domain focuses on multi-handed object manipula-
tion while the SDU domain deals with multiple grasping options and object stacking).
Certain aspects of the domain representation, and the high-level control architecture, re-
main identical however. As in the previous domain, high-level properties and actions
not only form the basis of the planner’s formal domain representation but are related to
low-level features and motor programs.

In discussions with SDU we have agreed to model four types of grasping actions at the
planning level, as illustrated in Figure 1. These actions correspond to a subset of the
possible grasping options the robot is capable of performing. In general, these actions
exhibit the following behaviour:

o Grasp Type A: This action can only be used to grasp objects at the top of a stack, or
an empty object on the table. Objects must also satisfy a minimum and maximum
radius restriction.

e Grasp Type B: This action can only be used to grasp objects on the table that are
not part of a stack. Objects must also satisfy a minimum radius restriction.

o Grasp Type C: This action can only be used to grasp objects that aren’t contained
in other objects, i.e., the “outermost” object which must be on the table. Objects
must also satisfy a maximum radius restriction.

e Grasp Type D: This action can only be used to grasp objects that aren’t contained
in other objects, i.e., objects that are on the table. Objects must also satisfy a
maximum radius restriction. For simplicity, we will assume that objects stacked
within the object being grasped will not affect the grasp.

For the planner’s domain encoding it is necessary to subdivide Grasp Type A into two
separate actions, to avoid reasoning about conditional effects. The planner therefore has
five grasp actions available to it, corresponding to the four types of grasps available to
the robot. (For the purposes of the sample plans in this document we only require Grasp
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Types A and D.) Each grasping action takes a single argument, ?x, denoting the label of
an object. We have agreed that each object in the world will be designated by a string of
the form objN, where N is a non-negative integer, e.g., obj42.

We have also encoded four actions for moving and manipulating objects when success-
fully grasped (i.e., the “put” actions in Table 3). Each manipulation action is object
centric and modelled with a high degree of abstraction. For instance, we do not pro-
vide plan-level actions that specify 3D spatial coordinates, joint angles, or similar real-
valued parameters. The putAway action is particularly generic and should be consid-
ered a placeholder for a more complex (possibly predefined) operation that clears an
object from the table to its final destination location. For the purpose of this docu-
ment we will assume that objects are put away onto a shelf. We also note that both
putInto-objOnTable and putInto-stack actions denote stacking operations which
will have as a prerequisite the property that objects can only be stacked into open objects.

Sensing The high-level representation also includes a single sensing action, sense-open(?x).

actions At the planning level, this action is modelled as an information gathering or knowledge-
producing action that provides the planner with information about the openness of an
object. The high-level description of this action does not, however, prescribe how the
robot/vision system should actually obtain this information. For instance, a sense-open
action could potentially be executed at the low level as a poke operation which tests an
object’s concavity, or a focus operation which directs the vision system to study an object
at a higher resolution. (A mid-level memory process could also potentially mediate
between these choices.) Currently, the robot/vision system uses a poking operation, but
this action is subject to change in the future.

Properties Table 3 also shows the current set of high-level properties we have defined for this do-
main. Our list includes a set of predicates and functions which we have agreed could rea-
sonably be provided to the planner from sensor information available at the robot/vision
level. These properties are subject to change, however, as our requirements evolve.

3.2 Representing actions for planning

Using the above properties we can write PKS operators for the actions in this domain.
For simplicity, we have made the following restrictions in our action encodings: (i) all
objects are initially assumed to be on the table, (ii) grasp type C will initially be omitted
(grasp type B is not required for our initial examples), and (iii) the put-onTable action
will initially be omitted since there are no initial object stacks.

Our current domain encoding is given in Table 4. These actions are formalized for use
with the PKS planner, however, we have simplified the syntax here. Although most
of the details of the actual action encodings can be ignored, we mention two important
points. First, each action operator is parametrized with a set of arguments that can denote
any object in the world. Thus, all of our actions are object centric. Second, our encoding
takes advantage of PKS’s ability to work with functions and simple numerical expres-
sions, which we include as part of the action preconditions and effects. For instance, the
radius of an object plays a role in determining whether or not it can be stacked inside an-
other object, and the minimum/maximum grasp values help determine whether or not a
particular grasp action can be applied. Our domain encoding can be extended as needed
to accommodate new actions or properties that may arise in the future.
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Actions

graspA-fromTable(?x)
graspA-fromTopOfStack(?x)
graspB-fromTable(?x)
graspC-fromTable(?x)
graspD-fromTable(?x)
put-onTable(?x)
putInto-objOnTable(?x,?y)

putInto-stack(?x,?y)

putAway (?x)

sense-open(?x)

Grasp object ?x from the table using Grasp Type A.

Grasp object ?x from the top of a stack using Grasp Type A.
Grasp object 7x from the table using Grasp Type B.

Grasp object 7x from the table using Grasp Type C.

Grasp object ?x from the table using Grasp Type D.

Put object ?x onto the table.

Put object ?x into object ?y, which is on the table.

Put object ?x into object ?y, which is at the top of a stack on
the table.
Put object ?x away.

Determine whether object ?x is open or not.

Properties

clear(?x)
graspAMinRadius = 7x
graspAMaxRadius = 7x
graspBMinRadius = 7x
graspCMaxRadius = ?x
graspDMaxRadius = 7x
gripperEmpty
inGripper(?x)

inStack(?x,?y)

isIn(?x,?y)
onShelf(?x)
onTable(?x)
open(?x)
radius(?x) = ?y

reachableA(?x)
reachableB(?x)
reachableC(?x)
reachableD(?x)

shelfSpace = 7x

A predicate indicating that no object is stacked in ?x.

Functions indicating the minimum/maximum radius restric-
tions for each grasp type.

A predicate describing whether the robot’s gripper is empty or
not.

A predicate indicating that the robot is holding object ?x in its
gripper.

A predicate indicating that object ?x is in a stack with object
?y at its base.

A predicate indicating that object ?x is stacked in object ?y.
A predicate indicating that object ?x is on the shelf.

A predicate indicating that object ?x is on the table.

A predicate indicating that object ?x is open.

A function indicating that the radius of object ?x is ?y.

Predicates indicating that object ?x is reachable by the gripper
using a particular grasp.

A function indicating that there are ?x empty shelf spaces.

Table 3: High-level actions and properties in the object stacking domain
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Actions Preconditions Effects

graspA-fromTable(?x) reachableA(?x) add(Ky, inGripper(?x))
clear(?x) del (K, gripperEmpty)
gripperEmpty del (K;,onTable(?x))
onTable(?x)

radius(?x) > graspAMinRadius
graspAMaxRadius > radius(?x)

graspA-fromTopOfStack(?x)

reachableA(?x)
clear(?x)
gripperEmpty
radius(?x) > graspAMinRadius
graspAMaxRadius > radius(?x)
(A7z).
inStack(?x,?7z)
onTable(?z)

add(Ky, inGripper(?x))

del (K, gripperEmpty)

V?y). isIn(?x,?y) =
del(K;,isIn(?x,?y))
add(Ky,clear(?y))

(¥ ?z). inStack(?x,?y) =
del (K;,inStack(?x,?7z))

graspB-fromTable(?x)

reachableB(?x)

clear(?x)

gripperEmpty

onTable(?x)

radius(?x) > graspBMinRadius

add(Ky, inGripper(?x))
del (K, gripperEmpty)
del (K;,onTable(?x))

reachableD(?x)

gripperEmpty

onTable(?x)

graspDMaxRadius > radius(?x)

add(K;, inGripper(?x))
del (K, gripperEmpty)
del (K;,onTable(?x))

add(Ky,gripperEmpty)
add(Ky,onTable(?x))
del(Ky,inGripper(?x))

putInto-objOnTable(?x,?y)

?x # 7?7y

inGripper(?x)

open(?y)

clear(?y)

onTable(?y)

radius(?y) > radius(?x)

add(Ky,gripperEmpty)

add(K;,isIn(?x,?y))

add(Ky, inStack(?x,?y))

del(K;,clear(?y))

del (K;,inGripper(?x))

(¥ ?w). inStack(?w,?x) =
del (K;,inStack(?w,?x))
add(Ky, inStack(?w,?y))

putInto-stack(?x,?y)

?x £ 7y

inGripper(?x)

open(?y)

clear(?y)

radius(?y) > radius(?x)

(A7z2).
inStack(?y,?z)
onTable(?z)

add(Ky,gripperEmpty)
add(Ky,isIn(?x,7?y))
del (K;,clear(?y))
del (K;,inGripper(?x))
(¥ ?z). inStack(?y,?z) =
add(Ky, inStack(?x,7?z))
(¥ ?w). inStack(?w,?x) =
del (K;,inStack(?w,?x))
add(Ky,inStack(?w,?z))

inGripper(?x)
shelfSpace > 0

add(Ky,onShelf(?x))
add(K;,gripperEmpty)

del (K;,inGripper(?x))
shelfSpace = shelfSpace - 1

sense-open(?x)

-K, (open(?x))
onTable(?x)

add (K, ,open(?x))

Table 4: Representation of high-level actions in the object stacking domain
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As with our planning domain in the previous section, the actions in Table 4 use a PKS-
style notation which is similar to STRIPS. However, unlike STRIPS, PKS uses multiple
databases as the basis for its representation. Thus, references to Ky and K,, in the “ef-
fects” section of an action denote two PKS databases: K is like a standard STRIPS
databases that stores the planner’s knowledge of facts, while K, is a specialized database
for storing the effects of sensing actions. Also, —K,open(?x) in the description of
sense-open is a knowledge precondition that ensures the planner does not include a
sensing action in a plan if it already knows the outcome of the sensing (i.e., if the plan-
ner already knows whether an object is open or not then it shouldn’t sense the object).

3.3 Example plans

Common
initial
conditions

Using the above action descriptions, we give three examples of planning problems we
can solve with PKS. In each example we consider a scenario with 2 objects. Each object
has a size as indicated by its radius. We also assume certain minimum/maximum values
for the grasps but these values don’t play a large role in these examples. (For simplicity
we use integer values in our examples however we also permit real-valued quantities.)

In each example we assume the following initial conditions:
o Objects names: objl, obj2,
e Object radii: radius(objl) = 1, radius(obj2) = 4,
o [nitial shelf space: shelfSpace = 1,
e [nitial configuration: all objects are on the table (no initial stacks).

The goal in each example is to clear the open objects from the table by placing them on a
shelf with limited space. In Example 1, the planner initially knows that both objects are
open and, thus, can build a /inear plan as a simple action sequence. In Examples 2 and 3,
sensing actions are required: in the second example, the planner knows that one object
is not open but does not know whether the second object is open or not; in the third
example, the planner does not know whether either object is open or not.

When PKS constructs a plan that includes sensing actions, it can build into the plan a set
of conditional branches for reasoning about the possible outcomes of a sensing opera-
tion. In particular, one branch is constructed for each possible value the sensed property
might have. The resulting plans in this case are structured as trees rather than simple
linear sequence of actions. In our examples, branch points are denoted by expressions
like “branch(open(objX)),” meaning “branch on the truth value of open(objX).” In
this scenario, we will only consider branches on binary properties, i.e., properties that
can be either true or false. A branch point is followed by two plan sections, labelled
as “K+” and “K-,” denoting two disjoint plan branches. The K+ branch indicates the
“knowledge positive” branch where open(objX) is assumed to be true. The K- branch
indicates the ‘“knowledge negative” branch where open(objX) is assumed to be false
(i.e., mopen(objX) is assumed to be true). Each branch can contain a sequence of
actions and possibly other branch points. A nil tag along a branch indicates that no
further operation takes place along that branch. At execution time, the information re-
turned from a sensing action will let the plan execution monitor decide which branch of
the plan it should follow at a branch point. The planner ensures that when conditional
plans are constructed, the goals are achieved along every branch of the plan.

Integrating low-level robot/vision with high-level planning and sensing in PACO-PLUS 18



Page 27 of 47

3.3.1 Example 1

Initial conditions: The planner initially knows open(obj1l) and open(obj2) are true.

Plan

graspA-fromTable(objl)
putInto-objOnTable(objl,0bj2)
graspD-fromTable(obj2)
putAway (obj2)

Since obj1l and obj2 are both initially known to be open the planner does not need
to include any sensing actions in the plan. The two objects can simply be stacked and
removed from the table.

3.3.2 Example 2

Initial conditions: The planner initially knows that —open(obj1) is true but does not
know the state of open(obj2).

Plan

sense-open(obj2)
branch(open(obj2))
K+:
graspA-fromTable(obj2)
putAway(obj2)

nil

Since the planner does not initially know whether obj2 is open or not it includes a
sense-open action in the plan. The plan then branches on the two possible outcomes of
open(obj2). If open(obj2) is true (the K+ branch) then obj2 is grasped and removed
from the table; if open(obj2) is false (the K- branch) then no further action is taken.
Since the planner initially knows that obj1 is not open, this object does not need to be
removed from the table.
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3.3.3 Example 3

Initial conditions: The planner does not initially know the state of open(obj1l) and
open(obj2).

Plan

sense-open(objl)
sense-open(obj2)

branch(open(obj2))

K+:
branch(open(objl1))
K+:

graspA-fromTable(obj1)
putInto-objOnTable(objl,0bj2)
graspD-fromTable(obj2)

putAway(obj2)

K-:
graspA-fromTable(obj2)
putAway(obj2)

K-:

branch(open(objl1))

K+:
graspA-fromTable(obj1)
putAway (objl)

K-:
nil

Since the planner does not initially know whether obj1 or obj2 is open, it includes
two sense-open actions in the plan. It then considers each possible outcome of these
actions by constructing a plan with four branches (an initial branch point, followed by a
second branch point along each of the top-level branches):

(i) Along the K+/K+ branch where open(obj2) and open(objl) are true, both ob-
jects are grasped and put away as in Example 1.

(i) Along the K+/K- branch where open(obj2) and —open(objl) are true, object
obj2 is grasped and put away.

(ii1)) Along the K-/K+ branch where —open(obj2) and open(objl) are true, object
obj1 is grasped and put away.

(iv) Along the K-/K- branch where —open(obj2) and —open(objl) are true, no fur-
ther action is taken.
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Actions

pullCloser(?x) Pull an object ?7x closer to the robot.

pullCloser-usingObject(?x,?y) Pull object ?x closer to the robot using object ?y.

relocate-forGrasp(?x) Relocate object ?x into a position that permits grasping.
Properties

extendsGripper(?x) A predicate indicating that object ?x can be used to extend the
robot’s gripper.

inExtendedRange (?x) A predicate indicating that object ?x is in the range of the
robot’s extended gripper.

inGraspablePosition(?x) A predicate indicating that object ?x is in a graspable position.

inRange (?x) A predicate indicating that object ?x is in the range of the

robot’s ordinary gripper.

Table 5: Additional high-level actions and properties

4 Experimental Extensions to the Integration Domains

We have also defined a set of actions and properties that are not part of our current
integration domains, but may be added to either domain at some point in the future.
These extensions are still preliminary and are subject to change.

4.1 Pulling and relocating actions

Table 5 describes three new actions and four new properties we are currently experiment-
ing with. These additions introduce a simple notion of object distance from the robot,
and the requirement that objects be within the robot’s reach before they can be manip-
ulated. The inRange predicate describes an object as being close enough to the robot
to be manipulated by its ordinary gripper, while inExtendedRange means an object is
outside the ordinary gripper range but reachable using a simple tool (e.g., a stick or hook)
that extends the gripper’s range. The pullCloser action enables the robot to move an
object closer to its workspace, with the effect that all objects stacked in that object are
also dragged closer. For instance, if the top object in a stack is not within the robot’s
range but the base object of the stack is, the robot can pull the stack of objects closer in
order to manipulate the top object. The pullCloser-usingObject action allows the
robot to use certain objects in the domain as a gripper extension, to move objects in its
“extended” range into its ordinary workspace. Finally, the relocate-forGrasp action
allows the robot to move an object into a better position in its workspace that facilitates
grasping (denoted by the predicate inGraspablePosition), for instance by nudging or
pushing the object. We note that inGraspablePosition does not necessarily indicate
that a grasp will actually succeed, but only that the positioning of the object (given its
shape, orientation, etc.) does not prevent a grasp attempt.

A preliminary encoding of these actions is given in Table 6, however, there are still
problems with our current representation. For instance, the definition of the action
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Actions Preconditions Effects

pullCloser(?x) inRange (?x) ~v7y).
gripperEmpty inStack(?y,?x)
onTable(?x) inExtendedRange (?y) =
Ary. add (K, inRange(?y))
7y # ?x del(K;,inExtendedRange(?y))
inStack(?y, ?x)
inExtendedRange (?y)

pullCloser-usingObject(?x,?y) ?X # 7y del(K;,inExtendedRange(?x))
inExtendedRange (?x) add(K;, inRange(?x))
clear(?x)
onTable(?x)
inGripper(?y)
extendsGripper(?y)

relocate-forGrasp(?x) inRange (?x) add(K;, inGraspablePosition(?x))
gripperEmpty
onTable(?x)
clear(?x)
—inGraspablePosition(?x)

Table 6: Representation of additional high-level actions

pullCloser-usingObject does not take into consideration how the “gripper exten-
sion” object has been grasped, only that it is in the gripper. One can imagine a more
sophisticated representation where a specific grasp type must be applied to use an object
“for pulling”. We also do not currently take into consideration the actual length of the
object used to extend the gripper, but instead only consider broad ranges. Furthermore,
the pullCloser does not mention how an object is actually moved towards the robot;
we must decide if this action requires a particular grasp type and whether an object
should be grasped with an ordinary grasp action before being pulled closer.

We also note that relocate-forGrasp and inGraspablePosition are quite abstract,
and are really generalised versions of actions like nudge-toEdge and properties like
atEdge from our first integration domain. While this particular action and predicate
combination may seem implausible as a robot-level reflex and sensor, we mention them
to highlight the complex learning problem that must take place to move from primitive
sensor data to an abstract action representation. In practice, such actions and properties
would more likely be applied in particular contexts (like nudge-toEdge for flat objects).

4.2 Example plans

To illustrate the use of the above actions and properties, we give three short examples of
planning problems we can solve. These examples assume that the actions in Table 6 have
been combined with the action specifications in Table 4 from the SDU/UEDIN robot
stacking scenario. (These actions can also be added to the UniKarl/UEDIN scenario
with few changes required.) In each example we consider a domain with four objects,
with the goal of removing all open objects from the table.
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4.2.1 Example 1

Initial conditions: The planner initially knows that obj1, obj2, and obj3 are all on the
table and open. Object obj4 is not open but can be used as a gripper extension. Object
obj3 is known to be outside the range of the gripper.

Plan

graspA-fromTable(obj2)

putAway (obj2)
graspD-fromTable(obj4)
pullCloser-usingObject(obj3,0bj4)
put-onTable(obj4)
graspA-fromTable(obj3)
putInto-objOnTable(obj3,0bjl)
graspD-fromTable(objl)
putAway(objl)

In this plan the robot first grasps and removes obj2 from the table. It then uses obj4
to pull obj3 into its working space, before stacking obj3 in objl and removing the
stacked objects from the table.

4.2.2 Example 2

Initial conditions: The planner initially knows that obj1, obj2, and obj3 are all open,
and that obj4 is not open. Objects obj1 and obj2 are initially on the table. Object obj3
is stacked in obj 1 but is outside the range of the gripper. Object obj 1 is within the range
of the gripper however it can only be grasped using grasp type B.

Plan

pullCloser(objl)
graspA-fromTopOfStack(obj3)
putInto-objOnTable(obj3,0bj2)
graspB-fromTable(objl)
putAway(objl)
graspD-fromTable(obj2)
putAway(obj2)

In this plan the robot first pulls obj1 closer, bringing obj3 into its working space. Be-
cause objl can only be grasped using grasp type B, the entire stack cannot simply be
removed to the shelf. Instead, the robot must unstack obj3, stack obj3 in obj2, and
then remove obj1 and obj2 from the table. Object obj4 plays no role in this plan.
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4.2.3 Example 3

Initial conditions: The planner initially knows that obj1, obj2, and obj3 are all on the
table and open. Object obj4 is not open but can be used as a gripper extension. Object
obj3 is known to be outside the range of the unextended gripper. Object obj2 is not in
a graspable position on the table.

Plan

graspA-fromTable(objl)
putAway(objl)
graspD-fromTable(obj4)
pullCloser-usingObject(obj3,0bj4)
put-onTable(obj4)
relocate-forGrasp(obj2)
graspA-fromTable(obj3)
putInto-objOnTable(obj3,0bj2)
graspD-fromTable(obj2)
putAway(obj2)

In this case, the plan directs the robot to remove objl from the table. It then uses
obj4 to pull obj3 into the range of the gripper, relocates obj2 to a better position that
facilitates grasping, then grasps obj3 and stacks it in obj2 before removing obj2 from
the table. (Alternatively, the planner could have constructed a plan that stacked obj3 in
obj1 before removing obj1 and obj2 from the table.)
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Figure 2: Flow of messages between the three system levels

S Message Passing Protocol and Control Architecture

5.1

In this section we describe a simple domain-independent message passing protocol and
control architecture for exchanging information between the low-level robot/vision, mid-
level memory, and high-level planning components in the system. We begin by defining
a set of messages that can be passed between the system levels. We then describe the
structure of the control architecture, and provide details of a communication library sup-
plied by UEDIN that implements our protocols. Both integration domains described in
this document currently use our message passing protocol and architecture which we
believe is sufficiently general to support future domains we may define.

Message definitions

We define a set of 10 messages that capture the interactions between the three levels
of the system. Each message is defined by its fype and conftent. A message’s type is
simply its name or label. Depending on the message type, a message may also contain
specific content or data to be sent. The message passing protocol we have defined is
currently based on a point-to-point model, where each message is sent by a particular
system component to another component. Moreover, the message set is designed in such
a way that messages are (generally) defined in send/receive pairs so that only certain
messages can be initiated by a “sending” level, with an appropriate response being sent
by the “receiving” level. The current set of defined messages is given in Table 7 and
the send/receive message pairs are given in Table 8. These lists may be expanded or
streamlined in the future.

5.2 Message passing control algorithms

The message passing protocol is initially driven by the robot/vision level of the system.
Because of the paired send/receive nature of our message set, the upper system levels
are forced to coordinate their operations in order to respond appropriately to lower-level
messages. Currently, communication only takes place between two “adjacent” levels
of the system, i.e., the robot and memory, or the memory and planner (see Figure 2).
This means that all communication between the robot and planner must flow through the
memory level, which typically acts as a forwarding service, but may also observe or re-
fine the flow of messages (see below). Because the message passing protocol is mainly
driven by the robot level, the memory and planning levels operate as message servers
that respond to message queries. This protocol also permits certain message exchanges
between the planner and memory levels that can interrupt the standard robot-driven pro-
cess. It is also worth noting that nothing in the implementation of the communication
architecture prevents us from expanding this protocol in the future to permit direct point-
to-point communication between any two components of the system.
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Message Type

Description

MSG_STATE_UPDATE

ACK_STATE_UPDATE

MSG_ACTION_REQUEST

ACK_ACTION_REQUEST

MSG_ACTION_SUBMIT

ACK_ACTION_SUBMIT

MSG_ACTION_STOPPED

ACK_ACTION_STOPPED

MSG_PLAN_REQUEST

MSG_PLAN_SUBMIT

Provide updated state information
Sender/Destination: Robot to Memory, or Memory to Planner
Content: World state specification

Acknowledge state update message
Sender/Destination: Planner to Memory, or Memory to Robot
Content: NONE

Request a new action
Sender/Destination: Robot to Memory, or Memory to Planner
Content: NONE

Acknowledge new action request for execution
Sender/Destination: Planner to Memory, or Memory to Robot
Content: NONE

Submit a new action for execution
Sender/Destination: Planner to Memory, or Memory to Robot
Content: Action specification

Acknowledge receipt of new action and start of action execution
Sender/Destination: Robot to Memory, or Memory to Planner
Content: NONE

Provide alert that execution of last submitted action has stopped
Sender/Destination: Robot to Memory, or Memory to Planner
Content: Action execution return value (1 = success or 0 = failure)

Acknowledge termination of last submitted action
Sender/Destination: Planner to Memory, or Memory to Robot
Content: NONE

Request entire plan from planner
Sender/Destination: Memory to Planner
Content: NONE

Submit a complete plan
Sender/Destination: Planner to Memory
Content: Plan specification

Table 7: Message types defined in the message passing protocol
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Message type sent Expected response

MSG_STATE_UPDATE ACK_STATE _UPDATE
MSG_ACTION_REQUEST ACK_ACTION_REQUEST
MSG_ACTION_SUBMIT ACK_ACTION_SUBMIT
MSG_ACTION_STOPPED ACK_ACTION_STOPPED
MSG_PLAN_REQUEST MSG_PLAN_SUBMIT

Table 8: Send/receive message pairs

5.2.1 Robot-level control loop

At the robot level, the message-processing control loop follows a simple structure where
the robot essentially drives the message-passing process and the upper levels of the sys-
tem respond to queries. The robot-level control loop defines a synchronous cycle where
a message is sent and its acknowledgement is received before the next message can be
sent. As a result, the robot only executes one action at a time and provides updates on
the state of the world before the next action begins.

At an abstract level, the interaction between the robot and the higher levels follows the
RobotLevelControlLoop pseudo code given in Figure 3(a). After an initial report on the
world state, the main communication cycle consists of an action request by the robot,
which is fulfilled by the upper levels (ultimately the planner), an indication from the
robot when the action has finished executing, followed by an update on the new state
of the world. Messages to and from the robot level all pass through the memory level.
Thus, a request made by the robot for a planning-level service (e.g., requesting a new
action) will ultimately reach the planner after being forwarded through the memory.

5.2.2  Memory-level control loop

Unlike the more tightly-regulated control loop of the robot level, communication at the
memory level is more loosely structured using a client-server architecture. In particular,
the memory is able to respond to requests from both the robot and the planner, as well
as initiate certain messages of its own. The pseudo code for the memory-level control
algorithm is given in Figure 3(b).

In most cases, the memory will initially act as a forwarding service that delivers mes-
sages from the robot to the planner, and messages from the planner to the robot. One
possible extension for future work is the receipt of MSG_ACTION_SUBMIT messages from
the planner. Before forwarding such messages, a mid-level component could inspect the
message contents to check for sensing actions to be refined (as shown in Figure 3(b)).
In the context of the SDU/UEDIN integration scenario described in this document, the
memory could then transform all sense-open actions into poke or focus operations be-
fore passing them on to the robot. A similar approach could also be used to refine grasp
operations specified by the planner. This protocol also supports a future bottom-up role
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for the memory, where the middle level “abstracts” subsymbolic robot-level information
into a symbolic form understandable by the planner.

The memory is also able to directly request information about the structure of a plan
from the planner. The planner will respond with a complete description of the current
plan, which may be a conditional plan with branches. The memory can then use this
information as needed, for instance to refine a plan before passing it to the robot level.

5.2.3 Planning-level control loop

The planning level control loop also operates in a client-server fashion, responding to
messages sent from the memory level (but typically originating from the robot level).
The planning level is responsible for constructing high-level plans and feeding the ac-
tions, one at a time, to the robot level through the memory level. The planner also re-
ceives world state updates from the robot (again, through the memory) as well as status
reports as to the success or failure of performed actions.

The memory level is also able to interact with the planner to request a complete de-
scription of the current plan. This part of the protocol provides the memory level with
greater information about a plan’s structure, which could be analyzed in order to help
direct future operations of the memory level, or refine actions destined for the robot.
Future versions of the communication protocol may also allow the planner to directly
“push” such plan information to the lower levels, for instance as a result of replanning
operations. The general planning-level control algorithm is given in Figure 3(c).

The message passing architecture we have outlined has a number of advantages. First,
the protocol clearly separates the operations of the three system levels and the interac-
tions between the levels, with the mid-level memory level acting as a form of mediator
or interpreter. For instance, this protocol allows for the possibility of different con-
tent formats for messages flowing between the lower and upper levels of the system
(e.g., messages exchanged between the robot and memory could contain subsymbolic
information, while messages exchanged between the memory and planner could contain
symbolic information). Also, future changes to the communication protocol involving
one pair of levels need not force changes to the interaction of another pair of levels. Fi-
nally, the message set has been designed to support more complex and flexible control
architectures which may arise in the future. For our initial integration tasks, however,
the existing process is more than sufficient.

5.3 Socket communication library and sample code

For ease of implementation we have defined a set of C++ classes for manipulating mes-
sage types and message contents. These classes work in conjunction with a lightweight
socket library (also written in C++) that we have developed for Linux, to facilitate com-
munication between system components.

At the code level, message types are chosen from a list of predefined enum types, and
message contents are simple C++ strings. Currently, the content of MSG_STATE UPDATE
messages must be a list of instantiated properties from the list of available domain prop-
erties that form the world state. Similarly, the content of MSG_ACTION_SUBMIT messages
must be a single instantiated action from the set of available domain actions. The content
of the MSG_PLAN_SUBMIT message will be a plan similar to the example plans we have
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Proc RobotLevelControlLoop
Send: MSG_STATE _UPDATE; Receive: ACK_STATE_UPDATE,;
while !zermination loop
Send: MSG_ACTION_REQUEST; Receive: ACK_ACTION_REQUEST;
Receive: MSG_ACTION_SUBMIT; Send: ACK_ACTION_SUBMIT;
Send: MSG_ACTION_STOPPED; Receive: ACK_ ACTION_STOPPED;
Send: MSG_STATE _UPDATE; Receive: ACK_STATE_UPDATE,
endLoop
endProc
(@

Proc MemoryLevelControlLoop
while !termination loop
choose
Send: MSG_PLAN_REQUEST;
or
Wait for message receive,
case MSG_ACTION_SUBMIT:
if action is sense-open then
Replace sense-open with poke or focus operation;
endIf
Forward message;
case MSG_PLAN_SUBMIT:
Update memory with received plan;
case all other message types:
Forward message;
endChoose
endLoop
endProc
(b)

Proc PlannerLevelControlLoop
while !termination loop
Wait for message receive;
case MSG_STATE_UPDATE:
Update world model,
Send: ACK_STATE UPDATE;
case MSG_ACTION_UPDATE:
Send: ACK_ACTION_REQUEST
Construct plan/get next action in plan;
Send: MSG_ACTION_SUBMIT; Receive: ACK_ACTION_SUBMIT,
case MSG_ACTION_STOPPED:
Process action success/failure;
Send: MSG_ACTION_SUBMIT;
case MSG_PLAN_REQUEST:
Construct plan/get entire plan;
Send: MSG_PLAN_SUBMIT,;
endLoop
endProc
(©

Figure 3: Message passing control algorithms
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seen earlier in the document, but encoded as a Prolog-style list (see Section 5.4 for an
example). A plan iterator class is provided for inspecting the structure of conditional
plans in this format. (For more details, refer to the sample code distributed with the
socket library.)

For initial testing purposes the system terminates a plan by having the planner send a
MSG_ACTION_SUBMIT message to the memory level in response to an action request, with
the string "EOP" as its content. The memory level then passes this message to the robot.
Both the memory and robot levels must then send a final ACK_ACTION_SUBMIT message
to the level above, at which point all system levels are free to terminate communication.
In the future, plan termination will force the suspension of the main control loop (i.e.,
the planner will not send an action) until a new goal is given to the planner and a new
plan is constructed.

The communication library is distributed with a set of sample programs that implement
the basic message passing protocol described in this document for the three levels of the
system. These programs focus solely on the communication interface, with little addi-
tional functionality. (For instance, the memory level program simply forwards messages
and always requests a complete plan after the first robot-level request for an action.) It
is hoped that these programs will serve as the basis for developing more sophisticated
modules that can simply be plugged into the communication architecture. A series of
pregenerated plans are also included with this software, to test the message exchange
process between the three levels.

Finally, we note that the current implemented version of the communication library de-
fines a set of experimental message types for introducing new objects, new properties,
and new actions into the planning-level domain description. We are still in the process
of extending the message passing protocol to include these new message types and, thus,
we have not included a discussion of these messages here. Such additions will appear in
a future version of this document.

Message passing example

To better understand the flow of messages between the three system levels, we consider
the scenario in Example 2 of Section 3.3, where the planner is given the goal of clearing
the open objects from a table and constructs the conditional plan:

Plan

sense-open(obj2)
branch(open(obj2))
K+:
graspA-fromTable(obj2)
putAway(obj2)

nil

Figure 4 shows the messages sent by all three levels during the execution of the action
sense-open(obj2) in this plan (i.e., a complete cycle of the robot-level control loop).

We note that the first message sent by the robot, MSG_STATE _UPDATE, provides the plan-
ner with its initial description of the world. We assume that upon initialization the
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robot/vision system will send a complete world description, as a bootstrapping action.
From the perspective of the planning system this message is no more than a particularly
large state update and requires no extra machinery.

Given an initial state description, the planner constructs a plan to achieve a given high-
level goal. The planner sends the actions in this plan to the robot/vision system one step
at a time, through the memory, in response to action requests. After the execution of each
action the robot/vision system reports an update of the world state back to the planner,
again, through the memory. In Figure 4 these updates are described in terms of state
changes, however, we have agreed that state updates will initially include a complete (or
as near as possible to complete) description of the new world state.

For many of the messages sent in this example, the memory level acts as a forwarding
service between the robot and the planner. (In the future the memory could take on
a more active role as a mediator or translator between the robot and planner.) One
notable exception is the occurrence of the MSG_ACTION_SUBMIT message. Since the
action specified in the content of this message is a sensing action, sense-open(obj2),
the example illustrates how the memory could refine this action by choosing between a
poke and a focus operation. In this case, focus(obj2) is chosen as the refined action
and the modified message is forwarded to the robot.

Figure 4 also illustrates the results of a MSG_PLAN_REQUEST message from the memory
to the planner. In this case, the planner responds with a plan of the form:

[sense-open(obj2),branch(open(obj2),
[graspA-fromTable(obj2) ,putAway(obj2)],[1)].

This plan corresponds to the complete conditional plan given above, encoded in a Prolog-
style list format for transmission using the communication library. (The communication
library provides a helper class for processing plans in this compact format.)

We note that according to the message passing protocol, MSG_PLAN_REQUEST messages
could be sent by the memory at other times during its control loop, or not at all, produc-
ing slightly different message orderings than those shown in Figure 4. (In the sample
code the memory sends a MSG_PLAN REQUEST after the first MSG_ACTION_SUBMIT mes-
sage is received.) Similarly, alternate message orderings—including messages sent in
parallel by different levels—could also arise since the robot, memory, and planner all
run as independent processes. (E.g., message 13 could be sent at the same time as mes-
sage 11, or even before it.) The implementation of the message passing protocol ensures
that such ordering differences do not lead to problems like deadlock, however.
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Robot-level messages

Memory-level messages

Planner-level messages

13.
14.
15.

16.
17.
18.
19.
20.
21.

22.
23.

MSG_STATE_UPDATE:

"onTable(objl),...,!clear(obj1)"

MSG_ACTION_REQUEST

ACK_ACTION_SUBMIT

MSG_ACTION_STOPPED:
nyn

MSG_STATE_UPDATE:
"open(obj2)"

(Forward to planner) MSG_STATE _UPDATE:
"onTable(objl),...,!clear(obj1)"

(Forward to robot) ACK_STATE UPDATE
(Forward to planner) MSG_ACTION REQUEST
(Forward to robot) ACK_ACTION_REQUEST
Refine sense-open(obj2) to focus(obj2)
(Forward to robot) MSG_ACTION_SUBMIT:

"focus(obj2)"
(Send to planner) MSG_PLAN_REQUEST

(Forward to planner) ACK_ACTION_SUBMIT
(Forward to planner) MSG_ACTION_STOPPED:
wyn

(Forward to robot) ACK_ACTION_STOPPED
(Forward to planner) MSG_STATE_UPDATE:
"open(obj2)"

(Forward to robot) ACK_STATE UPDATE

ACK_STATE_UPDATE

ACK_ACTION REQUEST

MSG_ACTION_SUBMIT:
"sense-open(obj2)"

MSG_PLAN_SUBMIT:
"[sense-open(obj2),
branch(open(obj2),
[graspA-fromTable(obj2),
putAway(obj2)1, [D1"

ACK_ACTION_STOPPED

ACK_STATE_UPDATE

Figure 4: Example of messages passed during the execution of sense-open(obj2)

6 Related High-Level Integration Work

In this section we briefly describe a number of related integration tasks that are currently
being investigated by UEDIN as part of WP4 and WPS5.

6.1 Plan execution monitoring

Although we are able to construct plans for the proposed integration scenarios, a second
high-level component is needed in order to monitor plan execution and control replan-
ning/resensing activities. As part of WP4, UEDIN is currently building a plan execu-
tion monitor that will be responsible for assessing both action failure and unexpected
state information that result from feedback provided to the planner from the execution
of planned actions at the robot level. The difference between predicted and actual states
will be used to decide between (i) continuing the execution of a plan, (ii) resensing activ-
ities that target a portion of a scene at a higher resolution to produce a more detailed state
report, and (iii) replanning from new/unexpected states. In particular, rapid replanning
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techniques used by planners such as FF-Replan [Yoon et al., 2007] have been success-
fully employed in domains such as those in the probabilistic track of the International
Planning Competition [Bryce and Buffet, 2008].

To aid in the implementation of (ii), the plan execution monitor will initially provide
the vision system with a list of the objects considered “relevant” to the execution of the
action that is reported to have failed, based on the high-level action description. Using
this information, the vision system could then target particular parts of the scene with
greater resolution in order to reevaluate the sensors that provide information about these
objects. This operation may lead to new information about the world state. We will
initially focus on implementing (i) and (iii), with (ii) considered as future work.

The plan execution monitor will also have the added task of managing the execution of
conditional plans that contain sensing actions like sense-open. When a sensing action
is ultimately executed at the robot level, the result of the sensing will be returned to the
planner as part of the standard state update cycle (see Section 5). When faced with a
conditional branch point in a plan, the plan execution monitor will make a decision as
to the correct plan branch it should execute, based on the current state information. If
such information is unavailable, for instance due to a failure at the robot/vision level,
resensing or replanning activities will be triggered as above. It is important to note that
the robot/vision system will never be aware of the conditional nature of a plan, and will
never receive a “branch” operation like those shown in the example plans. From the
point of view of the robot, it will only receive a sequential stream of actions. This will
also be the case for the memory level, except when a complete plan is requested. In such
situations a fully-specified conditional plan will be transmitted to the memory level.

Initially, we expect that most plans will fail early, and often, and that most monitoring
operations will trigger replanning activities. Our goal is to implement the basic frame-
work for the plan monitor in the near future, in order to evaluate its effectiveness on
plans being executed in the actual robot environment.

6.2 High-level action learning in robot domains

In previous work [Mourdo et al., 2008] reported in WP5, and included in deliverable
D5.1.2, we describe a mechanism for learning STRIPS-style actions effects from world
state snapshots of the form produced by the control architecture in Section 5.

Using machine learning techniques to learn action models is not a new idea. Prior ap-
proaches have applied a variety of techniques including inductive learning [Wang, 1995],
directed experimentation [Gil, 1994], logical inference [Shahaf and Amir, 2006], heuris-
tic search [Pasula et al., 2007], and support vector machines (SVMs) [Dogar et al., 2007].

Our approach differs from previous approaches. We use kernel perceptron learning [Aiz-
erman et al., 1964, Freund and Shapire, 1999], combined with deictic referencing [Pasula
et al., 2007] which reduces the complexity of our representation and, hence, the learning
problem. (We believe this technique will also allow our approach to scale.) Experi-
ments using data simulated from the SDU/UEDIN integration domain have shown our
approach to be quite efficient at learning action effects in this domain, resulting in high
quality models with low error rates. This work also illustrates how a high-level action
representation, usable by a planner like PKS, can be learnt (rather than preprogrammed)
from data generated through a robot’s interaction with the world.
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Our current focus is on completing the “learn-plan-execute” loop to integrate the high-
level action learner with the PKS planner, and to build plans using our learnt action
models. Rather than testing with simulated data, we would like to use real state data gen-
erated from the SDU/UEDIN domain and execute plans in the actual robot environment,
to investigate the quality and effectiveness of the learnt action models in real-world do-
mains. A preliminary description of this proposed work is given in [Petrick et al., 2008]
(and was previously included in D5.1.2).

6.3 Towards language and communication with dialogue planning

We have primarily focused on robot-planner integration in this document, with an em-
phasis on standard action planning. As outlined in the objectives of workpackage WPS5,
however, the mechanisms supporting the symbolic representation of actions and the an-
cillary planning apparatus will be generalised to language and communication. Our ap-
proach to achieving this goal is based on applying ordinary action planning techniques
to dialogue planning with speech acts.

The problem of planning conversational moves can be viewed as a problem of planning
with sensing or knowledge-producing actions (see, e.g., [Stone, 2000]). However, early
approaches to dialogue planning (e.g., [Perrault and Allen, 1980, Appelt, 1985]) suffered
as a result of inefficient planning techniques available at the time. Other approaches
to this problem have tended to segregate standard action planning and discourse plan-
ning, using specialized techniques to address the latter (e.g., [Lambert and Carberry,
1991, Traum and Allen, 1992, Green and Carberry, 1994, Young and Moore, 1994, Chu-
Carroll and Carberry, 1995, Matheson et al., 2000, Beun, 2001, Asher and Lascarides,
2003, Maudet, 2004]). More recently, there has been a renewed interest in applying plan-
ning to problems in natural language generation, including dialogue (e.g., [Koller and
Stone, 2007, Benotti, 2008, Koller and Petrick, 2008, Brenner and Kruijff-Korbayov4,
2008]) to take advantage of modern planning techniques.

Our work also builds on the idea that the task of planning dialogue moves can be treated
as an instance of planning with incomplete information and sensing. In prior work
[Steedman and Petrick, 2007], we describe a set of extensions needed to adapt the Linear
Dynamic Event Calculus (LDEC) [Steedman, 1997, 2002] to represent and reason about
dialogue, using insights from the PKS planner and a representational unit called a know!-
edge fluent [Demolombe and Pozos Parra, 2000]. By incorporating ideas from PKS to
the representation of dialogue acts in LDEC (our high-level symbolic representation of
OACs), we can demonstrate how our existing formalisms and system components can
be applied to the problem of planning mixed-initiative collaborative discourse.

We are currently in the process of implementing a series of extensions to PKS to enable
dialogue planning with communicative acts. Our existing planning and plan execution
mechanisms will remain fundamentally unchanged, meaning dialogue planning can be
viewed as an instance of the same basic mechanisms used for standard action planning.
Our extensions, however, will enable the planner to reason (in a limited sense) about
the beliefs of multiple agents, model certain linguistic notions like common ground, and
represent speech acts like “asking” and “telling”, all of which are required for successful
multi-agent discourse. For instance, Figure 5 shows an example of a possible two-agent
dialogue in the kitchen domain described in Section 2, where speech acts are encoded
as general STRIPS-style rules; we hope to generate dialogues similar to this with our
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Agent Dialogue STRIPS-encoded speech act

Robotl: Let’s make breakfast. [goal-propose(breakfast)]

Robot2: 1 don’t know how to make breakfast. [assert(—know(breakfast))

Robotl: To make breakfast we must bring the [explain(breakfast :- loc(cereal,sideboard) A
cereal and the milk to the sideboard. loc(milk,sideboard))]

Robot2: Is the cereal at the sideboard? [ask(loc(cereal,sideboard))]

Robotl: No. [tell(no)]

Robot2: Where is the cereal? [ask(loc(cereal, X))]

Robotl: The cereal is in the cupboard. [tell(loc(cereal ,cupboard))]

Robot2: Is the milk at the sideboard? [ask(loc(milk,sideboard))]

Robotl: No. [tell(no)]

Robot2: Where is the milk? [ask(loc(milk, X))]

Robotl: The milk is in the fridge. [tell(loc(milk,fridge))]

Robot2:  Okay. I suggest I go to the cupboard, [assert-plan(move(sideboard,cupboard),...]

pickup the cereal, bring it to the
sideboard, then go the fridge, pickup
the milk, and bring it to the sideboard.

Figure 5: A sample dialogue in the kitchen domain

planner once our extensions are complete. More details about the dialogue planning

component will be described in a future version of this document.

7 Discussion

In this document we described two high-level action representations enabling goal-
directed planning in low-level robot domains. While additional actions may be added to
these specifications in the future, based on the needs of particular robot platforms, we
believe that the basic action representations will remain relatively unchanged. A number

of important issues remain, however.

1. All high-level grasp operators abstract the task of grasping into single action steps.

We may extend the planner’s representation to provide “finer-grained” actions that
split the act of grasping into a sequence of steps like positionForGraspA(objl),
graspA-fromTable(objl), 1ift(obj1l). Such actions would provide more de-
tailed execution instructions to the robot system and, on failure, the robot system
could more accurately indicate to the planner the specific aspect of the grasp that
failed. Initially such sequences could be generated by simply “macro-expanding”
certain actions (like grasps) in a plan.

. The execution of the high-level sensing action sense-open requires the imple-

mentation of a robot-level test that determines the openness of a particular object
in the world. For instance, the robot could perform a “poke” operation that at-
tempts to determine the concavity of the object, or a more vision-based “focus”
operation to study the object at a higher resolution. The test should not be part of
the ordinary sensor report produced by the robot, but should instead be a special
demand-driven operation. As discussed earlier in the document, this may also be
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a good place for the inclusion of mid-level processes to guide the choice of re-
finement operations. We could also consider similar refinements for grasp actions
and generate plans with abstract actions like grasp(obj1), leaving the choice of
more specific robot-level actions like graspA(obj1) or graspD(obj1l) to lower
system levels.

3. There are a number of places where incomplete world state information can be
introduced into the system. Some of these are endemic to the interaction of a
resource bounded agent working in a real world setting. As a result, we must
examine the limitations of the system’s capabilities, as well as the traditional Al
assumption that we have complete models of the state changes resulting from
executed actions. This is an interesting area for future work and something we are
committed to looking at in detail. Initially, however, we will simply ensure that
our action models and state updates are complete and correct.

4. A more complex interaction between the robot, memory, and planning levels
might be desirable in the future. For instance, the planning level may require
the ability to terminate an action during its execution if it has an undesirable out-
come, or alert the memory about a replanning operation. This would require a
more asynchronous architecture, including state update messages from the robot
during action execution, as well as the ability to issue halt commands from the
planning level. We also see the possibility of a more comprehensive “bottom-up”
role for the memory level, as an abstraction component that mediates between the
robot/vision level and the high-level planner. Such extensions should not require
a significant reworking of the message passing protocol.

5. We also envision a more significant extension to the message passing protocol to
support the addition of new objects, properties, and actions (i.e., “the birth of an
object/property/action”) into the high-level planning representation as a result of
memory-level reasoning. Partial support for such messages already exists in the
socket library, however, future versions of the message passing protocol will more
fully specify these new message types.

6. Although the focus of our integration efforts is shifting towards the UniKarl kitchen
domain, which supports a more complex robot platform and real-world plan-
ning environment, we remain committed to ensuring our action descriptions, mes-
sage passing protocol, and communication library continue to support the SDU
robot/vision platform as needed for our ongoing integration tasks.
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