
26/2-2009 Page 1 of 18

IST-FP6-IP-027657 / PACO-PLUS

Last saved by: SDU Public

Project no.: 027657

Project full title: Perception, Action & Cognition through learning of
Object-Action Complexes

Project Acronym: PACO-PLUS

Deliverable no.: D4.1.3
Title of the deliverable: Technical report on generalization of af-

fordances across objects

Contractual Date of Delivery to the CEC: 31 January 2009
Actual Date of Delivery to the CEC: 26/2-2009
Organisation name of lead contractor for this deliverable: SDU
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1. Introduction

Affordances can be highly object dependent, as for example the learning and storage of succesful grasps of
specific objects. In this case, generalization will improve the ability to perform actions on those specific
objects. Cognitive systems are able to generalize across objects based on the experiences made on such spe-
cific objects. Both kinds of generalization, object specific and cross-object generalization, can be performed
by cycles of execution and learning as formulated in the OAC concept. In this deliverable, we describe the
representations on which such generalisation methods are based on in section 2 and we describe work on
the associated actions in section 3. The work described here have to be seen as sub–modules that become
combined in a cognitive architecture developped in the other WPs, mainly WP1.2, WP4.2 and WP4.3 (see
also Deliveralbe D1.2.2 and D4.3.5) .

Our visual representations (already introduced in former deliverables, see D4.1.1 and D4.1.3) provide rich
and structured information on which generalisation processes takes place. In the last year, we extended our
work on 3D structural relations. In this context, we encountered the problem that for a workable definition
of 3D relations the uncertainty in the reconstruction process needs to be taken more closely into account (see
section 2.1.1). This allowed for a significant progress in three aspects: First, we could stabilize the grasping
behaviour by having better estimates of the induced actions (see section 3.1.1). Second, it allowed for an
extension of the generic grasping behaviour to a part–based approach as outlined in section 3.1.1 and [C].
In addition and most importantly, it allowed for a representation of objects and scenes by their structural
relations in histograms of high level attributes and relations. In these histograms, structural similarities are
preserved in similarities of histogram intersections (see section 2.1.1). We anticipate, that these histograms
give way to the learning of part–action associations which we will persuit in the last year of the project.

Moreover, to apply previously stored knowledge that can be associated to an object, it is required to find
the pose of the object based on a learned representation. In the last year, we have developped a pose
estimation algorithm based on the autonomously extracted visual representations based on edge information
(see section 2.2, [F] and [1]). As a complementary mechanism, we describe in section 2.3 an approach which
supports the generation of hypotheses of object locations based on appearance-based visual representation.
The approach comprises visual search, attention and active guidance of the gaze of the Karlsruhe Humanoid
Head. While 3D information is crucial for the generalisation of affordances, the appearance-based part of the
representation assures a robust visual perception and provides mechanisms to restrict the structural analysis
of the scene to only salient regions (see also [M]).

We have also extended the edge based representations by surface based representations from which high
level features in terms of surface areas (as well as their underlying 3D structure) with their spatial relations
become stored in a graph (as described in section 2.1.2 and [D]). In this, a certain stability is induced by the
continuity of the action (in this case filling). Moreover, the representation allows for efficient comparison of
different instances of the same or different actions which we will address in the final year.

Based on the representations described in section 2, we can now associate actions to those. The actions we
are dealing with are positioned at different levels of the hierarchy and presuppose different levels of prior
knowledge as described in section 3. We refer to grasping (section 3.2 and 3.1) and non-prehensile actions
such as pushing (section 3.3) as well as high level action such as filling (section 3.4) and more general
object affordance relations (see section 3.5). Finally, we address rule-learning (section 3.6) where action
rules are encoded at the higher level of the architecture using symbolic descriptions of more generic actions
like grasping or pushing. Rules refer to the actions to be performed to produce changes in the object but not
to how they become performed, which is the task of lower levels of the architecture.

In the last year, we have made use of the structural relations provided by the visual representations (as
discussed in section 2) to extend the generic grasping behaviour not requiring any specific object knowledge
by learning (see section 3.1.1 and [K]). As a complementary strategy, surface information is used to trigger
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another grasping behaviour not requiring specific object knowledge based on the decompostion of objects
into 3D boxes (see section 3.1.2 and [I]).

An important step for the development of the final system has been the learning of grasping using prior
object knowledge which is described in section 3.2 and [E]. Based on the concept of grasp densities, we
are able to store grasping experiences in an efficient way. Although here the actual affordance is object
dependent, we expect for the final year to be able to extract more generic knowledge by learning visual parts
that share similar grasp properties across different objects. This way, a grasp affordance will be directly and
exclusively connected to the visual evidence that predicts its applicability, allowing for its generalization
across objects.

Figure 1: A sample 3D histogram of contour relations and the contours that created the certain bins of the
histogram. Note that the spheres represent the locations of histogram bins and the brightness and diameter
of these spheres are directly proportional to the value stored in the bins (a crowded bin is represented as a
big and brighter sphere). (a) 3D histogram. (b) Parts of the scene that created the bins shown in figure (a).

The learning of ’pushing’ as an example of a non-prehensive action is addressed in section 3.3 and [J].
Although right now the algorithm is object depdendent, we are currently extending the algorithm such
that it can be applied to arbitrary objects. Work on the learning of general object–action relations for the
action ’filling’ is described in section 3.4. In section 3.5 and [L], a generalization of object affordances

(a) (b) (c)

Figure 2: Grasp locations for different approaches. (a) Object to be grasped. (b) Grasps that are calculated
by using local features for different noise levels. (c) Grasps that are calculated by using contours for different
noise levels
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looking beyond the actions connectable to the interacting system (the robot hand) is outlined. In addition,
we consider actions in the sense of the perceptual system and processing, since different objects may afford
different processing techniques. As a main example, uniformly colored objects are well suited for the
edge-based grasp hypotheses generation from visual data (section 3.1.1), while textured objects are for the
surface-based grasp hypotheses generation (section 3.1.2).

Learning on the highest level of the processing hierarchy is described in section 3.6 and [A, B]. In this
section, a learning method is presented where the affordance of abstract action rules is learned: The system
learns the relevant attributes to successfully obtain changes over an object after the execution of an action.
The actions are described symbolically and reference one or more generic actions learned at lower layers of
the architecture. Action rules can encode any object-action affordance, as far as the objects and actions are
described symbolically.

This deliverable covers 5 journal publications [D, K, L, H, G] (some of them in the status of being submitted)
and 8 conference or workshop publications [C, F, E, I, M, J, A, B].

2. Object and Scene Representations

In this section, we describe work on object and scene representation in the context of WP4.1.

2.1 Structural Relations on Higher Level Entities

Our object representations contain rich structures information covering 2D and 3D information. This struc-
ture linked to actions and is used in the learning and generalization processes. In section 2.1.1, we describe
work on contour relations while in section 2.1.2, we describe work on surface relations.

2.1.1 Contour Relations in 3D

We have established a vision system in which contour relations (such as coplanarity, cocolority and distance)
have been computed (see D4.2). The aim is to code objects not only by their appearance but also by the
structural relations between higher level entities they are consisting of. Besides extending and stabilizing
these relations, we have established a method to code objects and scenes by means of histograms of these
relations. Figure 1 shows a 3D histograms of a sample scene. As shown in the figure, certain histogram
bins corresponds to specific object parts and this leads naturally to the learning of parts as higher level
constallations occuring frequently across objects.

We also computed the histogram intersections for different objects as an object identification task. As
shown in Table 1 we achieve a high robustness towards view changes and more importantly we can show
that structural similarities in the objects lead to high similarities on the histogram intersection (e.g., the
similarity between plate and pan).

An important issue while reasoning in 3D is to take into account the uncertainty of the reconstruction
process. In Figure 2, sample grasps for different random noise levels are shown. In Figure 2 (b), grasps are
calculated by using the local approach. The grasps that are calculated by using contours take into account
the uncertainty of the data for the same noise levels are shown in Figure 2 (c). As we see in the figure, even
though the best grasps have been chosen for the local approach, the global approach performs significantly
better.



IST-FP6-IP-027657 / PACO-PLUS

Page 6 of 18

Public

Table 1: Histogram intersections for different objects with different poses.

0.3008 0.0200 0.0290 0.2798 0.0347 0.1662 0.0920 0.0863 0.0280 0.1134

0.0041 0.2365 0.0383 0.0282 0.0051 0.1144 0.1088 0.0998 0.0000 0.0000

0.0021 0.0244 0.1449 0.0030 0.0051 0.0404 0.0000 0.0744 0.0495 0.0361

0.2219 0.0255 0.0001 0.4903 0.0081 0.0740 0.0534 0.0438 0.0022 0.1863

0.0240 0.0000 0.1262 0.0036 0.2935 0.0100 0.0038 0.0075 0.1671 0.1309

0.0233 0.1595 0.0234 0.0548 0.0102 0.1984 0.1097 0.0998 0.0000 0.0234

0.0144 0.1357 0.0000 0.0213 0.0000 0.0848 0.2008 0.1026 0.0000 0.0267

0.0230 0.0085 0.0836 0.0204 0.0341 0.0295 0.0085 0.1239 0.0218 0.0870

0.0445 0.0077 0.0914 0.0144 0.1023 0.0302 0.0038 0.0462 0.3085 0.2278

0.1541 0.0026 0.1719 0.1110 0.1683 0.0510 0.0573 0.0935 0.2670 0.4089
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Figure 3: A schematic of the entire system. The feedback controller detects the instable segmentations and
rectifies them by adjusting temperature value of the core algorithm.

2.1.2 Storing temporally disambiguated Surface Knowledge in Graphs

Our main aim is to represent visual scenes with semantic graphs to achieve object tracking. We present
an algorithm for segment tracking based on a novel, conjoint framework, combining local correspondences
and image segmentation to synchronize the segmentation of subsequent images in a movie. The main idea
behind the algorithm is to provide a partitioning of the image sequence in segments, such that points in a
segment are more similar to each other than to points in another segment, and such that corresponding image
points belong to the same segment [D]. In the algorithm the segmentation process of the images is based on
the method of superparamagnetic clustering. In this method each image pixel is represented by a Potts model
of spins which can have different energy states. Neighboring spins interact such that spins corresponding
to pixel of similar gray values tend to be in the same spin state (see, e.g., [2]). Spin interactions result
in the formation of clusters of correlated spins, providing an automatic labeling of corresponding image
regions. In the case of the application of the clustering method to image sequences, we split the image
sequences into pairs where the last frame of the previous pair is identical to the first frame of the next
pair. The relaxation results (spin states) are transferred across image pairs, such that the spin states of the
previous image pair are assigned becoming the initial spin states for the next image pair. Since the last
frame of the first pair is identical to the first frame of the next pair, we assign the same segment labels to the
segments which cover similar image regions. Therefore, segment tracking can be achieved for the whole
image sequence. However, segment tracking might fail due to the light reflections or similar changes in the
scene because the segmentation process of an image is sensitive to global and local changes of the image.
As a solution, we present a feedback control mechanism which detects the segment instabilities and rectifies
them by adjusting temperature value of the core algorithm [D]. The feedback control mechanism is based
on the size information of the segments and assumes that ”good” segments change their size in a continuous
”predictable” manner. Thereby, the sudden changes of the segment sizes, e.g. merging of two neighbor
segments due to insufficient illumination, can be detected and corrected at higher temperature by the control
mechanism. Since the temperature choice affects the formation of segments, it is a crucial element for the
controller unit. A schematic of the entire system, i.e. core algorithm with feedback control, is shown in
Fig. 3. Segments are then represented by graphs in which the nodes are segment labels plotted at the center
of segments and the edges point out the neighborhood relationships between the segments. An example of
continuous segment tracking for real movies with graph representations is depicted in Fig. 4. As future
work we aim to track segments in a more complex scenario with OACs. Additionally, we aim to charge
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Figure 4: Continuous segment tracking for real movies with graph representations. The algorithm with
feedback control mechanism is applied to a movie showing a hand replacing a red apple in a scene. The
segments are represented by graphs in which the nodes are segment labels plotted at the center of segments
and the edges point out the neighborhood relationships between the segments. The red apple indicated by
node number 7 can be tracked continuously during the whole image sequence.

the nodes with some extra meaningful values such as 3D chain codes of the object boundaries and planar
patch information of the object surfaces. Rotation, scaling and translation invariant chain codes and planar
patches can help us in order to recognize the objects in 3D space while tracing the segments 2D space. For
this purpose we use stereo vision to perceive the depth information of the objects. In the mean time, we are
working on a parallel implementation of the algorithm on GPUs to achieve real-time segment tracking for
robot applications.

2.2 Object Learning and Pose Estimation

In our work, we organize local visual data such as SDU edges (or potentially BCCN surfaces) into object
models that allow for pose recovery in cluttered scenes. The probabilistic nature of our object representa-
tion and detection algorithms provides intrinsic robustness to noise and perceptual uncertainty. Although
we currently focus on the modeling of specific objects, our models can manage small morphological vari-
ations implicitly, treating discrepancy as input noise. We can also explicitly learn small variations, such
as the freedom of an articulated object part, by presenting the learning algorithm with different object-part
configurations. For example, Figure 5 shows a weighing-scale model aligned to two different configurations
of the scale. The model was learned from SDU edges extracted from 5 images showing the scale at varying
equilibrium positions. This work is further described in [F] and [1].
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(a) (b)

Figure 5: Object model fitted to two different articulated configurations.

(a) Scene setup used for the complex
search task. Two instances of one object
are presented to the system in a cluttered
scene.

(b) Resulting saliency sphere and foveal
views of the left foveal camera. In the fi-
nal state, the system focusses alternatingly
on the position of both object instances.

Instance B

Instance A

(c) Content of the scene memory after 29
saccadic eye movements. Each verified
instance is supported by several hypothe-
ses from the coarse object search proce-
dure.

Figure 6: Results of the object search task for two instances in a complex scene.

2.3 Multi View Representations

The goal of the work done at UniKarl is the development of object representations, which supports sep-
arating between objects and the generation of hypotheses of object locations using on appearance-based
multi-view visual representation as well as the application of such representations for visual search and
object separation task on a humanoid robot. In previous experiments we investigated how the ability of
separating between objects can benefit from multi-view representations on a robot platform that is able to
actively control the movement of the object [4]. The approach allows to separate between ambiguous ob-
jects by revealing views that are best suited to distinguish between the spurious hypotheses. This approach
has been extended toward the generation of hypotheses during a visual search task in cluttered scenes by
actively guiding the gaze of the Karlsruhe Humanoid Head.

2.3.1 Multi-View Object Representations in Visual Search

The object search process is a common daily human activity. Almost all actions that humans perform rely
on specific items which support the action e.g. as tools. In [M], we propose an approach which performs a
visual object search task based on the developed multi-view object representation scheme (see [5]). Instead
of successively filtering the visual stimuli starting with low-level cues as in traditional attention systems [6],
our approach starts with a search for the object in the scene with coarse features. Using the resulting matches,
we follow a hypothesis and test procedure in order to verify the matches with local, more descriptive features.
In order to store the object information from the current scene as collected during the object search process,
a scene memory based on the Sensory Ego Sphere based approach (see [3]) is proposed which ensures the
persistence and consistence of already acquired information about the scene. The scene memory allows for
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the integration of multiple hypotheses based on spatial coherence, which makes the search task more robust.
The gaze of the Karlsruhe Humanoid Head used in the experiments is directed based on the content of the
scene memory using spherical saliency maps. Experiments comprising the search for one object at a time
and the search for multiple instances of an object in cluttered scenes were carried out. Fig. 6 shows the
results of a visual search task. The system performed several saccadic eye movements initialized by the
attention component. Each saccade results in a verification of possible locations for the searched object in
the scene. The scene memory is successively updated and finally contains the locations of the two instances
of the searched object. In this state, the system focuses on both instances alternatingly. The content of the
scene memory provides the basis for further tasks such as grasp hypotheses generation and active object
separation.

3. Actions

In the following subsections and based on the representations described in section 2, we deal with a number
of actions being addressed in PACOplus as well as the learning and generalization processes being involved.

3.1 Grasping without Object Knowledge

In this subsection, we address two complementary grasping mechanisms not requiring object–specific knowl-
edge based on edge and surface information.

3.1.1 Grasping behaviour based on Edge Information

Grasping based on Co-planarity: In the work [K], we describe and evaluate a grasping mechanism that
does not make use of any specific object prior knowledge. The mechanism makes use of second-order
relations between visually extracted multi–modal 3D features that become provided by an early cognitive
vision system. More specifically, the algorithm is based on two relations covering geometric information
in terms of a co-planarity constraint as well as appearance based information in terms of co-ocurrence of
colour properties. We show that our algorithm, although making use of such rather simple constraints, is
able to grasp objects with a reasonable success rate in rather complex invironments (i.e., cluttered scenes
with multiple objects).

Moreover, we have embedded the algorithm within a cognitive system that allows for autonomous explo-
ration and learning in different contexts. First, the system is able to perform long action sequences which,
although the grasping attempts not being always successful, can recover from mistakes and more impor-
tantly, is able to evaluate the success of the grasps autonomously by haptic feedback (i.e., a force torque
sensor at the wrist and information about the distance of the gripper after a gasping attemt). Such labeled
data is then used for improving the initially hard-wired algorithm by learning. Moreover, the grasping be-
haviour has been used to trigger higher level processes such as object learning and learning of object specific
grasping.

Grasping based on Parts: In the work [C], we address the problem of 3D circle detection in a hierarchi-
cal representation which contains 2D and 3D information in the form of multi-modal primitives and their
perceptual organizations in terms of contours. Semantic reasoning on higher levels leads to hypotheses that
then become verified on lower levels by feedback mechanisms. The effects of uncertainties in visually ex-
tracted 3D information can be minimized by detecting a shape in 2D and calculating its dimensions and
location in 3D. Therefore, we use the fact that the perspective projection of a circle on the image plane is
an ellipse and we create 3D circle hypotheses from 2D ellipses and the planes that they lie on. Afterwards,
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(a) (b) (c) (d)

Figure 7: (a) Approximation of a simulated model’s 3D point cloud. (b) Visualization of heuristic hypothesis
reduction with valid (green) and invalid (red) regions. (c) Best grasp after simulated grasp-contact learning
using a hand with unknown kinematics, but a given grasp pre-shape. (d) Best grasp after simulated grasp-
contact learning using known kinematics and finger positioning.

these hypotheses are verified in 2D, where the orientation and location information is more reliable than
in 3D. For evaluation purposes, the algorithm is applied in a robotics application for grasping cylindrical
objects.

3.1.2 Grasping behaviour based on Surface Information

Using certain higher-level object features such as shape, size, or whether the object is textured or smooth,
specific objects can be mapped to certain actions and model this at the symbolic level by examining how ob-
jects, actions, and the effects of those actions relate to each other. However, different object appearance also
affords different methods to encounter such meaningful features. The previous case of grasping behaviour
based on 3D edge information is mainly supported by uniformly colored objects. On the other hand, textured
objects enable surface information from disparity and dense 3D point clouds.

Considering textured objects and dense 3D data, it has been observed in the literature that the approximation
of such data by shape primitives, e.g. spheres, boxes or cones, is a very valuable step. In this context,
a focus on a simple and efficient box approximation technique has further proven to be meaningful for
connecting such shape information with pre-grasp configurations, as proposed in [I]. The output of such
an approximation can be interpreted as a part-description of an object, while its geometric simplicity - a
constellation of boxes - not only allows for a tremendous reduction of possible grasp configurations on
the object through heuristic reasoning. It also enables the connection of such representations to successful
grasps by learning of contact-level grasp qualities in the force domain.

Simulation is broadly used as a helpful tool for learning and evaluating grasps. However, even in this
context, the system embodiment itself may afford different strategies to define the learning. For example, if
the kinematics of the gripper are unknown or a grasp pre-shape classification (i.e. power grasp, pinch grasp,
etc.) is available, learning may focus on the representation itself [I].

3.2 Grasping with prior Object Knowledge

We memorize knowledge about grasp affordances in grasp densities attached to a mid-level visual model
[E]. We use the term grasp density to refer to a continuous, probabilistic representation of an object grasp
affordance. Through grasp densities, we organize and store the whole knowledge that an agent has about the
grasping of an object, in order to facilitate reasoning on grasping solutions and their likelihood of success.
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Figure 8: Visualization of the gripper position part of a density for a pinch grasp on a toy pan. Brighter green
areas indicate where a gripper should be placed to successfully pinch-grasp the object. The orientation part
of the density is not rendered in this illustration.

We represent the affordance of an object for a given grasp preshape through a continuous probability density
function defined on the 6D gripper pose space, within an object-relative reference frame (see Fig. 8). Grasp
densities are initially learned from grasps computed from visual cues (see previous section), using automatic
learning techniques to turn sets of discreet grasps into continuous grasp proposal densities. These densities
are attached to the visual object model mentioned above [E], which allows a robotic agent to execute samples
from a grasp proposal density under arbitrary object poses. Observing the outcomes of these grasps allows
us to learn from experience: we apply machine learning algorithms on grasp outcomes and learn grasp
empirical densities, which form a finer representation of object properties.

The visual object representation considered here organizes object parts in a hierarchy of features [E]. After
grasp affordance have been attached to the model, some features correspond to visual representations of
parts of the objects, other features relate to grasp affordances. We currently learn visual and grasp features
independently, and connect them through a single top-level model feature. One of our goals is to learn visual
parts that share the same grasp properties across different objects. This way, a grasp feature will be directly
and exclusively connected to the visual evidence that predicts its applicability, allowing for its generalization
across objects.

3.3 Pushing

The goal of the research in [J] is to investigate how to acquire useful action knowledge by observing the
results of exploratory movements on objects that afford a certain action. We focus on poking as a representa-
tive type of nonprehensile manipulation. Poking can be defined as a short term pushing action. We proposed
an explorative process that enables the robot to learn the relationship between the robot movement and the
actual response of an object. The robot acquires this knowledge by randomly exploring the environment
and without having any prior knowledge about the action. Initially, the robot was only able to move along
straight lines in random directions. Action knowledge is stored in a neural network that encodes the effects
of the exploratory movements with respect to the shape properties of the object (in a concrete example, point
of contact on the object boundary and the angle of poke). Such self emergent processes are essential for the
early cognition. The proposed process has been implemented and tested on the humanoid robot Hoap-3.

The estimated transformation functions are currently object–specific. To generalize the acquired action
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Figure 9: Robot pouring experiment. Setup of the experiment (A) and cumulative reward (in arbitrary units,
a.u.) obtained over 10 learning trials. (B)

knowledge to a number of objects, we are developing a more general neural network which takes not only
object location but also shape parameters as input. For example, this can be achieved by using the binarized
object image as input to the network (instead of just point and angle of contact that were used in the poking
example). In this way the system can acquire action knowledge that does not need to be learned separately
for all objects.

3.4 Filling

Let us consider a glass filling task. We have a robot with a container full of liquid in the gripper, and want
the robot to fill a glass standing on a table. Filling a glass is a good example of a task well suited for
reinforcement learning (RL) as one does not know in advance how to position with high enough accuracy
the robot’s wrist in respect to the glass. This is due to the complicated physical process of liquid running out
of a container and the inaccuracy of humanoid robot arms (industrial arms are here not considered, where
one could indeed make an accurate enough model!). Thus, the correct position of the wrist can only be
easily attained by learning. For RL the reward is the amount of liquid getting into the glass. For RL it is
advantageous when not only full rewards (all liquid poured gets into a glass), but also partial reward (part of
the liquid poured gets into a glass) are available. Here we have exactly that situation where in a non-optimal
pouring position part of the liquid will get into the glass, while the rest will be spilled. Consequently, through
reinforcement learning we can obtain a correct glass filling movement of a robot. Initial pre-positioning for
pouring can be obtained through visual servoeing (wrist close to the glass), or through demonstration.

Experiments were performed with the HOAP robot (cooperation between BCCN and JSI). We were oper-
ating with 3D coordinates of the robot wrist (task space), and on top implementing a standardized wrist
movement for pouring. In the first set of experiments we were obtaining knowledge about the degree of
filling of the glass through weighing, but later on the task is to be transferred to using visual analysis in-
stead. For the setup of the experiment see Fig. 9 A. In Fig. 9 B we show the cumulative reward obtained
in our learning experiments over ten trials. One trial includes moving over a learned trajectory (starting in
the first trial with a random trajectory) with 7 to 10 attempts to pour on the way. One can see that near
optimal performance is obtained in just 4-5 trials. This is a realistic scenario for a robotic application, where
one would not be allowing hundreds of trials for learning. Future work is directed towards more fluent arm
movements and generalization of learning towards more variable pouring situations.
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Figure 10: Illustration of an attention system described in [L].

3.5 Multi Cue–Affordance Relations

In this project, a robot vision system (see figure 10) needs to be able to autonomously acquire and suitably
represent the environment in which it is operating. Thus, such a system needs the abilities to divide the
world into things, create representations of observed things for later association and manipulation, and
continuously update these representation as new data becomes available. A representation can either be
short-lived and survive only a short sequence of actions, or permanent, if interactions with a thing turn out
to be meaningful. A meaningful action is an action that results in some change in the representation of the
thing, such as a pushing action resulting in a change in position. From this stage on, the thing is considered
an object.

As pointed out in the attached reference [L], the amount of perceptual data arriving through a visual system
easily becomes overwhelming. Since resources will always be limited in one way or the other, there is a
need for a mechanism that highlights the most relevant information and suppresses stimuli that are of no
use to the system. Instead of performing the same operations for all parts of the scene, resources should be
spent where they are needed. We call such a mechanism visual attention. Unfortunately, relevancy is not a
static measure, but depends on the context, on the scene in which the robot acts and on the tasks the robot
is performing. Consequently, there is a need for the attentional system to adapt to context changes. A thing
too large for the robot to manipulate might be irrelevant, while an independently moving thing of the same
size can be relevant indeed, if it affects the robot in its current execution. Our OAC approach suggests an
attentional mechanism that systematically relates perception and action, and it is indeed possible to derive
attentional object-selection mechanism from action-planning processes (see Figure 11).

This motivates the consideration of object affordances not only from the interactive point of view (like
grasping, pushing, filling), but also from the perceptual perspective (like fixating, processing) that factually
preceeds any manipulative action. In [L], it is presented how multiple visual cues and dense stereo can
be used in a complementary way for detecting and attending objects in a general scene. The system is
further used to extract object attributes such as those related to its shape. Detecting and storing object



IST-FP6-IP-027657 / PACO-PLUS

Page 15 of 18

Public

Parameter Specification 

& Action Adjustment

Shape

Perception & Action Planning

Stimulus

Location

ω

ω

Feature maps

Action plan

Figure 11: A process model of action-induced attention. Stimulus information coded on feature maps is
directly fed into low-level action control (specifying the parameters not provided by high-level planning)
but weighted according to the relevance of the given feature dimension for the currently planned action; i.e.,
planning a pointing action increases the weight of location information while planning a grasping action
increases the weight of shape information [G].

attributes not only brings us from things to objects in a general OAC definition. In addition, it allows
for further implementation of long and short term memory related to objects and actions being applied
to them. The referenced system architecture describes connections and benefits of two distinctive grasp
generation techniques in close relation to other modules, e.g. an attention system, a reasoning system, or the
embodiment of the robot [H].

3.6 Rule System - Actions Affordance

The Rule System permits to generalize over objects to afford actions execution by learning the relevant
attributes necessary to apply an action successfully [A, B]. Rules code at every moment how probable an
action could be afforded with the experience acquired so far. The set of rules applicable to an object o
constitutes an OAC where each rule selected for a concrete object oi is an instantiation iOAC. Thus, given
an object instantiation oi, the system is able to predict how probable oi afford the execution of an action.

The experience obtained from the instantiation is used to update the probabilities of the action affordance
(P+

rule) or failure (P−rule),

P+
rule =

1
2

1 +
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Figure 12: A) Initial states. B) States after action f ill execution. C) State space of initial states where action
f ill is afforded (painted in green) or failed (painted in red).

where ntotal
rule is the total number of all the possible states in which the rule could be involved.

With these formulas a high P+
rule is a confident indicator of a good chance of obtaining the prediction because

the probabilities are based on densities of samples and not on relative frequencies, and assign to unexplored
states the same chance to result in a successful or a failure. Therefore, a rule fed only with a few successful
experiences has a probability of a success only a little higher than 0,5.

Rule set is progressively refined from experience using a general to specific constructive learning, and a
memory based approach [B]. Whenever a rule has high uncertainty in its prediction (prob. close to 0,5) and
large confidence (high density of samples), it is refined by generating new specializations of the rule using
the information gain criterion.

Figure 12 illustrates the method with a very simple example using the affordance of an action f ill over
an object glass. The action f ill is referred in this case to simply pouring a fix amount of liquid on the
specific position of the glass. The attributes considered to evaluate the affordances are the boolean attributes
At = {empty(glass),covered(glass)} for the initial attributes set, and At+1 = {empty(glass),clean(table)} for
the outcome evaluation. The action f ill is afforded when At+1 = {¬empty(glass),clean(table)}. Table 2
presents three examples of rules fed from the experience of situations s1 and s2. As seen from the table,
rulek is the one that most likely will afford the action f ill in future experiences of situation s1.

rule At Ini states exp n+ n− P+ P−

i empty(glass) s1 1 0 0,75 0,25

j ¬covered(glass) s1, s2 1 1 0,5 0,5

k empty(glass),¬covered(glass) s1 1 0 1 0

Table 2: Examples of rules for action f ill affordance (At+1 = {¬empty(glass),clean(table)}).

We can conclude from this section that the outlined system is suitable for incremental approaches as the
probabilities are based on densities of samples which avoid biased estimations with few experiences. It is
also appropriate for real time performance since the simplicity of the updating formulas permits to rapidly
have good estimations about the affordance of an action. It is important to mention that rules generated
not only permit to evaluate single action affordance but also sequences of actions affordance when they are
applied on the same object (see [A, B]). Finally, the last issue to remark is that the system developed so
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far only deals with discrete representation of actions and objects. Further extension would incorporate also
continuous attributes and actions.

4. Conclusion

In this delivery, we have presented work performed in WP4 in the last year. We have described the underly-
ing representations on which generalization is taking place as well as the learning of concrete object–action
associations on different level of the processing hierarchy which will become integrated in one system for
the final review. A particual focus of the final year will be the learning of the association of object parts to
actions as a tool for generalization across objects.
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Abstract— In this work we propose a decision-making 
system that efficiently learns behaviors in the form of rules 
using natural human instructions about cause-effect relations 
in currently observed situations, avoiding complicated 
instructions and explanations of long-run action sequences and 
complete world dynamics. The learned rules are represented in 
a way suitable to both reactive and deliberative approaches, 
which are thus smoothly integrated. Simple and repetitive tasks 
are resolved reactively, while complex tasks would be faced in a 
more deliberative manner using a planner module. Human 
interaction is only required if the system fails to obtain the 
expected results when applying a rule, or fails to resolve the 
task with the knowledge acquired so far. 

I. INTRODUCTION 

N this work we are facing the problem of decision making 
for a multitask robot embedded in a human environment 

that should rapidly learn to perform tasks by interacting with 
humans, in an on-line way, and without any previous 
knowledge of the world dynamics or the tasks to be 
performed.  

From a very general point of view, we must consider two 
alternative approaches to the goal of building an intelligent 
agent: the deliberative and the reactive approaches. The 
deliberative approach began with the very birth of AI, and it 
is based on the principle of rationality [1], which states that 
"If an agent has knowledge that one of its actions will lead 
to one of its goals, then the agent will select that action.". 
The proponents of the knowledge-based systems using the 
principle of rationality soon realized that there are a number 
of important shortcomings with this approach, ranging from 
the frame problem [2], the difficulty of building a large 
enough database of knowledge providing the grounds for 
common sense, and the theorems stating the complexity of 
planning for even some of the simplest kinds of logical 
problems.  

Later, also the symbol grounding and related problems [3] 
entered the scene. As a response to this, the proponents of 
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the new AI [4] advocated for the reactive approach, in which 
the knowledge level was completely absent. In this approach 
actions are not driven by the rationality principle, but 
triggered by the current situation, and not guided by any 
specific purpose, but simply as a set of instincts carefully 
organized to accomplish a specific task.  

While reactive approaches have proved to be valid for 
many low-level tasks, we think that the kind of intelligent 
behavior we expect from a service robot, like a kitchen 
assistant, cannot be the result of purely reactive processes. 
We want the robot to promptly accomplish the task required 
by the user, and this means that its actions must be goal-
driven, and not just situation-driven. We expect the robot to 
be able to produce new behavior in response to a new goal 
using its knowledge of the situation and the effects of its 
actions, but it is clear that a reactive system will only be able 
to act according to already acquired behaviors. 

A number of hybrid approaches have been proposed 
along these lines. Some of them propose a decision-making 
system that permits fast agent responses to new situations 
using reactive layers while the deliberative layers generate 
behaviors used later by the reactive modules [5]. Others let 
the low-level action control to be driven by reactive 
behaviors, which are selected or modulated by a higher 
deliberative layer [6], [7]. Finally, some works focus mainly 
on the generation of behaviors such as macro-actions [8], 
primitive behaviors [9], or activation rules [10], which store 
sequences of actions frequently used or difficult to calculate, 
to use them later as macro planning operators in a 
deliberative system. 

In any of the previous cases a large amount of 
computation is usually required due to the need of exploring 
different acting behaviors to select one suitable for the task. 
The problem turns to be more complicated if the robot has 
no previous knowledge of the world dynamics and should 
perform learning while predicting what would occur with 
different behaviors. Incomplete knowledge has been tackled 
using techniques like incomplete planning [11], learning 
planning operators [12], [13], [14] or policy learning [15], 
but the drawback of computational complexity derived of 
the application of AI techniques is still not surmounted. 

The aim of this work is to develop an integrated system in 
which reactive and deliberative components are both 
present, though not strictly separated, but smoothly 
combined, and where the world dynamics and behaviors are 
rapidly learned from scratch through a natural human-robot 
interaction.  

Action Rule Induction from Cause-Effect Pairs Learned through 
Robot-Teacher Interaction 

Agostini A., Celaya E., Torras C. and Wörgötter F. 
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As we want the agent to learn only the dynamics of the 
world relevant for its purpose, the world exploration is 
guided by a teacher. It is very simple for humans to know 
which action to perform in a situation given a plain task, like 
a kitchen task, but it could be much more complicated to 
explain a priori all the sequences of actions that should take 
place in all the possible situations. It might also be difficult 
for a human to detail all the conditions that should be taken 
into account to afford a desired cause-effect for all the 
possible situations. In this work we take benefit of the 
human capabilities of explaining cause-effect relations in 
currently observed situations to efficiently generate 
knowledge for decision making in a multitask robot. The 
idea is based on Piaget's theory of cognitive development 
which claims that children gradually acquire knowledge of 
cause-effect relations by repeatedly executing processes and 
sequencing actions to reach goals.   

This work is organized as follows. Section II explains the 
outline and main elements of the method proposed. Section 
III presents a demo application and clarifies some concepts 
explained in Section II. In Section IV the algorithm is 
delineated in pseudo-code. A brief discussion of the ideas 
and concepts of this work in the context of the European 
project PACO+ [16] is developed in Section V. Finally, 
section VI delineates some conclusions and future works. 

II. OUTLINE OF THE METHOD 
In this work a decision making system is proposed where 

the action behaviors are generated using simple cause-effect 
relations learned with the help of a teacher. The learned 
behaviors are used either reactively or deliberatively 
depending on the complexity of the task requested.  

We will define a behavior (or rule) as a set of 
preconditions, a sequence of actions, and the final expected 
outcome. The preconditions are a set of necessary conditions 
or perceptions that must be observed before the rule can be 
applied, and the expected outcome is a series of effects that 
will be obtained after the execution of the rule. The action 
sequence may consist of a single elementary action in the 
simplest rules (the cause-effect relation for that action) or a 
list of actions, each one expressed in turn as a cause-effect. 

A general overview of the proposed method is the 
following. Given a goal, the agent tries to apply any of the 
existing rules in a reactive way to reach it from the current 
situation without any deliberation. If more than one rule is 
retrieved, the one with fewer actions in its sequence is 
applied. If a reactive behavior is not possible, then the agent 
tries to generate a plan using the existing rules as planning 
operators.  

If both the reactive and deliberative modules fail to return 
a behavior, as a consequence of an incomplete knowledge, 
the agent asks the teacher about which action or actions to 
perform. The agent executes every instructed action and 
generates a first approximation of the involved cause-effects 
by observing the changes in the environment. Then the agent 

generates a rule with the sequence of the generated cause-
effects. 

On the contrary, in the case that the agent is able to find a 
behavior with the reactive or deliberative module, then it 
executes and evaluates it at the level of each cause-effect in 
the related sequence. If any of the outcomes obtained is 
different from the one expected, the agent will ask the 
teacher for explanations about which conditions prevented 
the correct outcome of the cause-effect to occur. With the 
teacher explanation the agent automatically corrects the 
cause-effect structure as well as all the rules that apply this 
cause-effect in their sequences performing a large updating 
of the knowledge base with a little teacher interaction. 

A. Notation 
We assume that the agent has a set of N sensors that 

measure some features of the environment. The value of 
sensor i is called an observation oi. A world state SO is 
formed by the set of observations oi , SO={o1, o2, … , oN}.   

Each of these sensors is internally represented by the 
agent as a detector di that could take different discrete values 
dij, called conditions, depending on the sensed value oi. An 
internal agent state S is constituted by a set of conditions dij,  
S={d1j, d2k,…,dNl}. 

At every moment the agent is able to perform any of the k 
actions from the set A={a1, a2,…, ak}. 

The function that maps the sensor observations to 
conditions is called the perception function (PF). As we will 
explain later the PF could be updated while the learning 
process is running, permitting the management of the 
uncertainties, inherent to real environments. 

The most elementary rule consists of a cause-effect 
relation and reflects how a change is obtained using a single 
action and what preconditions are necessary to afford that 
change. We formally represent a cause-effect ceci using a 
tuple that consists in a subset Pi of state conditions called the 
preconditions of the ceci, an action ai from the set of actions 
A, and a subset Oi of state conditions denoted as the 
expected outcome of the ceci. 

 
ceci = <Pi={dgj,…,dml}, ai , Oi={dkl,…,dpq}>       (1) 

 
In the same way, a rule Rj is described using a tuple that 

consists of a subset Pj of state conditions called the 
preconditions of the rule Rj, a sequence of cec’s 
CECS=(ceck, ceci,…, cecm), and a subset Oj of state 
conditions denoted as the expected outcome of the rule. 

 
Rj = <Pj={dih,…,dml}, CECS , Oj={dkl,…,dpq}>      (2) 

 
In our approach, the expected outcome serves two 

purposes: it will be used by a goal-achieving deliberative 
system for planning, and by a learning system to improve 
rule descriptions. Every time the expected outcome is 
different from the observed we will say that the robot gets a 
surprise. 
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B. Learning Rules 
When the knowledge base of the system doesn’t permit to 

find a rule, or a sequence of rules, to be applied in an 
experienced situation, the teacher instructs the robot about 
which action or sequence of actions to execute. Then, the 
robot executes every instructed action generating a first 
approximation of the involved cause-effects, and afterwards 
builds a rule using the sequence of the generated cec’s. 

1) Generating cecs 
The robot generates a first approximation of the cause-

effect observing the conditions that change in the states 
before and after the execution of the instructed action a. If 
we call the state before the action execution Sprior and the 
state after the action execution Spost the new cecnew is: 
 

cecnew=< Pnew, a, Onew>                          (3) 
 

where, 
Pnew = { dij ∈ Sprior | dij ∉ Spost }                     (4) 

 
Onew = { dkl ∈ Spost | dkl ∉ Sprior }                     (5) 

 
The preconditions of the cecnew so formed could be 

incomplete in the sense that there could be conditions that 
do not change before and after action execution, but are also 
necessary to produce the changes observed (for example, the 
density of an object that prevents its deformation, the 
friction of a surface that prevents an object displacement, 
etc.). In these cases the teacher would explain which 
conditions are missing to obtain the expected outcome.  

2) Generating Rules 
The generated cec’s are used to create rules that will 

contain the cec’s sequence. The preconditions PRnew of the 
rule Rnew formed should ensure the occurrence of the cec’s 
preconditions in the proper order. For those detectors that 
take only one condition value during the sequence, it is 
straightforward that this value should also appear in the rule 
preconditions. If there is more than one condition for a 
particular detector, the one closer to the origin of the 
sequence should occur first, and this one should be in the 
rule precondition. Therefore, the rule preconditions can be 
obtained directly by back-propagating with replacement all 
the preconditions of the cec’s departing from the last cec to 
the first one. In contrast, to deduce the final outcome of the 
cec’s sequence, and hence of the rule ORnew, we should take 
into account the last changes produced in each detector. 
Therefore, if there is more than one condition for a detector, 
the one that should be considered for ORnew is the farthest 
from the origin. We can obtain all the conditions of the rule 
outcome again by back-propagating the conditions of the 
cec’s outcomes, but now without replacement departing 
from the last cec to the first one. The process of rule 
generation is illustrated in Section III.  

 There are two remarkable aspects. The first one is that, 
assuming all the proper preconditions are considered, the 

rules would produce the expected outcome in all the 
situations where the respective preconditions are present, 
despite some of these situations not having ever been 
experienced before. Therefore, rules perform generalization 
over all the situations where the corresponding sequence 
would take place. The second notable characteristic is that, 
for a given sequence CECS of cecs, as many rules as sub-
sequences in CECS could be generated, using the initial and 
final cec of the sub-sequences as the initial and final points 
for the back-propagation procedure. The subset of rules 
actually generated depends on the criterion adopted. For 
instance, the robot could be required to only learn how to 
reach the goals specified by the teacher, leading to the 
generation of only the subset of rules consisting of every 
sub-sequence from an intermediate situation to the goal. 

C. Rule Correction 
During the execution of a rule the robot can get a surprise 

if one of the involved cecs results in an unexpected 
outcome. Then, the teacher “explains” which preconditions 
prevented the expected outcome to occur. The reason of the 
surprise could be produced by either a missing condition in 
the precondition part or by a wrongly interpreted condition 
due to a problem in the perception function PF. In both 
cases the teacher tells the robot which conditions are 
responsible for the failure, specifying the detectors and the 
corresponding values. The explanation given is used to 
update the PF and to correct the cec. The explanation could 
be indeed incomplete, not specifying all the conditions that 
would prevent the expected outcome to occur, but only those 
that the teacher is capable of identifying at that moment as 
the ones responsible for the surprise. This is accepted as far 
as the teacher is able to realize in future observations the 
other conditions that are responsible for the failure.  

After the cec correction, the rules correction is simple and 
straightforward. It is performed by updating all the rules that 
contain the corrected cec in their sequences just by back-
propagating the explained conditions as explained in the rule 
generation section.  

D. On Learning to Perceive 
We want to briefly remark the underlying idea about how 

the perception function PF could be updated using the 
teacher explanations. The idea is expressed in the scope of 
simple applications (like the one presented in Section III) 
where the perceptions of the robot could be derived by the 
sensor observations using a probabilistic approach.  

If we assume that the sensor observations oi are 
continuous variables with uncertainties and non-
stationarities, the way to correctly map a value oi to a 
condition dij is difficult to establish a priori. It is possible to 
face this matter through a probabilistic approach that for 
each condition dij permits to infer how probable it is that a 
sensed value oi is interpreted as dij. Then, for a particular 
observed value oi, the condition dij perceived is the one with 
highest probability in oi. The estimated statistic values 
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related to a condition dij could be updated using the teacher 
explanations on this condition using the corresponding 
observed value oi. This updating permits the teacher also to 
explain the robot how to interpret the world.  

III. DEMO APPLICATION 

Figure 1 shows a schema of a simple real world 
application implemented in a Staubli arm that permits to 
visualize the important aspects of the method performance. 
The application consists in an environment with 9 cells 
configured in a 3 by 3 grid world. Each cell could contain a 
black box or be empty. The amount of boxes that can be 
placed in the grid ranges from 1 to 8. Among all the boxes 
there is one target box marked with a red label. The task 
consists in placing the target box into a goal cell without 
taking any box outside of the grid. To this purpose the arm 
can move, when it is possible, any box form its current cell 
to one of the contiguous cells in straight line (diagonal 
movements are not allowed). Movements that take any box 
out of the grid cannot be performed. 

A cell is considered as a detector in the state 
representation. The state is represented graphically in the 
examples, where a black cell represents a box in that cell, a 
white represents an empty cell and a black with a red mark 

represents the cell containing the target box. Dashes cells 
mean “don’t care” if there is either a box or an empty space. 
Figure 1 explains the possible actions and how the cells are 
indexed to reference detectors and actions. 

Before presenting some results we would like to mention 
that the rule generation criterion adopted for this example is 
to generate as many rules as sub-sequences there are in the 
instructed sequences. The robot started the experiments 
without any previous knowledge. Due to space restrictions 
the process of instructions is not shown graphically but 
mentioned during the descriptions of the experiments.  

The first instruction received by the robot was to move 
the target box from cell 7 to cell 0 with the grid full of boxes 
except cell 0 which was empty. This instructed sequence 
will be referenced in the following as iseq1. Figure 2 shows 
the largest rule generated from iseq1 and snapshots of the 
rule execution given an initial state and goal where the rule 
was applicable. Figure 3 shows two more rules generated 
with iseq1 executed under different requirements of goals 
and with initial states never experienced before by the robot. 
The possibility of resolving situations never experienced 
elucidates the generalization capabilities of the method. 

We now instruct the robot to move the target box from 
cell 5 to cell 4, when cell 4 is occupied and cell 7 is empty. 
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The instructed sequence is denoted as iseq2. As a 
consequence of iseq2 the robot generated rule 4 (see figure 
4). Next, to show how the planner module is activated when 
no rule is reactively triggered the target cell was placed 
again in cell 5 but now four more boxes were added in the 
grid configuring an initial situation shown in figure 4. The 
robot was then asked to take the target cell from cell 5 to cell 
0. For these requirements there was no rule in its database 
that permitted a reactive behaviour. The planner module was 
then activated and a plan, that linked rule 4 with rule 2, was 
found and executed. Figure 4 also suggests how a plan could 
be transformed into a new rule using the condition 
propagation. 

A. Surprise and Explanation 
In this section we exemplify how a surprise arises and 

how the explanations are used to correct the incomplete cec 
and the rules that involve it. First we instructed the robot to 
move the target box from cell 5 to cell 8 when cells 8 and 7 
are occupied and cell 6 is free. This instruction is referred to 
as iseq3. Figure 5 shows the execution of the largest rule 
generated with iseq3, as well as the other two rules 
generated with the same sequence. Note that for the first 
action instructed the robot pushed boxes in the cells 8 and 7 
but the state representation for cell 7 remained the same 
before and after the action execution. Hence the generated 
cec, which extracted only the conditions that changed, 
initially contained a “don’t care” in that position.   

Afterward, in figure 6, we made the robot to face a 

problem where the initial state and goal triggered rule 5. The 
first cec execution led to a surprise as the obtained outcome 
was not included in the expected ones. The teacher then 
explained that a black in cell 7 should also be considered 
and the robot corrected the cec as well as the involved rules.  

 Finally, we made the robot face the same problem that 
previously resulted in a surprise but then no rule could be 
applied reactively. Nevertheless, the robot found a plan 
using one of the rules generated with iseq1 (rule 8) and the 
recently corrected rule (rule 5) as illustrated in figure 7. The 
plan found is not the optimal way to solve the problem 
because the robot was only able to use the limited 
knowledge acquired so far. It is important to mention that, in 
case many plans are found, the robot uses the same criterion 
as with the rules, i.e., it selects the one with fewer actions. 

IV. SKETCH OF THE ALGORITHM   
In this section we present the whole method in pseudo-

code. It is important to remark that, in this first approach, we 
let the teacher control the rule generation by the instruction 
given. The teacher will instruct a single action when no 
sequence is convenient to be merged in a rule, and will 
instruct a sequence of actions for repetitive sequences.  

A. Pseudo-code 
INIT system RR={}, LCECS={}, CECS={} 
Define GOAL 
Sprior=PF(SOprior) 
WHILE goal is not reached 
  RR: rules that connect Sprior to GOAL 
  IF RR is not empty (Reactive) 
    Select rule of RR with fewer cecs in CECS 
    Execute CECS 
  ELSE (RR is empty) 
    Try to find a PLAN with the rules. 
    IF PLAN is possible (Deliberative) 
      Execute CECS 
    ELSE (If plan is not possible) 
      Teacher instructs actions 
      FOR each action instructed,  
        Sprior = PF(SOprior)   
        Execute action  
        Spost = PF(SOpost) 
        GENERATE new cec using Sprior and Spost 
        APPEND the cec to LCECS 
      END FOR 
      GENERATE RULES using LCECS 
    END ELSE (planning not possible) 
  END ELSE (RR is empty) 
  Sprior=PF(SOprior)  
  Teacher supervises if Sprior is well perceived 
  IF Sprior is wrongly perceived 
   Teacher explains bad conditions 
    UPDATE PF 
    Correct Sprior  
  END IF 
END WHILE (goal is not reached) 
 

1) Execute CECS 
FOR each cec in CECS 
  Execute action 
  Spost=PERCEIVE(SOpost) 
    IF not the expected outcome (SURPRISE) 
      Teacher explains bad/missing conditions  
      Correct cec with teacher explanations 
      Correct rules containing the cec 
      Update PF 
      EXIT FOR 
END FOR 
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Fig. 5. Rules generated with iseq3. 
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V. DISCUSSION IN THE CONTEXT OF PACO+ 
Most of the “learning to act” approaches are based on 

human learning and cognition capabilities. Despite these 
approaches present many differences among them, they all 
establish a direct relation between perceptions of the agent, 
coded mainly as states, and actions.  In contrast to the 
amount of approaches developed, only few attempts were 
aimed at creating a common framework that permits to 
consistently relate the learning to act approaches with the 
human cognition capabilities for learning and acting. One of 
these attempts is the concept of object-action complexes 
(OACs) [17] that has been evaluated and developed by the 
European PACO+ consortium [16]. Briefly, the OAC 
concept claims that the world contains undistinguished 
“things” meaningless for the agent that only become 
meaningful “objects” through actions and tasks, where the 
objects are described by the properties relevant for the 
fulfillment of the final desired outcome through the action.  

We believe that the explicit coding of the world 
conditions and actions through rules and cause-effects 
presented above is suitable for a first insight in the study and 
refinement of the OAC concept. One of the reasons is that 
the elements of these structures could be directly associated 
with the main elements of the OACs concept formulated so 
far. Another reason is that they permit a direct association 
with the human cognition capabilities through the explicit 
declaration of the abstract meaning of the conditions of the 
world, and hence a better understanding and a faster 
evaluation of the results. 

VI. CONCLUSION AND FUTURE EXTENSIONS 
Despite the advantages presented in using simple human 

instructions for learning to perform tasks, the system should 
be also able to perform a task without the help of any human 
in case there is none available. This could be fulfilled by 
giving the instructions and explanation by other embedded 
automatic systems. The instruction could be given by an 
incomplete planner establishing some criterion for rule 
generation with a measure of the frequency of usage and the 

amount of computational process needed to generate a given 
plan. The explanation could be replaced by a constructive 
learning system where, for instance, a memory-based system 
could permit to infer which conditions are responsible for 
the surprise [12], [13], [14]. We believe that the presented 
method establishes a very suitable platform for future 
extension to develop a robust decision-making system for a 
complex robot interacting in a human environment. 
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On-line Learning of Macro Planning Operators using 
Probabilistic Estimations of Cause-Effects 

 

Agostini A., Wörgötter F., Celaya E., Torras C. 

 

Abstract. In this work we propose an on-line learning method for learning action rules 
for planning. The system uses a probabilistic approach of a constructive induction 
method that combines a beam search with an example-based search over candidate rules 
to find those that more concisely describe the world dynamics. The approach permits a 
rapid integration of the knowledge acquired from experience. Exploration of the world 
dynamics is guided by the planner, and – if the planner fails because of incomplete 
knowledge – by a teacher through action instructions.  

Introduction 
In the last years service robot applications are widening with the improvements in 
computer science techniques and the development of new technologies. These 
applications range from simple chores, like vacuum cleaners, to complex tasks requiring 
complex cognitive capabilities, similar to those forming the human capacity of 
performing complex tasks in real environments. 

In this work we face the problem of decision making for a multitasking service robot 
embedded in a human environment that should rapidly learn to perform tasks in an on-
line way, and without any previous knowledge of the world dynamics or the tasks to be 
performed. 

The selection of which paradigm to apply relies on the characteristic of the problem 
faced. In general, there are two alternative approaches used to build an intelligent agent: 
the deliberative and the reactive approaches. The deliberative approach is based on the 
principle of rationality [1], and involves planning techniques in which actions are 
executed in accordance to plans built after reasoning about possible sequences to reach 
the goal. In reactive approaches [2] actions are not longer driven by the rationality 
principle, but just executed from already coded behaviours that lead to the goal without 
deliberation.  

Both paradigms have drawbacks and advantages. In planning approaches the amount of 
deliberation could be very large even for the simplest kind of problem, mainly when the 
environment has complex dynamics. Additionally, deliberative techniques require a 
model of the dynamics of world, which in many cases is extremely difficult to code. 
This is not usually the case for reactive techniques which learn dynamics of the world 
automatically. Nevertheless, in reactive approaches drawbacks are caused by the 
limitation of their applicability to single goal tasks and by the requirement of large 
experience to reach an acceptable convergence. We propose a decision making 
technique that combines both approaches with the aim of diminishing the drawbacks of 
either one of them using the advantages of the other.  

In general, reactive approaches have proved to be valid for many low-level repetitive 
tasks, while deliberative approaches are more suitable for high-level tasks where 
specified goals are rarely repeated. Usually, it is observed that high-level tasks can be 
performed by a succession of simpler low-level tasks. 
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We develop a method to learn on-line action rules that permit to reactively perform low-
level tasks when they are executed as planning operators of high-level plans. These 
rules could significantly relieve the amount of deliberation as they might merge 
repetitive sequences of actions, or plans found with large computational cost. One 
remarkable aspect of the method is that there is no need for codification of the world 
dynamics as they are learned automatically while acting.  

The learning method generates action rules using a constructive induction approach that 
combines a beam search with an example-based search [3] over candidate action rules 
to find those that more concisely describe the world dynamics. The approach permits a 
rapid integration of the knowledge acquired from experience. Exploration of the world 
dynamics is guided by the planner, and – if the planner fails because of incomplete 
knowledge – by the teacher through action instructions. 

It is very simple for humans to know which action to perform in a situation given a 
plain task. But it could be much more complicated to explain a priori all the sequences 
of actions that should take place in all the possible situations. We take benefit of the 
human capabilities of knowing which action to perform in currently observed situations 
to efficiently generate knowledge for decision making in a multitask robot.  

The idea of learning cause-effects is based on Piaget's theory of cognitive development 
[4] which claims that children gradually acquire knowledge of cause-effect relations by 
repeatedly executing processes and sequencing actions to reach goals. As we will see, 
action rules are created using learned cause-effect relations observed from experienced 
situations after actions executions. Cause-effects are not only expressed as a unique set 
of conditions that afford changes, but also as multiple set of conditions that have 
different chances to afford a change. 

As suggested in previous works [5], [6] the explicit coding of the world conditions and 
actions through rules and cause-effects presented above is one possible instantiation of 
the concept of object-action complexes (OACs) [7], which is considered as the main 
block for building cognitive systems for a complex service robot [8]. In a few words, 
the OAC concept claims that the world contains undistinguished “things” meaningless 
for the agent that only become meaningful “objects” through actions and tasks, where 
the objects are described by the properties relevant for the fulfilment of the final desired 
outcome through the action. We believe that the contribution of this work is another 
step toward a formalization of the OAC concept as the probabilistic approach of cause-
effect could be seen as how likely a thing is an object, where an object description now 
is not restricted to a unique set of conditions but multiple set of conditions that have 
different chances of affording the object functionality. 

The learning module is embedded in a more general decision making system containing 
a planning module that uses the learned action rules as planning operators. The global 
system is based on a previous study [5] where the teacher guides the exploration of 
actions and also explains the world dynamics at the level of currently experienced 
cause-effects. The current contribution is an extension of [5] where dynamics of the 
world are automatically learned while performing the required tasks. 

Other approaches propose a decision-making system that permits fast agent responses to 
new situations using reactive layers while the deliberative layers generate behaviors 
used later by the reactive modules [9]. Some let the low-level action control to be driven 
by reactive behaviors, which are selected or modulated by a higher deliberative layer 
[10], [11]. Finally, others focus mainly on the generation of behaviors such as macro-
actions [12], primitive behaviors [13], or activation rules [14], which store sequences of 
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actions frequently used or difficult to calculate, to use them later as macro planning 
operators in a deliberative system. 

In any of the previous cases a large amount of computation is usually required due to 
the need of exploring different acting behaviors to select the one suitable for the task. 
The problem turns to be more complicated if the robot has no previous knowledge of 
the world dynamics and should perform learning while predicting what would occur 
with different behaviors. Incomplete knowledge has been tackled using techniques like 
incomplete planning [15], learning planning operators [16], [17], [18] or policy learning 
[19], but the drawback of computational complexity derived of the application of AI 
techniques is still not surmounted. 

System structure 
As mentioned before, the decision making system has two main modules: a learning 
module that provides action rules in the form of planning operators, and a planning 
module that uses the learned operators. The action rules learned have STRIPS like 
structure [20] suitable to be used by any planner that can deal with them. 

A general overview of the method is the following. Given a goal, the agent tries to 
generate a plan using the existing rules. If the planner fails to return a behavior, as a 
consequence of an incomplete knowledge, the agent asks the teacher about which action 
or actions to perform. The agent executes every instructed action and generates what we 
denote as a probabilistic cause-effect used to estimate the probability of the occurrence 
of changes under different sets of conditions. A probabilistic cause-effect is the main 
structure for learning and generation of STRIPS like cause-effects for planning 
purposes. 

When the agent is able to find a plan then it executes and evaluates it at the level of each 
cause-effect. During cause-effects execution relevant experiences are stored as example 
situations which are used to learn the conditions that afford desired changes. For 
instance, if any of the outcomes obtained after a cause-effect execution is different from 
the one expected, a fact referred to as surprise, the experienced situation is memorized 
as a negative example for obtaining the expected change.  

Whenever a sequence of cause-effects is successfully executed it could be memorized 
into a rule to relieve the reasoning load of the planner. Rules are essentially similar to 
cause-effects but instead of an action they contain sequences of actions, each one in turn 
expressed as cause-effect. 

Figure 1 illustrates a general schema of the system. 
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Figure 1. General architecture of the decision making system. 

Notation 
We assume that the agent has a set of N detectors di, i=1...N, that could take different 
discrete values dij, j=1..|di|, called conditions. A state s is constituted by a set of 
conditions dij, s={d1j, d2k,…,dNl}. Any set of state conditions is denoted as a subspace ss. 

At every moment the agent is able to perform any of the k actions from the set A={a1, 
a2,…, ak}. 

We define a probabilistic cec (pcec) by a tuple containing a precondition part that 
involves two set of subspaces, the working (SSw) and the candidate (SSc) subspaces, and 
a list of example states Ls, an action part apcec, and the expected outcome Opcec of the 
pcec, coded also as a subspace. 

  

pcec=< {SSw, SSc, Ls}, apcec, Opcec> 

 

Each subspace ss in SSw and SSc has associated three numbers,  

- n+
 ss , counter for positives examples covered by ss. 

- n-
 ss , counter for negatives examples covered by ss.  

- n ss , total number of possible states in the region covered by ss. 

 

Where positive and negative examples are those states experienced, and stored under 
which the expected change Opcec occurs after the execution of apcec or fails to be 
obtained, respectively. In a similar way, we refer to the probability of a positive 
example as the probability of obtaining the expected change, and the probability of a 
negative one for the converse. 
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Additionally, we formally represent a cause-effect ceci using a tuple that consists in a 
subspace Pi called the preconditions, an action ai, and a subspace Oi denoted as the 
expected outcome of the ceci. The preconditions indicate under which conditions the 
cause-effect can be applied, and the expected outcome reflects the effects that will be 
obtained after its execution. 

 

ceci = <Pi={dgj,…,dml}, ai , Oi={dkl,…,dpq}> 

 

Thus, a cec can be seen as a formal instantiation of the more abstract OAC as discussed 
in the Introduction. 

In the same way, a rule Rj is described using a tuple that consists in a subspace Pj called 
the preconditions of the rule Rj, a sequence of cec’s CECS=(ceck, ceci,…, cecm), and a 
subspace Oj denoted as the expected outcome of the rule, 

 

Rj = <Pj={dih,…,dml}, CECS , Oj={dkl,…,dpq}> 

 

Rules can therefore be considered as chains of OACs. In our approach, the expected 
outcome serves two purposes: it will be used by a goal-achieving deliberative system 
for planning and to evaluate the outcomes.  

Generating cecs from pcecs 
It is not possible to use the probabilities estimations directly for planning because the 
system is not designed for a probabilistic planner but for a deterministic one. Thus, for 
plan generation only cecs and rules can be used. In this section it is explained how cecs 
are obtained from pcecs. 

To generate cecs from pcecs we only use subspaces of the set of working subspaces 
SSw. First, an estimation of the probabilities for a positive and a negative example for 
each subspace in SSw need to be obtained. There are many ways of estimating these 
probabilities. Due to the problem that small numbers for the example can bias statistical 
estimators much we propose using the following estimator, which is robust against this 
effect.  
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where 2 accounts for the number of classes. 

In the general case the probability of a class i is, 
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where K is the total number of classes and j accounts for all the classes except i. 
This model consists in a function which outcome ranges in [0, 1], hence with 
probabilistic interpretation, that not only takes into account the class examples to 
determine the probability of that class (positive or negative in our case), but also other 
classes examples. Additionally, it also takes into account the densities of examples for 
different classes. 

Calculating the probability in this way is similar to assuming that, in lack of any 
evidence, each state in the subspace has the same “proportion” of a positive and a 
negative example (uniform distribution). This proportion will change as new evidence is 
gathered as a function of the density of classes. For instance, the probability for a 
positive example could range from 0, when all the covered states are instantiated with 
negative examples, to 1 when the whole subspace is occupied with positive instances.  

After these definitions we can continue with the cec generation procedure: After 
calculating the probabilities for a working subspace, if the probability of a positive 
example is nonzero, a cec is created and added to the list of cecs that will be used for 
planning. Every new cec is composed of,  

 

cecnew=<Pnew=ssw, apcec, Onew=Opcec> 

 

where ssw is the working subspace. 

The process of cec generation is performed whenever a pcec is created and for every 
recently promoted working subspace that have nonzero probability for a positive 
example. 

About Exploration 
In the decision making system exploration of actions is dictated by the teacher and the 
planner. Nevertheless, as the planner generates plans using cecs, which not yet 
completely evaluated we use forced exploration that permits learning a more complete 
model of the world dynamics. 

Learning Module 
The learning module of the decision making system learns rules and pcecs evaluating 
under which conditions a change would occur after an action execution. Incomplete 
knowledge of the conditions necessary to afford changes leads to uncertainties about the 
occurrence of the change under a situation. Nevertheless, it is possible to estimate the 
probability for that change to occur given a subspace. In the next section we present 
how these estimations are improved, and how the minimal set of conditions that affords 
the expected changes is found. 
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Learning pcecs 
The core of the method for learning pcecs is the estimation of probabilities for a positive 
and a negative example for different subspaces. The estimations and subspaces 
generation procedures are guided by experienced states stored in Ls. The aim is to find 
the smallest sets of conditions for which the expected change has a high probability to 
occur. 

The learning process consists in selectively storing positive and negatives examples 
related to each pcecs, and refining the SSw representation by promoting candidate 
subspaces from SSc to SSw. 

Initialization 
The generation of a pcec occurs after executing an instructed action. The initial structure 
of a pcec consists in the expected outcome Opcec, which involves the changed conditions 
after the action execution, the action itself apcec=instructed action, and the initial set of 
working and candidate subspaces.  

The initial set of working subspaces SSw is composed by one subspace formed with the 
conditions changed following the action apcec. In the case of SSc, the initial set of 
subspaces is composed by subspaces formed with the conditions changed with apcec, and 
one additional condition of a detector not involved in the changes. It is considered one 
candidate subspace for each condition of those detectors. 

Memorizing Examples 
Every experienced state, either positive or negative, is stored in Ls of the pcec used to 
create the cec whenever the probability of error Pe (probability of misclassification) is 
greater than a critic threshold Pc. 

The probability of the error is calculated as [21], 

 

[ ]ww ssss
e PPP +−= ,min  

 

The threshold Pc
 is determined using a linear function of the density of the subspace, 

 

2
max δδ == ec PP  

where δ is the density calculated as, 
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and Pe
max is the maximum possible probability of error. 

In this way, for low density subspaces the probability error is less significant and 
examples are then stored to reduce the uncertainty in the estimations, while, as the 
density becomes larger, the probability of the error becomes more meaningful. 
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Note that the storing criterion implies that every cec should have a pointer to the pcec, 
from which it originated and to the working subspace of that pcec, which was used to 
set all its conditions. 

Finally, after an example is stored, all the counters of the subspaces in SSw and SSc, the 
conditions of which are included in the stored example, are updated. 

Promoting Candidate Subspaces 
The necessity of improving the estimation by promoting candidate subspaces is also 
measured using the probability of the error and the density of the subspaces. The 
promotion of candidate subspaces occurs when enough examples were stored but the 
estimation capability of the system is still bad. To consider this requirement we propose 
using a threshold for the probability of the error that is a linear decreasing function of 
the density. In this manner, when the evaluated working subspace has a few examples 
the uncertainty is high and more evidence should be accumulated before promoting any 
candidate subspace. On the other hand, when the working subspace is densely occupied 
with examples, higher probabilities of the error are more trustable as indicators of the 
necessity for refining the representation. Then, the threshold for the probability of the 
error is calculated as, 

 

( ) maxmaxmin
eee

prom
c PPPP +−= δ  

 

where Pe
min is the highest error allowed, which plays the role of an upper bound for the 

precision in the estimation, preventing over-fitting, and allowing a better treatment of 
noisy data.  

After the calculation, if the probability of error of the evaluated working subspace is 
above the threshold, then, from all the candidate subspaces from SSc involving the 
evaluated working subspace, the one with lowest probability of error is promoted. To 
save computational resources, only working subspaces related to cecs that produce 
surprises are evaluated. 

Generating Candidate Subspaces 

Every time a candidate subspace is promoted new candidate subspaces are generated.  

The generation takes place for each consistent combination of the recently promoted 
subspace with the conditions of another working subspace of the pcec. All the possible 
combinations will produce new candidate subspaces. 

Finally, once the candidate subspaces are generated, the counters of examples are 
initialized in accordance to the positive and negative examples covered by them.  

Learning Rules 
So far, we have explained how pcecs are learned from experience and how cecs are 
generated from pcecs. Now, we will explain how to relieve the job of the planner by 
memorizing sequences of successfully executed cecs into a macro planning operator 
called rule. 

To guarantee successful execution of a sequence, the precondition of the to-be-executed 
rule should ensure the occurrence of the cec-preconditions in the proper order. This is 
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achieved firstly by accumulating (in the precondition part of the rule) the preconditions 
of the cecs needed to afford the changes. In case a detector takes more than one 
condition value during the sequence, the condition closer to the start of the sequence is 
considered as it should occur first. 

On the other hand, the outcome of the rule should enumerate the results obtained after 
the execution of the whole sequence. This is done by accumulating the outcomes of 
each cec into the outcome-part of the rule. As latest outcomes in the sequence cancel 
early ones when the same detectors are involved, the rule outcome should consider for 
each detector the condition of those cec later in the sequence whenever the same 
detector is involved.  

It is important to remark that, in this first approach, we let the teacher control the rule 
generation by the instruction given. The teacher will instruct a single action when no 
sequence is convenient to be merged into a rule, and he/she will instruct a sequence of 
actions whenever he/she knows that this sequence will be need many times during the 
task or could be difficult to find for the planner. 

Cecs and Rules Correction 
When a surprise arises, the pcec from which the cec was obtained is evaluated. For this 
we require that there is a working subspace in the pcec that has higher probability for 
being a positive example than the subspace from which the cec originated. Furthermore 
this subspace has to be consistent with the whole sequence of cecs stored in the rule. 
Only then an update is performed. This is done by replacing the conditions of the cecs 
with the conditions of the working subspace with the highest probability. 

Consistency in the sequence requires that the changes produced by previous cecs in the 
sequence as well as all the preconditions of posteriors cecs are contemplated in the 
situations where a cec should be applied. Additionally, changed affordance may require 
conditions that do not change by themselves but are nonetheless necessary for the 
execution of the cec. Those conditions should also be guaranteed. Thus, to update a cec 
in a rule, all the previous restrictions need to be verified. 

If the cec results are modified, the rule correction is simply performed by updating the 
rule preconditions and outcomes with the new added conditions. This is done following 
the procedure of rule generation but applied only to the modified parts. 

Outline of the Algorithm 
In this section we present the algorithm of the decision making system using a pseudo-
code.  

Pseudo-code 
INIT system 

Define GOAL 

WHILE goal is not reached 

  { 

  IF PLAN found 

    { 

    Execute PLAN 

    } 

  ELSE (plan not found) 

    { 
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    Teacher instructs actions 

    FOR each action instructed,  

      { 

      Execute action  

      GENERATE new pcec  

      GENERATE new cec from new pcec 

      APPEND new cec to LCECS 

      } 

    GENERATE RULES using LCECS 

    } (else if plan found) 

}(end while GOAL is not reached) 

Execute PLAN 
FOR each cec in PLAN 

  { 

  Execute action 

  IF surprise 

    { 

    IF high uncertainty in the estimations  

      { 

      STORE negative example 

      } 

    If necessity of promoting candidate subspace 

      { 

      PROMOTE best candidate subspace 

      GENERATE new candidate subspaces       

      CORRECT cec with promoted subspace 

      CORRECT rules containing cec 

      } 

    EXIT FOR (stop plan execution and replan) 

    } 

  ELSE (no surprise) 

    { 

    IF high uncertainty in the estimations  

      { 

      STORE positive example 

      } 

    } 

  } (end for) 

 

The learning module procedures are detailed in figure 2. To contextualize see that these 
procedures are those that take place inside the learning box in the schema of figure 1. 
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A) 

 

B) 

 

C) 

Figure 2. A) Learning when there is a surprise; B) Learning after action instructions; C) Learning after a successful 
execution of a cec. 

Conclusions 
The contribution of this work is an extension of the previous system presented in [5]. 
The general architecture of the previous system is maintained but there is a significant 
improvement in the process of learning cause-effects. In [5] the cause-effects were 
learned with the help of human explanations about relevant conditions that afford 
changes. Now this process is completely automatic permitting not only to learn of 
cause-effects without the help of the teacher but also to estimate the chances of 
producing the desired outcome for any set of conditions. Hence, the learning method 
could be now applied to stochastic and non-stationary environments. On the other hand, 
this probabilistic approach may constitute another step toward a possible formalization 
of the OAC: an object description is not restricted to a unique set of conditions but 
multiple set of conditions with different chances of affording the object functionality. 

Nevertheless, there are still many other pending issues to treat like the evaluation of the 
method in real scenarios and the automatic explorations of actions whenever the planner 
fails to find a plan. Other topics are the definition of a criterion for plan memorization 
into rules and the integration of the learning method with an advanced planner module.  
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Abstract: In this work, we address the problem of 3D circle detection in a hierarchical representation which contains
2D and 3D information in the form of multi-modal primitives and their perceptual organizations in terms of
contours. Semantic reasoning on higher levels leads to hypotheses that then become verified on lower levels by
feedback mechanisms. The effects of uncertainties in visually extracted 3D information can be minimized by
detecting a shape in 2D and calculating its dimensions and location in 3D. Therefore, we use the fact that the
perspective projection of a circle on the image plane is an ellipse and we create 3D circle hypotheses from 2D
ellipses and the planes that they lie on. Afterwards, these hypotheses are verified in 2D, where the orientation
and location information is more reliable than in 3D. For evaluation purposes, the algorithm is applied in a
robotics application for grasping cylindrical objects.

1 INTRODUCTION

Circles are important structures in machine vision
since they are a common feature for natural and
human-made objects and they provide more informa-
tion than points and lines about the pose of an ob-
ject. In 3D vision, there are various ways of obtain-
ing edge-like 3D entities (sparse stereo) from a stereo
camera setup. Once the sparse stereo data is grouped
with respect to a perceptual organization scheme, cer-
tain structures can be extracted from individual or
combinations of these perceptual groups. Both, in
dense and sparse stereo the correspondence finding
phase in 3D reconstruction reduces the reliability of
the information. Therefore, while detecting a certain
structure like a 3D circle by using this kind of infor-
mation, one needs to take into account the noise and
uncertainty of the information.

The algorithms that are used to detect 3D circles
can be grouped into three categories. The first cat-
egory consists of voting algorithms like the Hough
transform (Duda et al., 2000). Due to the size of
the parameter space, voting algorithms require much
more memory and computational power than other al-
gorithms.

The second category contains analytical algo-
rithms which use the geometric properties of circles
(e.g., (Xavier et al., 2005)). For laser-range data, this
kind of algorithms run fast and are robust because of
the high-reliability of input data. Stereo vision on the
other hand, introduces too many outliers and uncer-
tainties that make the geometrical properties unstable.

The last category involves fitting algorithms. They
are traditionally based on minimizing a cost func-
tion which depends on a distance function that mea-
sures errors between given points and the fitted circle
(Jiang and Cheng, 2005; Chernov and Lesort, 2005;
Shakarji, 1998). The fitting process can be done ei-
ther in 3D or in 2D. If it is done in 2D, the optimal
plane for the given points is calculated and the points
are projected onto that plane. If the fitting is done
in 3D, the minimization starts with an initial estimate
and tries to converge to the optimal circle. However,
to guarantee convergence, a good initialization is re-
quired. This can be done by starting with multiple
initializations, which decreases the computational ef-
ficiency drastically. One can reduce the parameter
space as in (Jiang and Cheng, 2005) but the noisy na-
ture of stereo vision data decreases the probability of
convergence. Therefore, although fitting in 2D is a



decoupled solution (plane fitting and curve fitting are
handled separately), it is more advantageous in terms
of efficiency and reliability for noisy data.

In this article, an algorithm which is based on fit-
ting in 2D is presented. Note that, the common prac-
tice for such approaches is using only 3D information
and its projection onto 2D. The main specifity of our
approach is, instead of using 3D information only, a
hierarchical representation is used which represents
visual information at different levels of semantic (e.g.,
2D versus 3D) as well as different spatial complexity
(local versus global). By that we obtain information
with different levels reliability. Furthermore, there is
a verification process, which is also performed using
different levels in the representation hierarchy.

In this work, the hierarchical representation pre-
sented in (Krüger et al., 2004) is used. An example
is presented in Figure 1 which shows what kind of
information exists on different levels of the represen-
tation. At the lowest level of the hierarchy, there is
the image with its pixel values (Figure 1(a)). At the
second level, there exists the filtering results (Figure
1(b)) which give rise to the multi-modal 2D primitives
at the third level (Figure 1(c)). At the third level, not
only the 2D primitives but also 2D contours (Figure
1(d)) are available that are created using the percep-
tual organization scheme in (Pugeault et al., 2006).
The last level contains 3D primitives and 3D contours
(Figure 1(e-f)) created from 2D information of the in-
put images.

Since the reliability and the amount of data de-
creases as the level of the representation hierarchy in-
creases ((Pugeault et al., 2008)), lower levels should
be used to verify the operations done in higher lev-
els. For example, localization of a shape in 3D can be
checked in 2D, once the perspective projection of the
shape is known. Note that, there are more primitives
and their orientation and location information is more
reliable in 2D.

The key idea of our approach is to use differ-
ent aspects of visual information according to their
locality/globality, their semantic richness as well as
their reliability in an efficient way. For example, it is
known that 2D information is more reliable than 3D
(since the stereo correspondence problem introduces
additional errors) but 3D information is required to
find 3D position, 3D orientation, and the radius of a
circle. We make use of this trade-off, so that seman-
tic reasoning on a higher level (e.g., 3D information
leads to 3D hypotheses) becomes verified on a lower
but more reliable level (e.g., 2D information) by feed-
back mechanisms. Another aspect is the locality of
the data being used at the different steps of process-
ing. By using semi-global features (i.e., 2D and 3D

Figure 1: Different type of information that is available in
the representation hierarchy (a) Original image (b) Filtering
results (c) 2D primitives (d) 2D contours (e) 3D primitives
(f) 3D contours.

contours) for the computation of hypotheses we de-
crease computational time significantly. Since these
hypotheses are verified using local features, the ef-
fect of additional errors inherent in contours are min-
imized. In this way, we make optimal use of the dif-
ferent levels of the hierarchical representation.

The rest of the article is organized as follows: In
Section 2, the circle detection algorithm is introduced
and some evaluation results in different scenarios with
high variation in terms of circle sizes, 3D positions
and orientation as well as number of circles and other
factors such as occlusion are discussed. The experi-
ments done on different objects in a grasping scenario
where 3D dimension and location play an important
role are presented in Section 3. We conclude with
an evaluation of the algorithm based on these experi-
ments.

2 CIRCLE DETECTION

The algorithm can be summarized in four steps as (1)
ellipse hypotheses creation (Section 2.1), (2) verifi-
cation of these hypotheses (Section 2.2), (3) creating
circles by transferring the verified hypotheses to 3D



(a) (b) (c)

(d) (e)

Figure 2: (a) Original image (b) Two contours on the circle
(One is red and the other is white) (c) Fitted ellipse to the
red contour in (b) (d) Fitted ellipse to the white contour in
(b) (e) Two curves can be merged if min(d1,d2) is small
enough.

(Section 2.3) and (4) verifying the created circles in
2D (Section 2.4).

2.1 Computing Ellipse Hypotheses

Because of the correspondence problem in the 3D re-
construction process, the information in 2D can not
be transferred to 3D completely. Therefore, contours
in 2D contain more primitives than corresponding 3D
contours and a 2D contour can contain projections of
more than one 3D contour. These facts are the moti-
vation to use 2D contours to search for 2D ellipses in
the image. Another important fact is that, a single 2D
contour may not be big enough to compute the ellipse
that we are searching for. In Figure 2(c) and (d), the
ellipses fitted to contours in Figure 2(b) are shown.
Since the red contour is not big enough, the ellipse
fitted to that contour is not the desired one.

Having too small data sets for fitting is a com-
mon problem originating from perceptual organiza-
tion. To overcome this difficulty, a merging mech-
anism has been proposed in (Ji and Haralick, 1999)
which is based on proximity. Two curve segments
are merged if the distance between their closest end
points is smaller than a certain value (Figure 2(e)).
The first step of the algorithm starts with merging the
2D contours by using the proximity criterion. This
merging operation creates a new set of 2D contours
which contain the old 2D contours and their combi-
nations.

Let C i be the set of all 3D contours whose pro-
jections on the image plane are contained in the 2D
contour ci. Then, for the 3D contour C j, P ·C j ∈ ci
iff C j ∈ C i (P is the projection matrix). Note that
when two 2D contours are combined, the result is

(a) (b) (c) (d)

Figure 3: (a)Input image (b)2D contours (c) A true ellipse
(d)A false ellipse.

represented as c+
k and the set of 3D contours whose

projections on the image plane are contained by the
combination is represented as C +

k .
The ellipse hypotheses ek that the 3D circles are

based on are created from the combined contours
where c+

k is the 2D combined contour to which ek is
fitted. The ellipse fitting is done using the algorithm
in (Pilu et al., 1996) which is an ellipse specific least-
squares fitting method. The fitted ellipses are repre-
sented using the general ellipse equation given in (1).

ax2 +2bxy+ cy2 +2dx+2 f y+g = 0 (1)

2.2 Verification of Ellipse Hypotheses

Since we use the merged contours, the fitting proce-
dure creates a lot of false ellipses as well as true ones.
Therefore, not all the fitted ellipses are really in the
scene. A true ellipse is shown in Figure 3(c) which
is fitted to the combination of the two red contours in
Figure 3(b) and a false ellipse is shown in Figure 3(d)
which is fitted to the combination of the bottom red
and the green contour in Figure 3(b).

The elimination of false ellipses is done by find-
ing the significance (Lowe, 1987) of the ellipses. The
percentage of covered length of ei is calculated from
all 2D primitives (represented by π j) that satisfy the
following equations:

‖π j− ei‖ ≤ α1 (2)

|arctan(
d
dx

ei|(x j ,y j)
)−θ j| ≤ α2 (3)

where α1 and α2 are thresholds, (2) is the distance
between π j and ei, (3) is the difference between the
slope of ei at (x j,y j) and the orientation of π j (repre-
sented by θ j) and (x j,y j) is the coordinate of the clos-
est point on ei to π j. If π j satisfies (2) and (3), its patch
size (the diameter of the patch covered by the primi-
tive) is added to the total covered length of ei. If the
percentage of total covered length of ei with respect
to its perimeter is higher than a threshold, namely α3,
the ellipse is qualified as a true ellipse. The true el-
lipses for some scenes are shown in Figure 4 where
α1 = 1 pixel, α2 = 10◦ and α3 = 60%.



Figure 4: Some true ellipse examples.

2.3 Computing 3D Circle Hypotheses

Due to the fact that the perspective projection of a cir-
cle on the image plane is an ellipse, it is possible to
reconstruct the 3D circle, once the plane that the cir-
cle lies on is known. Therefore, at this point, to create
3D circles, the only further information we need is the
plane pi on which the circle that will be created from
ellipse ei lies. After calculating pi, camera geometry
can be used to find all the parameters of the 3D circle
whose perspective projection is ei. Since we know the
2D contour c+

i which gave rise to ei, it is possible to
use the 3D contours C +

i whose projections are con-
tained by c+

i to fit pi. This operation gives the normal
vector of the 3D circle as it is parallel to the normal
vector of pi. What is missing for the 3D circle is the
center and the radius in 3D.

To find the center and the radius of the circle,
discrete points on ei are multiplied with the pseudo-
inverse of the projection matrix (P+) to create rays,
passing through the camera center and the discrete
points of the ellipse. The intersections of these rays
and the fitted plane pi gives 3D points which are sup-
posed to belong to the 3D circle. The center of mass
of these 3D points gives the center of the 3D circle
and this center is used to calculate the radius as the
average distance of the 3D points to the center. Note
that, the 3D circles calculated in the this step can be
represented in parametric form as:

Rcos(t)~u+Rsin(t)(~n×~u)+~c (4)
where ~u is a unit vector from the center of the circle
to any point on the circumference; R is the radius; ~n
is a unit vector perpendicular to the plane and~c is the
center of the circle.

(a) (b)

Figure 5: (a-b)Projection of 3D circles on the image plane
before verification.

Some results are presented in Figure 5(a-b). Note
that more than one combined contour can represent
the same ellipse and they produce correct circles as
well as false ones because of the 3D reconstruction
uncertainties. The false circles are eliminated in the
next step.

2.4 Final Selection of Circle Hypotheses

As the last step, our aim is to find which 3D circle
is the best for ellipses that have been represented by
more than one combined contour. Let E i be the set
of ellipses that are similar. It is impossible for them
to have the same curve parameters so we can measure
the similarity between two ellipses as a cost function
depending on the distance between their centers, the
difference of their perimeters and orientations. The
main idea of the last step is to calculate the signifi-
cance of ellipses which are projections of circles cre-
ated from the ellipses in set E i. We do the evaluation
in 2D since the amount and the reliability of data in
this dimension is higher than 3D. To find the ellipse
which is the perspective projection of a 3D circle, we
can pick 5 points of the circle on the image plane and
use the implicit equation of the conic through 5 points
as in (5). ∣∣∣∣∣∣∣∣

x2 xy y2 x y 1
x2

1 x1y1 y2
1 x1 y1 1
· · ·

x2
5 x5y5 y2

5 x5 y5 1

∣∣∣∣∣∣∣∣ = 0 (5)

The 5 points can be created from (4) for t ∈
{0,80...320}. Equation 5 gives the generic equation
of an ellipse as in (1). Therefore, we find the sig-
nificance of these projected ellipses by using all 2D
primitives π j that satisfy Equations (2) and (3). For
each set E i, only the one circle with the highest sig-
nificance is kept. Some results are presented in Figure
6 and 7.

2.5 Problems

Although the algorithm is stable on tilted, partially
occluded and cluttered circles, perceptual organiza-



Figure 6: 3D circle detection results on different scenarios.
(White ellipses are the projections of 3D circles onto the
image plane).

tion can create problems in case of good continuation
between circular and non-circular parts. Figure 8(b)
illustrates a case, where the red 2D contour combines
a circular and a non-circular part. In such cases, the
remaining circular part (e.g., green contour in Figure
8(b)) may create a valid ellipse hypothesis but trans-
ferring this hypothesis to 3D is heavily dependent on
the plane that is fitted to the 3D points and usually
this situation leads to incorrect 3D circles as shown in
Figure 8(c).

3 APPLICATION IN A GRASPING
SCENARIO

The algorithm described in the previous section is ap-
plied in a robot grasping application. In this section
we describe the setup and use of this application to
evaluate the circle detection.

3.1 System Description

The robotic system used consist of a six degree of
freedom industrial robot (Stäubli RX-60B), a two fin-
ger parallel gripper (Schunk PG 70) and a Point Grey
BumbleBee2 stereo camera (see Figure 9(a)). The
camera is calibrated relative to the robot coordinate
system. Therefore the output of the above algorithm
can be directly used for the computation of the grasp-
ing position.

Figure 7: 3D circle detection results for multiple objects,
different orientation and occlusion. (White ellipses are the
projections of 3D circles onto the image plane).

Figure 8: (a)Original image (b) 2D contours corresponding
to (a) (c) Detected 3D circle.

3.2 Grasp Definition

For this work we selected one of the grasps defined in
the grasping application to evaluate the quality of the
circle detection. The cylindrical object is grasped on
its brim (see Figure 9(b)). The position of the grasp is
expressed similar to the parametric form in (4). From
this observation directly follows that there is actually
not one possible grasp, but a one dimensional mani-
fold of grasps (varying the grasp position around the
circumference of the circle). Additionally the grasp-



(a)

(b)

Gy

xG Gz

(c)

Figure 9: (a) Robot system consisting of six degree of free-
dom industrial robot, two finger gripper and two stereo cam-
era systems (The lower camera systems was used for this
work). (b) Grasp at the brim of the cylindrical object. (c)
Gripper coordinate system.

ing depth h can be chosen according to the require-
ments of the scene. The position p of the grasper can
therefore be defined as:

~p = Rcos(t)~u+Rsin(t)(~n×~u)+~c−~nh . (6)

Figure 9(c) shows the position and orientation of the
grasper coordinate system defined at the end of the
fingers. The grasper needs to be aligned in the follow-
ing way: ~zG = −~n and ~yG = cos(t)~u + sin(t)(~n×~u).
While the gripper opening can be defined as d =
min(2R,dmax).

3.3 Evaluation

Figure 10 shows a number of scenarios where the
gripper is moved to the grasping position computed
based on the circle information (h = 2cm, t was used
in a standard configuration except when this would
have lead to a collision). For the set of experiments
shown, the number of true positives (a circle that ex-
ists in the scene is detected) is 35, the number of false
negatives (a circle that exists in the scene is not de-
tected) is 1 and the number of false positives (a cir-
cle is detected that is not present in the scene) is 13.
As a conclusion, 97.2% of the circles present in the

scene have been detected and out of all detected cir-
cles (true positives and false positives), 72.9% of them
correspond to the circles present in the scene. Note
that, the false positives occur for relatively big circles
where the numerical stability decreases. On the other
hand, using the saliency measure (which is high for
true positives) of the found circles, the true positives
have higher chance to be choosen for grasping. Also,
the different setups show that our system is able to
cope with different levels of complexity.

4 CONCLUSION

We have discussed a 3D circle detection algorithm
which makes use of different aspects of 2D and 3D in-
formation for hypothesis generation and verification.
To be able to cope with the uncertainties of sparse
stereo data, 3D circles are localized in 3D by con-
sidering 2D hypotheses and verified in 2D, where the
information is more reliable. The potential of the ap-
proach has been shown on a grasping application for
different scenarios. As a future work, the problem of
combining circular and non-circular parts will be han-
dled by splitting 2D contours with respect to junctions
and 3D structure of the contour.
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Abstract

We extend the concept of spatially synchronous dynamics in spin-lattice models to the spatiotem-

poral domain to track segments within an image sequence. The method is related to synchro-

nization processes in neural networks and based on superparamagnetic clustering of data. Spin

interactions result in the formation of clusters of correlated spins, providing an automatic label-

ing of corresponding image regions. The algorithm obeys detailed balance. This is an important

property as it allows for consistent spin-transfer across subsequent frames, which can be used

for segment tracking. In the tracking process the correct equilibrium will, thus, always be found,

which is an important advance as compared to other, more heuristic, tracking procedures. In the

case of long image sequences, i.e. movies, the algorithm is augmented with a feedback mecha-

nism, further stabilizing segment tracking.

1. Introduction

How can me make sense out of a complex visual scene having no or only little prior knowl-

edge about its contents and the objects therein? Such problems occur for example if we wish to

learn cause-effects in an hitherto unknown environment. Vice versa, many object definitions are
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only meaningful within the context of a given scenario and a set of possible actions.

Object tracking, i.e. the assignment of consistent labels to objects in different frames of a

video, is important for solving various tasks in the field of computer vision, including automatic

surveillance, human-computer interaction, and traffic monitoring. [37]. Most object tracking

algorithms require that predefined objects of interests are detected in the first frame or in every

frame of the movie. In an unknown scenario however, we prefer to track image segments, pre-

sumbably representing parts of objects, thus postponing object definition to a later step of the

visual-scene analysis. Several approaches for segment tracking have been proposed in the con-

text of video segmentation [7, 27, 31, 9, 21, 38, 34, 19]. Some approaches rely on segmenting

each frame independently, e.g. by classifying pixels into regions based on similarity in the fea-

ture space, followed by a segment matching step based on their low-level features [7, 27, 31, 9].

Other methods use motion projection to link segments, i.e. the position of a segment in a future

frame is estmatid from its current position and motion features [21, 38, 34, 19].

In this paper, we group pixels based on a feature similarity criterium using a method based

on the superparamagnetic clustering of data. Tracking of segments is be accomplished through

simultaneous segmentation of adjacent frames which are linked using local correspondence in-

formation, e.g. computed via standard algorithms for optic flow [3]. Blatt et al. (1998) first

formulated the segmentation problem in terms of Potts models of granular ferromagnets or spins

[22]. In the superparamagnetic phase, segments, i.e. ordered regions of aligned spins, appear

naturally. To further accelerate the relaxation of the spin system, Opara and Wörgötter (1998)

introduced an energy-based cluster updating technique (ECU), based on the cluster-updating

method of Swendsen and Wang [28], and applied the algorithm to the problem of image segmen-
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tation [20, 33].

The motivation for our choice is threefold. First, in superparamagnetic clustering the num-

ber of segments is determined by the algorithm itself and thus does not need to be predefined.

Second, the method obeys detailed balance, ensuring that the algorithm converges to a stable

solutation independent of the initial conditions. Third, the concept of spin-relaxation can be eas-

ily extended to space-time by allowing bonds to be formed between spins belonging to different

movie frames. Thus, time, i.e. frame number, just takes the role of additional dimensions in the

spin-relaxation process, using only energy minimization without further constraints.

The segmentation (or partition) of an image is sensitive to global and local changes of the

image, i.e. small changes in illumination, the appearance/disappearance of objects parts, causing

the partition to change from one frame to the next. By synchronizing the segmentation process

of adjacent frames, these kind of partitioning instabilities can be reduced. Furthermore, segment

correspondences can be established without having to employ segment matching. To further

stabilize segment tracking in the case of long image sequences, we developed a feedback control

mechanism, which allows segmentation instabilities, e.g. sudden disappearences of segments, to

be detected and removed by adjusting a control parameter of the segmentation algorithm.

The paper is structured as follows: In Section 2, we extend the method of superparamagnetic

clustering in spin models to the temporal dimension and introduce the controller algorithm. In

Section 3, we first verificate the core algorithm using short image sequences because these are

more suitable to introduce and test the method. We further investigate the sensitivity of the

algorithm to system parameters and noise. Then, we demonstrate that segment tracking can be

achieved for real movies. In Section 4, the results are discussed.
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2. Algorithmic framework

Segment tracking can be roughly divided into the following subtasks: (i) image segmentation,

(ii) linking (tracking), and (iii) stabilization. The third point acknowledges that segments, unlike

objects, are not per se stable entities, but are sensitive to changes in the visual scene. Subtasks

(i-ii) will be solved using a conjoint spin-relaxation process emulated in an n-D lattice, which de-

fines the core algorithm (Section 2.1). Local correspondence information for linking is obtained

using standard algorithms for either stereo or optic flow [26, 3]. The conjoint segmentation

approach has the advantage that the spin-relaxation processes of adjacent images synchronize,

reducing partioning instabilties.

Since simultaneous segmentation of long image sequences is practically impossible due to

the high computational costs, we usually split the image sequence into a sequence of pairs. For

example, the subsequent frames t0, t1 and t2 are split into two pairs {t0, t1} and {t1, t2}, where

the last frame of previous pair is identical to the first frame of the next pair. If a segment of the

last frame of {t0, t1} and a segment of the first frame of {t1, t2} occupy the same image region,

we can assign the same segment label to both segments. This way segments can be tracked

through the entire sequence. Since the algorithm preserves detailed balance (Section 2.2), spins

can be transferred from one frame to the next, greatly reducing the number of iterations required

to achieve a stable segmentation.

We further stabilize segment tracking by introducing a feedback controller (Section 2.3). In

long image sequences, partioning instabilities are likely to arise at some point during the tracking

process. Thus, segments may be lost due to merging or splitting of segments. The feedback
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controller detects these kind of instabilities and adjust a control parameter of the core algorithm

to recover the original segments.

2.1. Core algorithm

The method of superparamagnetic clustering has been previously used to segment single im-

ages [5, 20, 33]. Applying this framework to image sequences requires spin interactions to take

place across frames. Due camera and object motion the images undergo changes during the

course of time. To connect different frames, the mapping from one frame to the next needs to

be known at least in some approximation. We solve this problem in the following way: Point

correspondences, derived using algorithms for disparity or optic-flow computation, can be in-

corporated into the Potts model by allowing spins belonging to different frames of the image

sequence to interact if the respective pixels belong to locally corresponding image points. Then,

spins belonging to the different frames of the sequences are relaxed simultaneously, resulting in

a synchronized segmentation of the images of the sequence. The inter-frame spin interactions

cause the spins of corresponding image regions to align, and, thus, they will be assigned to the

same segment. Since the formation of segments is a collective process, the point correspondences

do not have to be very accurate nor does the algorithm require point correspondences for each

pixel. It is usually sufficient if the available correspondences capture the characteristics of the

scene only roughly.

The aim of this work is to find corresponding image regions in image sequences, i.e. stereo

pairs and motion sequences. The segment tracking task is formulated as follows. Given an

image sequence S containing points p(x, y, z) with coordinates (x, y, z) as elements, where x
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and y label the position within each image, while z labels the frame number, then we want to

find a partitioning P = P1, .., PM of S in M groups such that

(i) Pi ∩ Pj = 0 and Pi 6= Ø for all groups

(ii) if point p ∈ Pi, then s(p,Pi) > s(p, Pj), where s is a function measuring the average dis-

tance of a point to the elements of a group

(iii) if p(xi, yi, zi) ∈ Pr, then p(xi + 4xi, yi + 4yi, zi + 1) ∈ Pr, where 4xi and 4yi are

the shifts of point p(xi, yi, zi) along the x and y axes, respectively, from frame zi to frame

zi + 1.

To perform this task, we assign a spin variable σi (or label) to each pixel (or site) i of the

image sequence. To incorporate constraints in form of local correspondence information, we

distinguish between neighbors within a single frame (2D bonds) and neighbors across frame

(n-D bonds). We create a 2D bond (i, k)2D between two pixels within the same frame with

coordinates (xi, yi, zi) and (xk, yk, zk) if

|(xi − xk)| ≤ ε2D (1)

|(yi − yk)| ≤ ε2D (2)

zi = zk , (3)

where ε2D is the 2D-interaction range of the spins, a parameter of the system. Across frames, we
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create a n-D bond (i, j)nD between two spins i and j if

|(xi + dxij − xj)| ≤ εnD (4)

|(yi + dyij − yj)| ≤ εnD (5)

zi 6= zj (6)

aij > τ , (7)

where εnD is the n-D interaction range. The values dxij and dyij are the shifts of the pixels between

frames zi and zj along the axis x and y, respectively, obtained from the optic-flow map or dispar-

ity map. The parameters aij are the respective amplitudes (or confidences), and τ is a threshold,

removing all local correspondences having a small amplitude.

We define for every bond on the lattice the distance

4ij = |gi − gj| , (8)

where gi and gj are the gray (color) values of the pixels i and j, respectively. The mean distance

4̄ is obtained by averaging over all bonds. We further define an interaction strength

Jij = 1−4/4̄ . (9)

The spin model is now implemented such a way that neighboring spins with similar color

have the tendency to align. We use a q-state Potts model [22] with the Hamiltonian

H = −
∑
〈ik〉2D

Jikδ(σi − σk)−
∑
〈ij〉nD

Jijδ(σi − σj) . (10)

Here, 〈ik〉2D and 〈ij〉nD denote that i, k and i, j are connected by bonds (i, k)2D and (i, j)nD,

respectively. The Kronecker δ function is defined as δ(a) = 1 if a = 0 and zero otherwise. The
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segmentation problem is then solved by finding clusters of correlated spins in the low temperature

equilibrium states of the Hamiltonian H . The total number M of segments is then determined

by counting the computed segments. It is usually different from the total number q of spin states.

Note that the local correspondences used in the algorithm to create n-D bonds are precomputed

and are not altered or optimized when computing the equilibrium state. The computation of local

correspondences is not the aim of this paper.

We solve this task by implementing a clustering algorithm. In a first step, “satisfied” bonds,

i.e. bonds connecting spins of identical spins σi = σj , are identified. Then, in a second step,

the satisfied bonds are “frozen” with a some probability Pij . Pixels connected by frozen bonds

define a cluster, which are updated by assigning to all spins inside the same clusters the same

new value Swendsen and Wang [28]. In the method of superparamagnetic clustering proposed

by [5] this is done independently for each cluster. In this paper, we will employ the method

of energy-based cluster updating (ECU), where new values are assigned in consideration of the

energy gain calculated for a neighborhood of the regarded cluster [20, 33]. A schematic of the

spin system of an image sequence is depicted in Fig. 1A.

The ECU algorithm computing the equilibrium of H consists of the following steps:

1. Initialization: A spin value σi between 1 and q is assigned randomly to each spin i. Each

spin represents a pixel of the image sequence.

2. Computing bond freezing probabilities: If two spins i and j are connected by a bond and

are in the same spin state σi = σj , then the bond is frozen with a probability

Pij = 1− exp(−0.5Jij/T ) . (11)
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Negative probabilities are set to zero.

3. Cluster identification: Pixels which are connected by frozen bonds define a cluster. A pixel

belonging to a cluster u has by definition no frozen bond to a pixel belonging to a different

cluster v.

4. Cluster updating: We perform a Metropolis update [18, 28] that updates all spins of each

cluster simultaneously to a common new spin value. The new spin value for a cluster c is

computed considering the energy gain obtained from a cluster update to a new spin value

wk. This is done by considering the interactions of all spins in the cluster c with those

outside the cluster, assuming that all spins of the cluster are updated to the new spin value

wk, giving an energy

E(W c
k) =

∑
i∈c

[− ∑
〈ij〉2D
ck 6=cj

ηJijδ(σi − σj)−
∑
〈ij〉nD
ck 6=cj

ηaijJijδ(σi − σj)
]

(12)

where 〈ik〉2D, ck 6= cj and 〈ij〉nD, ck 6= cj are the noncluster neighborhoods of spin i, and

W c
k symbolizes the respective spin configuration. Here, N is the total number of pixels of

the image sequence. The constant η is chosen to be 0.5.

Similar to a Gibbs sampler, the selecting probability P (W c
k ) for choosing the new spin

value to be wk is given by

P (W c
k ) = exp(E(W c

k ))/

q∑
l=1

exp(E(W c
l )) . (13)
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5. Iteration: The new spin states are returned to step 2 of the algorithm, and steps 2-5 are

repeated, until the total number of clusters stabilizes.

6 Segments are defined as groups of correlated spins and can be extracted using a thresh-

olding procedure. All pairs of pixels connected by a bond (i, j) with c(σi, σj) > θ are

considered as friends. The function c computes the correlation of the spin states of i and

j over several iterations. Then, all mutual friends are assigned to the same segment. Fi-

nally, M is determined by counting the total number of segments. In practice, we find it

sufficient to take the clusters found in the last iteration as segments.

2.2. Detailed balance

In an earlier study we had provided evidence that this algorithm obeys detailed balance. The

full proof shall not be repeated here and can be found in [20], but we will outline its idea briefly

again as the existence of detailed balance is of central importance for being able to transfer spin

configurations across frames.

Detailed balance assures that the proposed algorithm computes an equilibrium spin config-

uration, i.e. the segmentation, which minimizes the energy function on the labels, and that this

is Boltzmann distributed. In more formal terms: We have two sets of variables: the spin-value

configuration W ∈ Σ, where Σ is the space of all configurations, and (similar to the Swendsen

and Wang algorithm [28]), and the cluster configuration C ∈ Γ, where Γ is the space of all

clusters. The complete system assumes configurations in the shared configuration space ΓxΣ.
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The goal of the ECU algorithm is to label an image according to the energy function on the la-

bels E(W ), which leads to an equilibrium probability distribution P (W ) = exp[−E(W )/T ]/Z,

where Z is the partition function. Labeling could, for example, be done simply by Gibbs sam-

pling, but Gibbs sampling of individual spins can be very slow. To speed up sampling, we define

an energy function over additional variables, the clusters c, such that the equilibrium distribu-

tion P (W,C) = exp([−E(W )/T ]/Z still has the same marginal distribution,
∑

C P (W,C) =

P (W ), as defined above. Then we define a Markov process over this joint system consisting of

two steps: (1) sampling of clusters given the spins P (W,C → W,C ′) and (2) sampling of spins

given the clusters P (W,C → W ′, C). The claim to prove consists of two aspects. If detailed

balance holds, applying these two steps in succession should (1) result in the desired equilibrium

distribution P (W,C), which has the desired marginal distribution over spins P (W ) and (2) it

needs to be the Boltzmann distribution [28, 4].

The consequence of detailed balance is that spin states can be transferred across image pairs,

where spins are being calculated for one pair (the first pair) and then pixels in the next two frames

(the second pair) are just assigned these spins from where on a new relaxation process starts (see

Fig. 5 for an example). Hence, the relaxation process for the second pair (and all to follow)

is much faster when using spin transfer and the system will always arrive at the correct final

thermodynamic equilibrium making spin-transfer based segmentation concordant across frames.

Note, this property allows consistent segment tracking across many frames without additional

assumptions (see Fig. 5), which requires more effort with other methods. This makes this algo-

rithm a possibly very useful and fast enough tool for model free segment tracking applications

as will be shown by one example in Fig. 7.
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2.3. Feedback control

Segmentation instabilities arising during the tracking process can be partly removed by ad-

justing the temperature parameter of the core algorithm. The temperature choice affects the

formation of segments, hence, a segment which has been lost in a previous frame, can sometimes

be recovered by increasing the temperature for certain period.

The feedback controller tracks the size of the segments and reacts if the size of a segment

changes suddenly. The first controller function

P j
C(t) =


1 if4Sj(t) < τ1,

exp [−4Sj(t)/α] /β otherwise,

(14)

measures the probability of change of segment j, where Sj(t) is the size of segment j at frame t

and4Sj(t) = Sj(t)− Sj(t− 1), and α, β, τ1 are parameters. The history of segment j in terms

of occurrence is captured by the second controller function

P j
H(t) = 0.4Hj(t− 1) + 0.3Hj(t− 2) + 0.2Hj(t− 3) + 0.1Hj(t− 4) , (15)

with Hj(t) = 1 if Sj(t) > 0 and zero otherwise.

Segmentation instabilities may cause a segment to be lost, for example through segment

merging or splitting. We define two threshold parameters τ2 and τ3. An unexpected segment loss

is detected by the controller if the conditions

Sj = 0 , (16)

PC < τ2 , (17)

and PH > τ3 (18)
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are fulfilled. An unexpected segment appearance is detected by the controller if the conditions

PC < τ2 (19)

and PH < τ3 (20)

are fulfilled. The identities of the affected segments are stored by the controller. The temperature

of the core algorithm is varied using predefined temperature steps 4T . The segmentation is

repeated at the new temperature T + 4T for the affected frames. If the lost segments can be

recovered at one of these temperatures, the affected segments are relabeled accordingly.

A schematic of the entire system, i.e. core algorithm with feedback control, is presented in

Fig. 1B.

3. Results

We apply the algorithm to various synthetic and real image sequences. Unless otherwise

indicated, the following parameter values q = 10, ε2D = 1, and εnD = 0 are used. In Section 3.1,

the core algorithm is applied to short image sequences and a sensitivity analysis is performed.

Then, in Section 3.2, feedback control is added and the algorithm is applied to movies.

3.1. Verification of core algorithm

We first use stereo image pairs and a three-frame motion sequence to test and verificate the

core method (Section 2.1) before applying the algorithm to long image sequences, i.e. movies.

Stereo images are more suitable to illustrate the basic properties of the algorithm. In the following

figures we use spin states instead of cluster labels to limit the total number of colors in the color-

coded images to a maximum value of q. Please note that the spin states are not identical to
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the cluster labels. Spins which belong to the same clusters are always in the same spin state,

however, the reverse is not always true. The spin states have to be observed over several iterations

to identify clusters as groups of correlated spins.

3.1.1. Illustrating example: artifical solid square

We first demonstrate the algorithm for a synthetic scene which contains a single, solid square,

which is shifted by a disparity value of 40 pixels along the x axis, resulting in an image sequence

containing two frames, labeled left and right (see Fig. 2A, left and right panel). Each image is

of size 100× 100 pixels2. We estimate the disparity of the pixels by applying a stereo algorithm

[26], which returns a disparity mapD and an amplitude mapA, shown in Fig. 2B-C, respectively.

The disparities and the respective amplitudes determine whether a pixel in the right frame is a

neighbor of a pixel in the left frame. Clustering is performed with T = 0.01. The spin states of

the spin system are initialized to randomly chosen discrete values between 1 and 10, as depicted

in Fig 2D, left and right panel. Then, the system is evolved using the energy-based cluster update

algorithm described in the previous section. The spin states after 2, 5, 9, 17, 33, 65 iterations of

the algorithm are shown in Fig. 2E. The process of cluster formation can be easily followed

through the iterations. At iteration step 65, the pixels belonging to the square in both the left and

the right frame have been assigned to the same cluster, despite incomplete disparity information.

3.1.2. Sensitivity analysis

We investigate the sensitivity of the algorithm in dependence of the parameter T for different

levels of Gaussian white noise that we add to the solid-square stereo pair. In Fig. 3A, the ratio

of the averaged number of clusters after 100 iterations, computed from 10 runs of the algorithm,
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and the total number of pixels is plotted as a function of the temperature T for four different

realizations of Gaussian noise with standard deviations from the absolute gray-value difference

of object and background of 0%, 1%, 10%, and 20%, depicted in red, blue, black, and green,

respectively. For this sequence, a perfect segmentation is achieved for Nc = 2, corresponding

to Nc/N = 10−4. For a noise level of 0%, the performance of the algorithm is only weakly

sensitive to changes in temperture (red line). However, when adding noise to the images, the

algorithm becomes more sensitive to changes in temperature (blue line), but fast saturates for

increasing noise levels (black and green line). For each noise level, the segmentation results are

depicted for T = 0.3. To establish the 3D neighborhood of image pixels here, the ground-truth

disparity map of the image pair was used. However, usually, when adding noise, the quality of the

disparity map decreases. Consequently, we also investigated the performance of the algorithm

when computing the disparity map with a phase-based stereo algorithm. In Fig. 3B, the ratio

of the number of clusters and the total number of image pixels is depicted as a function of the

noise level at temperature T = 0.1 (black line). The ratios when using the ground truth disparity

is plotted for comparison (black line). In this example, the performance is independent of the

quality of the disparity map.

We further investigate the performance of the algorithm with respect to establishing corre-

spondences on the example of the Cones stereo pair (URL: vision.middlebury.edu/stereo/). The

left frame of the Cones stereo pair is shown as an inset of Fig. 3C. The percentage of wrongly as-

signed image points was computed independently for every segment, and the average percentage

of wrongly assigned image points was plotted as a function of the mean length of the segments

(Fig. 3C). A segment of length l contains l2 image points. The plot demonstrates that the per-
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formance of the algorithm is higher for large segments than for small segments, confirming our

expectation that color segmentation works best for large uniform image regions. In textured

areas, corresponding to very small segment sizes, the performance of the algorithm decreases

rapidly.

We also investigated the influence of errors in the precomputed disparity on the performance

of the algorithm by replacing disparity values of the ground-truth map randomly by erroneous

values ranging from 0 to n, where n is the width of the image. In Fig. 3D the total percentage of

wrongly assigned image points (taken from all segments) is plotted as a function of the density

of erroneous disparity values. As expected, the performance decreases with increasing error

in the disparity map. In summary: one finds that the errors are in general small and the error

curves flat for larger segments corresponding to non-textured regions. It is evident that all gray

(color) difference based segmentation algorithms in general do not capture textured regions and

the increasing errors for small segments reflect this situation. On the other hand, it is very

assuring that those segments, which follow from larger consistent gray (color) value similarities,

are indeed only little affected by errors in the (stereo-)correspondence map.

3.1.3. Real stereo pair

This stereo pair shows two views of a scene of cluttered objects, i.e., paper boxes, a trash can,

and a white Styrofoam object (Fig. 4A, left and right panel). Each image is of size 180 × 380

pixels2. This stereo pair is demanding because of the amount of occlusion, the light reflexions,

shadows, and the large disparities, which lead to perspective distortions, posing a problem to

approaches based on segment matching. The stereo algorithm returns reliable disparity values at
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the edges (Fig. 4B-C). Otherwise, the amplitude is zero (Fig. 4C). However, when performing

clustering with T = 0.2, the algorithm is still able to segment most of the boxes into their

composite surfaces (Fig. 4D-E). Some of the surfaces are partly shattered though, due to light

reflexions and shadows, breaking the uniformity of the surfaces. Both the spin states after 150

and 176 iterations are shown to allow easier identification of correlated spins through visual

inspection.

3.1.4. Real motion sequence

So far we had been validating our method using synthetic and real stereo pairs. Now we

demonstrate that spatiotemporal synchronization of spins enables segments to be tracked through

the frames of real movies.

We apply the core algorithm to three frames of a motion sequence showing a woman walking

from the right to the left. The frames are of sizes 118× 158 pixels2 (Fig. 5A). To compute optic

flow, various algorithms can be used, i.e. a differential technique by Lucas and Kanade [17].

The performance of the segmentation is only weakly sensitive to the quality of the optic-flow

estimation. The optic-flow fields, coding the mapping from the frame t0 to frame t1, and from

frame t1 to frame t2, are depicted in Fig. 5B. The spin states after 100 iterations are shown in

Fig. 5C. The algorithm successfully segmented the legs, the arms, a part of the head, and parts of

the background, which thus can be tracked from frame to frame. For the highly textured area in

the background, no stable 3D clusters could form since the gray-value similarity of neighboring

pixels is too low. However, texture could be in principal treated by performaing segmentation

based on texture similarity instead of color similarity.
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When analyzing long motion sequences, it is inefficient to apply the algorithm to all frames

at once because the computational costs increase with the number of pixels. Hence, we split

the sequences in pairs of two frames at a time, where the last frame of the previous sequence

is identical with the first frame of the next sequence. Then, we initialize the spin states of each

sequence with the final spin states of the previous sequence. The spin states for the first sequence

containing frame t0 and t1 after 100 iterations are shown in Fig. 5D. Then, the algorithm is

applied to the next pair, containing frame t1 and t2, where the spin states of both frame have been

initialized to the final spin states of frame t1 of the previous sequence. The spin states after 13

iterations are shown in Fig. 5E, demonstrating that the number of iterations required to achieve

a satisfying segmentation result is greatly reduced by this technique. The number of clusters for

the first sequence and the second sequence are displayed as a function of the iteration number in

Fig. 5F, dashed and solid line, respectively. The number of clusters for the second sequence is

plotted as a function of the iteration number at a different scale (Fig. 5G). Initially, the number of

clusters decreases slightly and then approaches a stable state. In a motion sequence, the number

of clusters is expected not to change much from one frame to the next. Mainly the boundaries of

the clusters reorganize during the first iterations.

The segments of adjacent image pairs are connected as follows. Two segments belonging

to the segmentation of frame t1 of pair {t0, t1} and frame t1 of pair {t1, t2}, respectively, are

assigned the same label if they occupy the same region in image frame t1. This way we can track

the segment through the whole sequence.
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3.2. Segment tracking with feedback stabilization

We add feedback control (see Section 2.3) with parameters α = 200 pixels, β = 0.8, τ1 = 50

pixels, τ2 = 0.9, and τ3 = 0.6 to the core algorithm with temperature T = 0.1 and apply the

algorithm to long image sequences. The first movie shows a hand taking a red apple from a plate

with several fruits. A few frames of the movie are depicted in the upper panel of Fig. 6A. If the

core algorithm is applied at constant temperature without feedback control, the red segment and

the light pink segment, representing the respective parts of the red apple and the orange, are lost

at frame number 45 due a segmentation instability: The red segment and the light pink segment

merge and form a new segment, colored in light blue (see Fig. 6A, middle panel). If feedback

control is included, this segmentation instability is detected and the original segments can be

recovered by increasing the temperature in steps of4T = 0.1. As a consequence, the segments

can be continuously tracked, as shown in Fig. 6A (lower panel). The segments representing the

cup could be recovered using the same mechanism.

The work of the feedback controller is further illustrated in Fig. 6B, where the segment size

is plotted as a function of the frame number for the segments representing the red apple and the

orange without and with feedback control, depicted as red, blue, brown and green lines, respec-

tively. At frame number 45 the segment sizes of the red apple and the orange drop unexpectedly

to zero (red and blue lines), thus indicating a segmentation instability (see Section 2.3). As a

consequence, the feedback controller is activated and the temperature of the core algorithm is

increased until the original segments are recovered (brown and green lines). The results for the

whole movie are shown in Fig. 7A.

We further applied the algorithm to another movie, showing the filling of a cup with sugar
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(Fig. 7B). The movie is challenging because it contains light reflexions and changing shadows.

However, the algorithm is capable of tracking the main segments of the movie, i.e. the two cups

and the hand.

4. Discussion

We presented an algorithm for segment tracking based on a novel, conjoint framework, com-

bining local correspondences and image segmentation to synchronize the segmentation of adja-

cent images. The algorithm provides a partitioning of the image sequence in segments, such that

points in a segment are more similar to each other than to points in another segment, and such

that corresponding image points belong to the same segment. We tested the method on various

synthetic and real image sequences, and showed stable and reliable results overall, thus fulfilling

the most important requirement of segmentation algorithms. The method leads to the formation

of stable region correspondences despite largely incomplete disparity or optic-flow maps. Simi-

lar algorithms for the extraction of region correspondences could potentially be constructed using

other image segmentation algorithms, i.e. methods based on agglomerative clustering [35, 11].

We decided to use physics-based model for its conceptual simplicity which allowed us to inte-

grate local correspondence information in a straightforward way. It further has the advantage

that the interacting parts are inherently converging to the equilibrium state and thus are not being

trapped in local extrema (detailed balance). As a consequence, the result is independent of the

initial conditions, allowing us to apply the algorithm to long image sequences via spin-states

transfer. This allows for consistent segment tracking across many frames without additional as-

sumptions, which is most of the time not immediately possible with other methods. In addition,
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no assumptions about the underlying data are required, e.g. the number of segments, leading to

a model-free segmentation. This has the consequence that a single pixel of distinct gray value

(compared to its neighbors) might define a single segment. In algorithms, which partition the

image into a fixed and usually small number of segments, this phenomenon does not occur. This,

however, is a problem as in all realistic situations one never knows how many segments exist

and self-adjustment of the total number of segments is, thus, usually desired as compared to a

pre-defined maximal number.

We further introduced a feedback controller which allows to detect segmentation instabilities,

i.e. merging and splitting of segments. The feedback controller adjusts the control parameter of

the core algorithm in order to recover the original segments. This allows to keep track of segment

even in long movies.

Segment tracking has been performed previously in the context of video segmentation [7, 27,

31, 9, 21, 38, 34, 19]. Our method differs from these approaches in the choice of the segmen-

tation algorithm, the way linking is achieved, and the addition of a feedback controller which

detects segmentation instabilities. Superparamagnetic clustering allows a model-free unsuper-

vised segmentation of the image sequences, including a self-adjustment of the total number of

segments. Linking is introduced trough local correspondence information which synchronizes

the spin-relaxation process of adjacent images. This approach has the advantage that the par-

tioning of adjacent images are less prune to partitioning instabilities. Further, our method does

not require corresponding region to fulfill any segment similarity measure. Finally, feedback

controll allows segmentation instabilites occuring in long sequences to be removed by assuming

that “good” segments change their size in a continuous manner.
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There have been a few other approaches combing image segmentation with correspondence

information. The work by Toshev et al. [30] uses a joint-image graph containing edges repre-

senting intra-image similarities and inter-image feature matches to compute matching regions.

Joint segmentation has also been employed by Rother et al. [24] using histogram matching.

Vision problems have been formulated in terms of energy minimization in many ways before.

The major challenge of these approaches lies in the computation of the global minimum, which

is often difficult in particular for interesting energy functions. Various techniques have been

proposed, such as variational methods [15], graph cuts [14, 10, 25, 16, 6, 32, 36, 12], dynamic

programming [1], simulated annealing [13], or relaxation labeling [8, 23, 29]. Superparamag-

netic clustering has been shown to equilibrate to a global minimum for the Potts model used

in this work [20]. The work of Barbu and Zhu [2], which computes disparities by minimizing

energy functions through an inference algorithm defined on graph partitions, shows some simi-

larities to the core algorithm proposed in this paper, even though it has been applied to a different

problem, i.e. stereo matching. However, the algorithm of Barbu and Zhu (2005) the number of

segments is a parameter to the algorithm. Unlike in superparamagnetic clustering, it is assumed

that there is a natural set of labels (disparities), and a data penalty function, which makes some

pixel-label assignments more likely than others. These assumptions will lead to a violation of

detailed balance and spin-transfer is not possible in this framework.

In the future, we aim to track segment in unknown scenarios, for example in a robot explo-

ration task, and to infer cause-effects from the spatiotemporal relationships of segments. We are

currently working on a parallel implementation of the algorithm on GPUs to achieve real-time

segment tracking for robot applications.
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Figure 1: A The spin states (upward and downard pointing arrows) of pixels i, k, and j are shown

before and after a spin update for two adjacent frames t and t+1 of an image sequence. The white

and black circels indicate pixels of small and large gray values, respectively. Pixel i interacts

with pixels k and j in its 2D and 3D neighborhood (shaded areas), respectively, which are in the

same spin state. B Pairwise segmentation of movies. A feedback controller detects segmentation

instabilities and adjusts the control parameter T of the core algorithm (3D segmentation) to

recover lost segments. 29
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Figure 3: Sensitivity analysis. A The ratio of the total number of clusters Nc divided by the

total number of pixels N is plotted as a function of the parameter T for different realizations

of Gaussian noise, having standard deviations from the absolute gray-value difference of object

and background of 0%, 1%, 10%, and 20%. The segmentation results are shown for T = 0.3

and different noise levels. B The ratio Nc/N is plotted as function of the noise level using

the ground-truth disparity map (red line) and the disparity computed with a phase-based stereo

algorithm [26] (black line). C Percentage of wrongly assigned image points as a function of

the mean segment length for the Cones stereo pair (left image see inset). D Total percentage of

wrongly assigned image points as a function of the density of erroneous disparities.
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Figure 4: Cluttered-objects stereo pair. A Stereo image pair showing a cluttered scene containing

a variety of objects. B-C The dense stereo algorithm returns mainly disparity information the

edges of the objects. D-E The spin states computed by the clustering algorithm are shown after

both 150 and 176 iterations for easier visual identification of the segments.
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Figure 5: A Three frames of a motion sequence of a person walking from the right to the left,

labeled t0, t1, and t2, respectively. B Estimated optic-flow fields coding the mapping from frame

t0 to frame t1, and from frame t1 to frame t2. C Spin states after 100 iterations. D Spin states

for a sequence only containing the first two frames, t0 and t1. E Spin states for a sequence

containing only the last two frames, t1 and t2, where the spin states are initialized to the spin

states of the previous computation. F The number of clusters is plotted as a function of the

iteration number for the first sequence containing frame t0 and t1 (dashed line) and for the second

sequence containing frame t1 and t2 (solid line). G Enlarged plot of the second sequence.
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Figure 6: Feedback control for segmentation stabilization. A A few frames of a movie showing

a hand taking a red apple from a plate are shown together with the results of the core algorithm

without and with feedback control (upper, middle, and lower panel, respectively). B The seg-

ment size is plotted as a function of the frame number for the segments representing the red

apple and the orange without and with feedback control, depicted as red, blue, brown and green

lines, respectively. At frame number 45 the segment sizes of the red apple and the orange drop

unexpectedly to zero (red and blue lines), and the feedback control is activated, increasing the

temperature T until the original segments are recovered (brown and green lines).
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Figure 7: Segment tracking for real movies. A The algorithm (with feedback control) is applied

to a movie showing a hand taking an apple from a plate (upper panel). The corresponding

segment-tracking results are depicted below. B The results of the algorithm (with feedback

control) for a movie showing the filling of a cup are shown.
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Abstract—This paper addresses the issue of learning and
representing object grasp affordances, i.e. object-gripper relative
configurations that lead to successful grasps. The purpose of
grasp affordances is to organize and store the whole knowledge
that an agent has about the grasping of an object, in order
to facilitate reasoning on grasping solutions and their achiev-
ability. The affordance representation consists in a continuous
probability density function defined on the 6D gripper pose
space – 3D position and orientation –, within an object-relative
reference frame. Grasp affordances are initially learned from
various sources, e.g. from imitation or from visual cues, leading
to grasp hypothesis densities. Grasp densities are attached to
a learned 3D visual object model, and pose estimation of the
visual model allows a robotic agent to execute samples from
a grasp hypothesis density under various object poses. Grasp
outcomes are used to learn grasp empirical densities, i.e. grasps
that have been confirmed through experience. We show the result
of learning grasp hypothesis densities from both imitation and
visual cues, and present grasp empirical densities learned from
physical experience by a robot.

I. INTRODUCTION

Grasping previously unknown objects is a fundamental skill
of autonomous agents. Human grasping skills improve with
growing experience with certain objects. In this paper, we
describe a mechanism that allows a robot to learn grasp
affordances of objects described by learned visual models.
Our first aim is to organize and memorize, independently
of grasp information sources, the whole knowledge that an
agent has about the grasping of an object, in order to facilitate
reasoning on grasping solutions and their likelihood of success.
We represent the affordance of an object for a certain grasp
type through a continuous probability density function defined
on the 6D gripper pose space SE(3), within an object-relative
reference frame. The computational encoding is nonparamet-
ric: A density is represented by a large number of weighted
samples called particles. The probabilistic density in a region
of space is given by the local density of the particles in that
region. The underlying continuous density function is accessed
through kernel density estimation [21].

The second contribution of this paper is a framework that
allows an agent to learn initial affordances from various grasp
cues, and enrich its grasping knowledge through experience.
Affordances are initially constructed from human demonstra-
tion, or from a model-based method [1]. The grasp data
produced by these grasp sources is used to build continuous
grasp hypothesis densities (Section VI). These densities are

attached to a 3D visual object model learned before-hand [7],
which allows a robotic agent to execute samples from a grasp
hypothesis density under arbitrary object poses, by using the
visual model to estimate the 3D pose of the object.

The success rate of grasp samples depends on the source
that is used to produce initial grasp data. However, no existing
method can claim to be perfect. For example, data collected
from imitation will suffer from the physical and mechanical
difference between a human hand and a robotic gripper.
In the case of grasps computed from a 3D model, results
will be impeded by errors in the model, such as missing
parts or imprecise geometry. In all cases, only a fraction of
the hypothesis density samples will succeed; it thus seems
necessary to also learn from experience. To this end, we
use samples from grasp hypothesis densities that lead to a
successful grasp to learn grasp empirical densities, i.e. grasps
that have been confirmed through experience.

A unified representation of grasp affordances can potentially
lead to many different applications. For instance, a grasp
planner could combine a grasp density with hardware physical
capabilities (robot reachability) and external constraints (ob-
stacles) in order to select the grasp that has the largest chance
of success within the subset of achievable grasps. Another
possibility is the use of continuous grasp success likelihoods
to infer robustness requirements on the execution particular
grasp: if a grasp is centered on a narrow peak, pose estimation
and servoing should be performed with more caution than
when the grasp is placed in a wide region of high success
likelihood.

II. RELATED WORK

Object grasps can emerge in many different ways. A popular
approach is to compute grasping solutions from the geometric
properties of an object, typically obtained from a 3D object
model. The most popular 3D model for grasping is prob-
ably the 3D mesh [13], [17], obtained e.g. from CAD or
superquadrics fitting [2]. However, grasping has also success-
fully been achieved using models consisting of 3D surface
patches [20], 3D edge segments [1], or 3D points [11].

When combined with an object pose estimation technique,
the previous methods allow a robot to execute a grasp on a
specific object. This involves object pose estimation, compu-
tation of a grasp on the aligned model, then servoing to the
object and performing the grasp [13].



Means of representing grasp affordances probabilistically
have been discussed in the work of de Granville et al. [5],
which is quite closely related in spirit to ours. In this work,
affordances correspond to object-relative hand approach orien-
tations, although an extension where object-relative positions
are also modeled is under way [4]. The aim of the authors
is to build compact sets of canonical grasp approaches from
human demonstration; they mean to compress a large number
of examples provided by a human teacher into a small number
of clusters. An affordance is expressed through a density
represented as a mixture of position-orientation kernels; ma-
chine learning techniques are used to compute mixture and
kernel parameters that best fit the data. This is quite different
from our approach, where a density is represented with a
much larger number of simpler kernels. Conceptually, using
a larger number of kernels allows us to use significantly
simpler learning methods (down to mere resampling of input
data, see Section VI-A). Also, the representation of a grasp
cluster through a single position-orientation kernel requires the
assumption that hand position and orientation are independent
within the cluster, which is generally not true. Representing
a cluster with many particles can intrinsically capture more
of the position-orientation correlation (see Section VII, and
in particular Fig. 7). The affordance densities presented by
de Granville et al. correspond to the hypothesis densities
developed in this paper.

III. SYSTEM OVERVIEW

The visual object model to which affordances are attached
is the part-based model of Detry et al. [7] (Section IV-C).
An object is modeled with a hierarchy of increasingly ex-
pressive object parts called features. The single top feature
of a hierarchy represents the whole object. Features at the
bottom of the hierarchy represent short 3D edge segments
for which evidence is collected from stereo imagery via the
Early-Cognitive-Vision (ECV) system of Krüger et al. [14],
[19] (Section IV-A). In the following, we refer to these edge
segments as ECV descriptors. The hierarchical model grounds
its visual evidence in ECV reconstructions: a model is learned
from segmented ECV descriptors, and the model can be used
to recover the pose of the object within an ECV representation
of a cluttered scene.

The mathematical representation of grasp densities and
their association to hierarchical object models is discussed in
Section V. In Section VI, we demonstrate the learning and
refining of grasp densities from two grasp sources. The first
source is imitation of human grasps. The second source uses a
model-based algorithm which extracts grasping cues from an
ECV reconstruction (Section IV-B).

IV. METHODS

A. Early Cognitive Vision

ECV descriptors [14], [19] represent short edge segments
in 3D space, each ECV descriptor corresponding to a patch
of about 25 square millimeters of object surface. To create
an ECV reconstruction, pixel patches are extracted along

(a) ECV descriptors (b) Accumulated reconstructions

Fig. 1. ECV reconstructions

Fig. 2. Grasp reflex based on visual data.

image contours, within images captured with a calibrated
stereo camera. The ECV descriptors are then computed with
stereopsis across image pairs; each descriptor is thus defined
by a 3D position and orientation. Descriptors may be tagged
with color information, extracted from their corresponding 2D
patches (Fig. 1a).

ECV reconstructions can further be improved by manipu-
lating objects with a robot arm, and accumulating visual in-
formation across several views through structure-from-motion
techniques [10]. Assuming that the motion adequately spans
the object pose space, a complete 3D reconstruction of the
object can be generated, eliminating self-occlusion issues [12]
(see Fig. 1b).

B. Grasp Reflex From Co-planar ECV Descriptors

Pairs of ECV descriptors that are on the same plane and
which have color information such that two similar colors are
pointing towards each other can be used to define grasps.
Grasp position is defined by the location of one of the
descriptors. Grasp orientation is calculated from the normal
of the plane linking the two descriptors, and the orientation of
the descriptor at which the grasp is located [12] (see Fig. 2).
The grasps generated by this method will be referred to as
reflexes. Since each pair of co-planar descriptors generates
multiple reflexes, a large number of these are available.

C. Feature Hierarchies For 3D Visual Object Representation

As explained in Section IV-A, an ECV reconstruction mod-
els a scene or an object with low-level descriptors. This section
outlines a higher-level 3D object model [7] that grounds its
visual evidence in ECV representations.

An object is modeled with a hierarchy of increasingly
expressive object parts called features. Features at the bottom
of the hierarchy (primitive features) represent ECV descriptors.
Higher-level features (meta-features) represent geometric con-
figurations of more elementary features. The single top feature
of a hierarchy represents the object.



Unlike many part-based models, a hierarchy consists of fea-
tures that may have several instances in a scene. To illustrate
this, let us consider a part-based model of a bike, in which
we assume a representation of wheels. Traditional part-based
models [9], [3] would work by creating two wheel parts – one
for each wheel. Our hierarchy however uses a single generic
wheel feature; it stores the information on the existence of
two wheels within the wheel feature. Likewise, a primitive
feature represents a generic ECV descriptor, e.g. any descriptor
that has a red-like color. While an object like the basket of
Fig. 1 produces hundreds of red ECV descriptors, a hierarchy
representing the basket will, in its simplest form, contain a
single red-like primitive feature; it will encode internally that
this feature has many instances within a basket object.

A hierarchy is implemented in a Markov tree. Features
correspond to hidden nodes of the network; when a model is
associated to a scene (during learning or detection), the pose
distribution of feature i in the scene is represented through
a random variable Xi. Random variables are thus defined
over the pose space, which exactly corresponds to the Special
Euclidean group SE(3) = R3 × SO(3). The random variable
Xi associated to feature i effectively links that feature to its
instances: Xi represents as one probability density function
the pose distribution of all the instances of feature i, therefore
avoiding specific model-to-scene correspondences.

The geometric relationship between two neighboring fea-
tures i and j is encoded in a compatibility potential
ψij(Xi, Xj). A compatibility potential represents the pose
distribution of all the instances of the child feature in a
reference frame defined by the parent feature; potentials are
thus also defined on SE(3).

The only observable features are primitive features, which
receive evidence from the ECV system. Each primitive fea-
ture i is linked to an observed variable Yi; the statistical
dependency between a hidden variable Xi and its observed
variable Yi is encoded in an observation potential φi(Xi),
which represents the pose distribution of ECV descriptors that
have a color similar to the color of primitive feature i.

Density functions (random variables, compatibility poten-
tials, observation potentials) are represented nonparametri-
cally: a density is represented by a set of particles [7].

D. Pose Estimation

The hierarchical model presented above can be used to
estimate the pose of a known object in a cluttered scene.
Estimating the pose of an object amounts to deriving a
posterior pose density for the top feature of its hierarchy, which
involves two operations [7]:

1) Extract ECV descriptors, and transform them into ob-
servation potentials.

2) Propagate evidence through the graph using an applica-
ble inference algorithm.

Each observation potential φi(Xi) is built from a subset of the
early-vision observations. The subset that serves to build the
potential φi(Xi) is the subset of ECV descriptors that have a

Xo

X2

Y2Y1

X1 Xg

ψog
ψo2ψo1

grasp
Red ECVGreen ECV
descriptordescriptor

Pinch

Fig. 3. Multi-sensory modeling of a table-tennis paddle with a 2-level
hierarchy. The paddle is represented by feature o (top). Feature 1 represents
a generic green ECV descriptor. The rectangular configuration of green edges
around the handle of the paddle is encoded in ψo1. Y1 and Y2 are observed
variables, which link features 1 and 2 to the visual evidence produced by
ECV. Xg is a grasp feature, linked to the object feature through the pinch
grasp affordance ψog .

color that is close enough to the color associated to primitive
feature i.

Evidence is propagated through the hierarchy using a belief
propagation (BP) algorithm [18], [22]. BP works by ex-
changing messages between neighboring nodes. Each message
carries the belief that the sending node has about the pose
of the receiving node. In other words, a message allows the
sending feature to probabilistically vote for all the poses of
the receiving feature that are consistent with its own pose
– consistency being defined by the compatibility potential
through which the message flows. Through message passing,
BP propagates collected evidence from primitive features to
the top of the hierarchy; each feature probabilistically votes
for all possible object configurations consistent with its pose
density. A consensus emerges among the available evidence,
leading to one or more consistent scene interpretations. The
pose likelihood for the whole object is eventually read out of
the top feature; if the object is present twice in a scene, the top
feature density should present two major modes. The global
belief about the object pose may also be propagated from the
top node down the hierarchy, reinforcing globally consistent
evidence and permitting the inference of occluded features.

Algorithms that build hierarchies from accumulated ECV
reconstructions are discussed in prior work [6].

V. REPRESENTING GRASP DENSITIES

This section is focused on the probabilistic representation of
grasp affordances, and on the integration of grasp affordances
within the hierarchical object model. By grasp affordance, we
refer to the different ways to place a hand or a gripper near an
object so that closing the gripper will produce a stable grip.
The grasps we consider are parametrized by a 6D gripper pose
composed of a 3D position and a 3D orientation.

A. Grasp Features

Within our framework, a grasp affordance is represented
with a probability density function defined on SE(3) in an
object-relative reference frame. Probabilistically speaking, we
store an expression of the joint distribution p(Xo, Xg), where
Xo is the pose distribution of the object, and Xg is the grasp



affordance. This is done by adding a new “grasp” feature to
the hierarchical Markov network, and linking it to the top
feature (see Fig. 3). The statistical dependency of Xo and
Xg is held in a compatibility potential ψog(Xo, Xg), which
exactly corresponds to the grasp density: ψog(Xo, Xg) holds
the relative configuration of grasp affordance and object pose,
i.e. the grasp distribution into the reference frame of the top
feature.

When an object model has been visually aligned to an
object instance (i.e. when the marginal posterior of the top
feature has been computed from visually-grounded bottom-
up inference), the grasp affordance of the object instance
is computed through top-down BP inference, by sending a
message from Xo to Xg through ψog(Xo, Xg). Intuitively, this
corresponds to transforming the grasp density to align it to the
current object pose, yet explicitly taking the uncertainty on
object pose into account to produce a posterior grasp density
that acknowledges visual noise.

B. Continuous Grasp Densities

From a mathematical point of view, grasp potentials are
identical to visual potentials. They can thus be encoded
with the same nonparametric density representation. Density
evaluation is performed by assigning a kernel function to each
particle supporting the density, and summing the evaluation
of all kernels. Sampling from a distribution is performed
by sampling from the kernel of a particle ` selected from
p(` = i) ∝ wi, where wi is the weight of particle i.

Grasp densities (grasp potentials and grasp random vari-
ables) are defined on the Special Euclidean group SE(3) =
R3 × SO(3), where SO(3) is the Special Orthogonal group
(the group of 3D rotations). We use a kernel that factorizes
into two functions defined on R3 and SO(3). Denoting the
separation of an SE(3) point x into a translation λ and a
rotation θ by

x = (λ, θ), µ = (µt, µr), σ = (σt, σr),

we define our kernel with

K(x;µ, σ) = N(λ;µt, σt) ·Θ(θ;µr, σr) (1)

where µ is the kernel mean point, σ is the kernel bandwidth,
N(·) is a trivariate isotropic Gaussian kernel, and Θ(·) is an
orientation kernel defined on SO(3). Denoting by θ′ and µ′r
the quaternion representations of θ and µr [15], we define the
orientation kernel with the Dimroth-Watson distribution [16]

Θ(θ;µr, σr) = W(θ′;µ′r, σr) = Cw(σr) · eσr(µ′>r θ′)2 (2)

where Cw(σr) is a normalizing factor. This kernel corresponds
to a Gaussian-like distribution on SO(3). The Dimroth-Watson
distribution inherently handles the double cover of SO(3) by
quaternions [5].

The bandwidth σ associated to a density should ideally be
selected jointly in R3 and SO(3). However, this is difficult to
do. Instead, we set the orientation bandwidth σr to a constant
allowing about 10◦ of deviation; the location bandwidth σt is
then selected using a k-nearest neighbor technique [21].

(a) (b) (c)

Fig. 4. Grasp density representation. The top image of Fig. (a) illustrates a
particle from a nonparametric grasp density, and its associated kernel widths:
the translucent sphere shows one position standard deviation, the cone shows
the variance in orientation. The bottom image illustrates how the schematic
rendering used in the top image relates to a physical gripper. Fig. (b) shows
a 3D rendering of the kernels supporting a grasp density for a table-tennis
paddle (for clarity, only 30 kernels are rendered). Fig. (c) indicates with a
green mask of varying opacity the values of the location component of the
same grasp density along the plane of the paddle (orientations were ignored
to produce this last illustration).

The expressiveness of a single SE(3) kernel (1) is
rather limited: location and orientation components are both
isotropic, and within a kernel, location and orientation are
modeled independently. Nonparametric methods account for
the simplicity of individual kernels by employing a large
number of them: a grasp density will typically be supported
by a thousand particles. Fig. 4a shows an intuitive rendering
of an SE(3) kernel from a grasp density. Fig. 4b and Fig. 4c
illustrate continuous densities.

VI. LEARNING GRASP DENSITIES

This section explains how hypothesis densities are learned
from source data (Section VI-A), and how empirical densities
are learned from experience (Section VI-B).

A. Proposal Densities From Examples

Initial grasp knowledge, acquired for instance from imita-
tion or reflex, is structured as a set of grasps parametrized by
a 6D pose. Given the nonparametric representation, building
a density from a set of grasps is straightforward – grasps
can directly be used as particles representing the density.
We typically limit the number of particles in a density to a
thousand; if the number of grasps in a set is larger than 1000,
the density is resampled: kernels are associated the particles,
and 1000 samples are drawn and used as a representation
replacement.

Since we wish to record object-relative information, den-
sities have to be transformed to the reference frame of the
object. Assuming that grasp poses are initially defined in the
same reference frame as the visual ECV descriptors, this can
be done by aligning the hierarchical model of the object by
visual inference, and transforming the particles of each grasp
density in the reference frame defined by the pose of the top
feature of the aligned model.

A grasp density is integrated into the hierarchical object
model through a new primitive feature i. The new feature



Fig. 5. Particles supporting grasp hypothesis densities.

is linked to the top model feature o through a potential
ψio(Xi, Xo) that corresponds to the object-relative density.

B. Empirical Densities From Familiarization

As the name suggests, hypothesis densities do not pretend
to reflect the true properties of an object. Their main defect
is that they may strongly suggest grasps that might not be
applicable at all, for instance because of gripper discrepancies
in imitation-based hypotheses. A second, more subtle issue
is that the grasp data used to learn hypothesis densities will
generally be afflicted with a source-dependent spatial bias. A
very good example can be made from the reflex computation
of Section IV-B. Reflexes are computed from ECV visual
descriptors. Therefore, parts of an object that have a denser
visual resolution will yield more reflexes, incidentally biasing
the corresponding region of the hypothesis density to a higher
value. The next paragraph explains how grasping experience
can be used to compute new densities (empirical densities)
that better reflect gripper-object properties.

Empirical densities are leaned from the execution of samples
from a hypothesis density, intuitively allowing the agent to
familiarize itself with the object by discarding wrong hypothe-
ses and refining good ones. Familiarization thus essentially
consists in autonomously learning an empirical density from
the outcomes of sample executions. A simple way to proceed
is to build an empirical density directly from successful grasp
samples. However, this approach would inevitably propagate
the spatial bias mentioned above to empirical densities. In-
stead, we use importance sampling [8] to properly weight
grasp outcomes, allowing us to draw samples from the physical
grasp affordance of an object. The weight associated to a grasp
sample x is computed as a(x) /q(x), where a(x) is 1 if the
execution of x has succeeded, 0 else, and q(x) corresponds
to the value of the continuous hypothesis density at x. A set
of these weighted samples directly forms a grasp empirical
density that faithfully and uniformly reflects intrinsic gripper-
object properties. Each empirical density is associated to the
object model in the same way as proposal densities, through
a new feature in the hierarchical network.

VII. RESULTS

This section illustrates hypothesis densities learned from
imitation and reflexes, and empirical densities are learned by

Fig. 6. Barrett hand grasping the toy jug.

Fig. 7. Samples drawn from grasp empirical densities.

grasping objects with a 3-finger Barrett hand. Densities are
built for two objects: the table-tennis paddle of Fig. 3, and a
toy plastic jug (Fig. 6). The experimental scenario is described
below.

For each object, the experiment starts with a visual hierar-
chical model, and a set of grasps. For the paddle, grasps are
generated with the method described in Section IV-B. Initial
data for the jug was collected through human demonstration,
using a motion capture system. From these data, a hypothesis
density is built for each object. The particles supporting the
hypothesis densities are rendered in Fig. 5.

In order to refine affordance knowledge, feedback on the
execution of hypothesis density samples is needed. Grasps are
executed with a Barrett hand mounted on an industrial arm.
As illustrated in Fig. 6, the hand preshape is a parallel-fingers,
opposing-thumb configuration. The reference pose of the hand
is set for a pinch grasp, with the tool center point located
in-between the tips of the fingers – similar to the reference
pose illustrated in Fig. 4a. A grasp is considered successful
if the robot is able to firmly lift up the object, success being
asserted by raising the robotic hand while applying a constant,
inward force to the fingers, and checking whether at least
one finger is not fully closed. Sets of 100 and 25 successful
grasps were collected for the paddle and the jug respectively.
This information was then used to build a grasp empirical
density, following the procedure described in Section VI-B.
Samples from the resulting empirical densities are shown in
Fig. 7. For the paddle, the main evolution from hypothesis to
empirical density is the removal of a large number of grasps for
which the gripper wrist collides with the paddle body. Grasps
presenting a steep approach relative to the plane of the paddle



were also discarded, thereby preventing fingers from colliding
with the object during hand servoing. None of the pinch-grasps
at the paddle handle succeeded, hence their absence from the
empirical density.

While grasping the top of the jug is easy for a human hand,
it proved to be very difficult for the Barrett hand with parallel
fingers and opposing thumb. Consequently, a large portion of
the topside grasps suggested by the hypothesis density are not
represented in the empirical density. The most reliable grasps
approach the handle of the jug from above; these grasps are
strongly supported in the empirical density.

The left image of Fig. 7 clearly illustrates the correlation
between grasp positions and orientations: moving along the
edge of the paddle, grasp approaches are most often roughly
perpendicular to the local edge tangent. The nonparametric
density representation successfully captures this correlation.

VIII. CONCLUSION AND FUTURE WORK

We presented a framework for representing and learning
object grasp affordances, and linking these to a visual ob-
ject model. The affordance representation is probabilistic and
nonparametric: an affordance is recorded in a continuous
probability density function supported by a set of particles.

Grasp densities are initially learned from visual cues or
imitation, leading to grasp hypothesis densities. Using the
visual model for pose estimation, an agent is able to execute
samples from a hypothesis density under arbitrary object
poses. Observing the outcomes of these grasps allows the agent
to learn from experience: an importance sampling algorithm is
used to infer faithful object grasp properties from successful
grasp samples. The resulting grasp empirical densities even-
tually allow for more robust grasping.

Importance Sampling is a batch learning method, that re-
quires the execution of a large number of grasps before an
empirical density can be built. Learning empirical densities
on-line would be very convenient, which is a path we plan to
explore next.

We currently learn visual and grasp features independently,
and connect them through a single top-level model feature.
Yet, a part-based representation offer an elegant way to lo-
cally encode visuomotor descriptions. One of our goals is to
learn visual parts that share the same grasp properties across
different objects. This way, a grasp feature will be directly and
exclusively connected to the visual evidence that predicts its
applicability, allowing for its generalization across objects.
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Renaud.Detry@ULg.ac.be, Justus.Piater@ULg.ac.be
2 University of Southern Denmark, Odense, Denmark,

The University of Edinburgh, Edinburgh, Scotland, UK,
npugeaul@inf.ed.ac.uk

Abstract. This paper presents a probabilistic representation for 3D
objects, and details the mechanism of inferring the pose of real-world
objects from vision. Our object model has the form of a hierarchy of
increasingly expressive 3D features, and probabilistically represents 3D
relations between these. Features at the bottom of the hierarchy are
bound to local perceptions; while we currently only use visual features,
our method can in principle incorporate features from diverse modali-
ties within a coherent framework. Model instances are detected using a
Nonparametric Belief Propagation algorithm which propagates evidence
through the hierarchy to infer globally consistent poses for every feature
of the model. Belief updates are managed by an importance-sampling
mechanism that is critical for efficient and precise propagation. We con-
clude with a series of pose estimation experiments on real objects, along
with quantitative performance evaluation.

Keywords Computer vision, 3D object representation, pose estimation, Non-
parametric Belief Propagation.

1 Introduction

The merits of part-based and hierarchical approaches to object modelling have
often been put forward in the vision community [9,5,11]. Part-based representa-
tions are more robust to occlusions and viewpoint changes than global represen-
tations, and spatial configurations increase their expressiveness. Moreover, they
not only allow for bottom-up inference of object parameters based on features
detected in images, but also for top-down inference of image-space appearance
based on object parameters.

The advantages of visual part-based representations naturally extend to multi-
sensory cases. For example, haptic and proprioceptive information won’t relate
to an object as a whole. Instead, they typically emerge from specific grasps, on
specific parts of the object. Part-based representation offer a neat way to lo-
cally encode cross-modal descriptions that emphasise the relations between the
different types of percepts.
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We are currently developing a 3D, part-based object representation frame-
work, along with mechanisms for unsupervised learning and probabilistic infer-
ence of the model. Our model combines local appearance and 3D spatial rela-
tionships through a hierarchy of increasingly expressive features. Features at the
bottom of the hierarchy are bound to local visual perceptions. Features at other
levels represent combinations of more elementary features, and encode proba-
bilistic relative spatial relationships between their children. The top level of the
hierarchy contains a single feature which represents the object.

To detect instances of a model in a cluttered scene, evidence is propagated
throughout the hierarchy by probabilistic inference mechanisms, leading to one
or more consistent scene interpretations: the model is able to suggest a number
of likely poses for the object, a pose being composed of a 3D location and a
3D body orientation defined in the reference frame of the camera that captured
the raw visual data. The use of probabilistic inference algorithms permits the
uniform integration of all available evidence, allowing for unbiased contributions
of all low-level features.

In previous work [2], we presented a learning method that constructs a hi-
erarchy from a set of object observations. We also gave an overview of an infer-
ence process that followed a straightforward Nonparametric Belief Propagation
scheme [12] and allowed for pose recovery of artificial objects. In this paper, we
present in greater detail a significantly improved version of this inference process.
We added an importance-sampling (IS) message product suggested in a similar
form by Ihler et al. [6], and extended it to a two-level IS sampling of implicit
message products which is readily applicable to pose estimation on real-world
objects.

Unsupervised learning, probabilistic representation and robust detection are
three aspects that we believe make our representation a good candidate for the
perception and memory tasks of a cognitive system. Furthermore, the features
organized in the hierarchies are not especially restricted to one input modality.
We currently work with visual input only, but our model is intended to unite
different types of perceptual information, e.g. vision plus haptic and proprio-
ceptive inputs simultaneously. This will produce cross-modal descriptions and
cross-modal behaviors directly applicable to action-related tasks such as grasp-
ing and object manipulation, as a grasp strategy may be linked directly to visual
features that predict its applicability.

We emphasize that we are not developing an object classification framework.
Object classification is best achieved using discriminative models and presup-
poses the presence of one object to be classified. Instead, we intend to develop
object-centric representations that allow for detection and localisation of known
objects within a highly cluttered scene. Also, our representations lend themselves
to applications other than classification (e.g. manipulation).
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2 Hierarchical Model

Our object model consists of a set of generic features organized in a hierarchy.
Features that form the bottom level of the hierarchy, referred to as primitive
features, are bound to visual observations. The rest of the features are meta-
features which embody spatial configurations of more elementary features, either
meta or primitive. Thus, a meta-feature incarnates the relative configuration of
two features from a lower level of the hierarchy.

A feature can intuitively be associated to a “part” of an object, i.e. a generic
component instantiated once or several times during a “mental reconstruction”
of the object. At the bottom of the hierarchy, primitive features correspond
to local parts that each may have many instances in the object. Climbing up
the hierarchy, meta-features correspond to increasingly complex parts defined in
terms of constellations of lower parts. Eventually, parts become complex enough
to satisfactorily represent the whole object.

Formally, the hierarchy is implemented in a Pairwise Markov Random Field.
Features correspond to hidden nodes of the network. When a model is associated
to a particular scene (during construction or instantiation), the pose of feature
i in that scene will be represented by the probability density function of the
random variable xi associated to feature i, effectively linking feature i to its
instances. Random variables are thus defined over the pose space SE(3) = R3×
SO(3).

The structure of the hierarchy is reflected by the edge pattern of the net-
work; each meta-feature is thus linked to its two child features. As noted above,
a meta-feature encodes the relationship between its two children. However, the
graph records this information in a slightly different but equivalent way: instead
of recording the relationship between the two child features, the graph records
the two relationships between the meta-feature and each of its children. The re-
lationship between a meta-feature i and one of its children j is parametrized by
a compatibility potential function ψij(xi, xj) associated to the edge eij . A com-
patibility potential specifies, for any given pair of poses of the features it links,
the probability of finding that particular configuration for these two features.
We only consider rigid-body relationships. Moreover, relationships are relative
spatial configurations. Compatibility potentials can thus be represented by a
probability density over the feature–to–feature transformation space SE(3).

Finally, each primitive feature is linked to an observed variable yi. Observed
variables are tagged with an appearance descriptor called a codebook vector. The
set of all codebook vectors forms a codebook that binds the object model to
feature observations. The statistical dependency between a hidden variable xi

and its observed variable yi is parametrized by an observation potential φi(xi),
also referred to as evidence for xi, which corresponds to the spatial distribution
of the observations. We generally cannot observe meta-features; their observation
potential is thus uniform.
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3 Inference

Model instantiation is the process of detecting instances of an object model in a
scene. It provides pose densities for all features of the model, indicating where the
learned object is likely to be present. Instantiating a model in a scene amounts
to inferring posterior marginal densities for all features of the hierarchy.

The first step of inference is to define priors (observation potentials, evidence)
for all features (hidden nodes) of the model. For primitive features, evidence is
estimated from feature observations. Observations are classified according to
the observation codebook; for each primitive feature i, its observation poten-
tial φi(xi) is estimated from observations that are (softly) associated to the ith

codebook vector. For meta-features, evidence is uniform.
Once priors have been defined, instantiation can be achieved by any appli-

cable inference algorithms. We currently use a Belief Propagation algorithm of
which we give a complete, top-down view below.

3.1 Belief Propagation

Belief Propagation (BP) [10,13,7] is based on incremental updates of marginal
probability estimates, referred to as beliefs. The belief at feature i is denoted by

b(xi) ≈ p(xi|y) =
∫
...

∫
p(x1, ..., xN |y) dx1...dxi−1dxi+1...dxN

where y stands for the set of observations. During the execution of the algorithm,
messages are exchanged between neighboring features (hidden nodes). A message
that feature i sends to feature j is denoted by mij(xj), and contains feature
i’s belief about the state of feature j. In other words, mij(xj) is a real positive
function proportional to feature i’s belief about the plausibility of finding feature
j in pose xj . Messages are exchanged until all beliefs converge, i.e. until all
messages that a node receives predict a similar state.

At any time during the execution of the algorithm, the current pose belief
(or marginal probability estimate) for feature i is the normalized product of the
local evidence and all incoming messages, as

bi(xi) =
1
Z
φi(xi)

∏
j∈neighbors(i)

mji(xi), (1)

where Z is a normalizing constant. To prepare a message for feature j, feature
i starts by computing a “local pose belief estimate”, as the product of the local
evidence and all incoming messages but the one that comes from j. This product
is then multiplied with the compatibility potential of i and j, and marginalized
over xi. The complete message expression is

mij(xj) =
∫
ψij(xi, xj)φi(xi)

∏
k∈neighbors(i)\j

mki(xi)dxi. (2)
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As we see, the computation of a message doesn’t directly involve the complete
local belief (1). In general, the explicit belief for each node is computed only
once, after all desirable messages have been exchanged.

When BP is finished, collected evidence has been propagated from primi-
tive features to the top of the hierarchy, permitting inference of the top feature
marginal pose density. Furthermore, regardless of the propagation scheme (mes-
sage update order), the iterative aspect of the message passing algorithm ensures
that global belief about the object pose – concentrated at the top nodes – has at
some point been propagated back down the hierarchy, reinforcing globally con-
sistent evidence and permitting the inference of occluded features. While there
is no theoretical proof of BP convergence for loopy graphs, empirical success has
been demonstrated in many situations.

3.2 Nonparametric Representation

We opted for a nonparametric approach to probability density representation for
all entities of the model, i.e. random variable and functions of random variables,
including potentials, messages, and evidence. A density is simply represented by
a set of (possibly weighted) particles; the local density of these particles in a
given region is proportional to the actual probabilistic density in that region.
The number of particles supporting a density is fixed, and will be denoted by n.
Whenever a density has to be evaluated, traditional kernel density estimation
methods can be used. Compared to usual parametric approaches that involve a
limited number of parametrized kernels, a nonparametric approach eliminates
problems like fitting of mixtures or the choice of a number of components. Also,
no assumption concerning the shape of the density has to be made.

Figure 1 shows an example of a hierarchy for a traffic sign. Feature 2 is a
primitive feature that corresponds to a local black-white edge segment – the
white looks greenish on the picture. The blue patch pattern in the φ2(x2) box
is the non-parametric representation for the evidence distribution for feature 2.
The blue patch pattern in the x2 box is the non-parametric representation for
the posterior density of x2, i.e. the poses in which part “feature 2” is likely to
be found. Feature 4 is the combination of primitive features 1 and 2. The red
patch in the x4 box shows its inferred pose in the scene. The ψ4,2(x4, x2) box
shows the encoding of the relationship between features 4 and 2; for a fixed
pose for feature 4 (in red), it shows the likely poses for feature 2 (in blue). The
sign itself corresponds to feature 6, denoted by its random variable x6. It is
the composition of two features, one representing the central “opening bridge”
pattern and the corners of the inner triangle (feature 4), the other representing
the central pattern and the outer edges (feature 5).

3.3 Nonparametric Belief Propagation

For inference, we use a variant of BP, Nonparametric Belief Propagation (NBP),
an algorithm for BP message update in the particular case of continuous, non-
Gaussian potentials [12]. The underlying method is an extension of particle fil-
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Fig. 1. Example of a hierarchical model of a traffic sign.
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tering; the representational approach is thus nonparametric and fits our model
very well.

NBP is easier to explain if we decompose the analytical message expression
(2) into two steps:

1. Computation of the local belief estimate

βts(xt) = φt(xt)
∏

i∈N(t)\s
mit(xt), (3)

2. Combination of βts with the compatibility function ψts, and marginalisation
over xt

mts(xs) =
∫
ψts(xt, xs)βts(xt)dxt. (4)

NBP forms a message by first sampling from the product (3) to collect a
non-parametric representation for βts(xt), it then samples from the integral (4)
to collect a non-parametric representation for mts(xs). These two operations
are executed alternately: transform local estimate to form a message, merge
messages to form a local estimate, etc...

Sampling from the message product (3) is conceptually straightforward. Us-
ing Gaussian kernel density estimation, each factor (messages and evidence) can
be represented by a weighted sum of n Gaussians. The product of a series of
Gaussians is also a Gaussian, and the parameters (mean, variance, weight) of
the product Gaussian can easily be computed from the parameters of the factor
Gaussians. Hence, letting d = (N(t)−1)+1 denote the number of factors in the
product (3), βts(xt) can be expressed as a weighted sum of nd Gaussians [12]. A
nonparametric representation for βts(xt) can thus be constructed by sampling
from a mixture of nd Gaussians, which amounts to repetitively selecting one
Gaussian at random and taking a random sample from it. The computational
cost of this exhaustive approach is O(nd). Clearly, exhaustive product imple-
mentations will suffer from overly long computation times.

The second phase of the NBP message construction computes an approxima-
tion for the integral (4) by stochastic integration. Stochastic integration takes
a series of samples x̂(i)

t from βts(xt), and propagates them to feature s by sam-
pling from ψts(x̂

(i)
t , xs) for each x̂(i)

t . It would normally also be necessary to take
into account the marginal influence of ψts(xt, xs) on xt. In our case however,
potentials only depend on the difference between their arguments; the marginal
influence is a constant and can be ignored.

3.4 Importance Sampling

The computational bottleneck of NBP clearly lies in message products. Ihler
et al. explored multiple improvements over the exhaustive product [6], one of
which is to sample from the product using Importance Sampling (IS). IS is a
technique for sampling from an unknown distribution p(x) by sampling a series
of examples x̂(`) from a known distribution q(x) ideally similar to p. IS accounts
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for the difference between the target distribution p and the proposal distribution
q by assigning to each sample a weight defined as

w(`) =
p(x̂(`))
q(x̂(`))

.

To produce a sample of size n, one usually takes rn weighted examples from q,
where r > 1, and eventually resamples them to a size of n. The closer q is to p,
the better {x̂(`)} will approximate p.

Sampling from a message product (3) with IS works by selecting one of the
messages mut(xt) (or the evidence) as proposal distribution, the rest of the
factors providing importance weights:

w(`) =
φt(x̂

(`)
t )

∏
i∈N(t)\smit(x̂

(`)
t )

mut(x̂
(`)
t )

= φt(x̂
(`)
t )

∏
i∈N(t)\{s,u}

mit(x̂
(`)
t ).

IS produces n samples from a product of d factors in O(rdn2) time. From here
on, we will consider that the number of neighbors a node may have is bounded
and typically low, and ignore it in complexity statements. IS thus produces n
samples from a product of d factors in O(rn2) time.

4 Efficient Importance Sampling of Message Products

The success of NBP inference highly depends on a sufficient density resolution,
i.e. having enough particles to support the different modes of potentials, local
estimates, and messages. Moving to more complex applications will generally
require an increase of n, which has a hard impact on computational time and
memory needs. This section presents a variant of the IS-based NBP algorithm
that yields a significant improvement of the inference power without any memory
impact. Its computational behavior is close to original IS-based NBP, with some
interesting benefits.

4.1 Representational Constraints

As explained above, A message that feature i sends to feature j – denoted
by mij(xj) – contains feature i’s belief about the state of feature j. Feature
i will often possess a rather inaccurate local estimate, e.g. at the beginning
of propagation when each bottom feature receives observations from the whole
scene surrounding an object of interest. Additionally, even if a local estimate
was exact, transforming it with ψij will generate a large number of possible
states for feature j, only a fraction of which will eventually become confirmed
by other messages incoming to j – the job of message products precisely is to
extract sections that overlap between incoming messages. Generating a message
from local estimates can be pictured as an exploration process, while merging
messages together would be a confirmation/concentration process. From these
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observations, it intuitively follows that one may achieve better performance by
increasing the resolution of messages only, leaving potentials and local estimates
at their initial resolution.

4.2 Implicit Messages

Let us now turn to the propagation equation (2), which we analytically de-
composed into a multiplication (3) and an integration (4). We explained that
NBP implements BP by physically performing the same decomposition, i.e. com-
puting explicit nonparametric representations for messages and local estimates
alternately. In this section, we propose a somewhat different implementation, in
which explicit representations are only computed for local estimates.

Let us assume we are in the process of constructing a nonparametric repre-
sentation for βts(xt), i.e. the local estimate of feature t that includes all incoming
information but that from s. In typical IS-based NBP, we first choose one in-
coming message mut(xt) at random (u 6= s) as IS proposal density; then, we
repetitively take a sample x̂(`)

t from mut(xt) and compute its importance weight

w(`) = φt(x̂
(`)
t )

∏
i∈N(t)\{s,u}

mit(x̂
(`)
t ). (5)

One can notice though that neither of these two operations do actually need
an explicit expression for incoming messages. Producing x̂(`)

t from βut(xt) and
ψut(xu, xt) is straightforward. In turn, Expression (5) can be rewritten

w(`) = φt(x̂
(`)
t )

∏
i∈N(t)\{s,u}

∫
ψit(xi, x̂

(`)
t )βit(xi)dxi. (6)

Evaluating each integral is achieved by sampling p times an example x̂(k)
i from

either ψit(xi, x̂
(`)
t ) or βit(xi), evaluating βit(x̂

(k)
i ) or ψit(x̂

(k)
i , x̂

(`)
t ) respectively,

and taking the average over k.
The computational complexity of importance weight computation with ex-

plicit messages (5) is O(n), because of linear iteration through all messages and
evidence which are of size n. The computational complexity with implicit mes-
sages (6) is O(pn), because of p linear iterations through potentials or the local
estimates. However, implicit messages effectively achieve the same resolution as
explicit messages would if these explicit messages were supported by pn parti-
cles, while keeping memory needs at O(n). Importance weight computation with
implicit or explicit messages are thus expected to display processing times of the
same order, while the implicit method will categorically require less memory.

4.3 Two-Level Importance Sampling

One known weakness of IS-based NBP is that it cannot intrinsically concentrate
its attention on the modes of a product, which is an issue since individual mes-
sages often present many irrelevant modes [6]. We overcome this problem with
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a two-level IS: we first compute an intermediate representation for the product
with the procedure explained above, we then use this very representation as
the proposal distribution for a second IS that will be geared towards relevant
modes. The intermediate representation is obtained with sparse implicit mes-
sages (p � n) but many importance samples (r � 1), while the second IS uses
rich implicit messages (p ≈ n) but a low value for r. Denoting by β∗ts(xt) the
intermediate product representation, importance weights for the second IS are
computed as

w(`) =
φt(x̂

(`)
t )

∏
i∈N(t)\smit(x̂

(`)
t )

β∗ts(x̂
(`)
t )

.

In the equation above, messages are implicit.
The two-level IS described above and the high-resolution messages have been

crucial elements of the successful application to real-world object presented at
Section 5.2.

5 Evaluation

5.1 Pose Estimation

The feature at the top of a hierarchical object model represents the whole object.
When instantiating the model in a scene in which exactly one instance of the
object is present, the top feature density should present one major mode, which
can be used to estimate the object pose. Let us consider a model for a given
object, and a pair of scenes where the object appears. In the first scene, the
object is in a reference pose. In the second scene, the pose of the object is
unknown. The application of our method to estimate the pose of the object in
the second scene goes as follows:

1. Instantiate the object model in the reference scene, and compute a reference
object pose π1 as the mean of the top feature density major mode.
We emphasize that a hierarchy comes from unsupervised recursive combina-
tions of features [2]. Even though the object is in a reference pose, π1 is not
expected to be located at (0, 0, 0) or aligned with (x,y, z), which makes this
first step necessary.

2. Instantiate the object model in the unknown scene and compute pose π2

from the major mode of the top feature density.
3. Let t be the transformation between π1 and π2. This transformation corre-

sponds to the rigid body motion between the pose of the object in the first
scene and its pose in the second scene. Since the first scene is a reference
pose, t is the pose of the object in the second scene.

A prominent aspect of this procedure is its ability to recover an object pose
without explicit point-to-point correspondences. The estimated pose emerges
from a negotiation involving all available data.
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(a) Learning (b) Evaluation

Fig. 2. Input imagery (only the left image in each stereo pair is presented). Effective
resolution is 1280× 960 pixels.

Fig. 3. Examples of ECV representations, extracted from scenes of Figure 2.

5.2 Experiments

In this section, we demonstrate the applicability of our model with a series
of pose estimation experiments in various cluttered scenes. We chose to learn
models for the three objects presented at Figure 2(a). We then tried to estimate
their poses in the scenes of Figure 2(b).

Observations are provided by an early-cognitive-vision (ECV) system [8],
which extracts 3D primitives from stereo views of a scene. The quality of such
ECV representations varies as a function of local visual signal quality. Figure 3
illustrates the ECV primitives for certain scenes of Figure 2.

Models for the three objects of Figure 2(a) were learned following the proce-
dure mentioned above [2]. These models were learned from a clean view of each
object (the reference scene), for example from the ECV representation in the
first image of Figure 3. Each model has also been instantiated in its reference
scene to compute its reference pose π1.



12

(a) (b) (c)

(d) (e) (f)

Fig. 4. Illustration of the pose estimation accuracy. Each picture shows in green a scene
that contains one object of interest and in red the pose of that object inferred by our
system.

The three models were all instantiated in the test scenes of Figure 2(b), using
observations like these of Figure 3 as evidence. Looking closer at the instantiation
of one model in one scene, there are two cases to consider. First, the model had no
instance in the scene. The top-feature density was then relatively uniform, and
the experiment did not need to go any further. In the second case, an instance was
present. It was then always verified that the top feature did present a principal
mode π2. We could thus compute the transformation t between π1 and π2, which
corresponds to the estimated rigid body motion between the pose of the object
in the reference scene, and to its pose in the noisy scene.

We can evaluate the success of the experiment by transforming the reference
scene with t, and superimposing it onto the test scene; if the experiment is suc-
cessful, the object of interest should overlap with its instance. Such evaluations
are presented at Figure 4. All the experiments that we ran ended with successful
pose recovery. For traffic signs, the worst estimate (Figure 4(d)) corresponds to
the dead-end signal pose estimation in the sixth scene of Figure 2(b) (second
row, third column). This is however one of the most difficult scenes: it has a
brown background, thus changing the outside color of ECV primitives on the
traffic sign contours. This induces wrong associations of observations to primi-
tive features, and makes for harder inference. Estimation is still quite accurate
given the difficulty of the scene. Other typical estimates are presented at Figure
4. In particular, 4(a) shows a good result despite occlusion.
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Fig. 5. Pose estimation accuracy as a function of the number of particles per density,
for an instantiation of the opening-bridge traffic sign within the first scene of Figure
2(b). Left and right plots correspond to location and orientation error respectively. The
red lines indicate the mean absolute error. The green lines indicate the variance across
runs. Location error can be compared to the traffic sign edge, which is 190mm long.
See the text for details.

The accuracy of probabilistic pose estimation highly depends on the reso-
lution of the representation. When an experiment lacks accuracy, retrying with
more particles usually produces better results. Therefore, a meaningful quan-
titative evaluation must take into account the number of particles per density.
Figure 5 shows the pose estimation error as a function of the number of particles
per density. Because of the probabilistic nature of inference, runs with different
software random seeds produce different results. Therefore, we run each exper-
iment several times and study the mean error, plotted in red in the figure. The
mean error decreases quickly when going from 40 to 100 particles, and stabi-
lizes for higher resolutions. We also plotted one standard deviation above the
mean error, in dashed green. The error variance also decreases as the number of
particles increases.

6 Discussion

6.1 Related Work

Compared to recent work in the field [4,3,1], the most distinguishing aspects of
our approach are its explicit 3D support and the unbiased contributions of all
low-level features. We learn from observations defined in 3D, and infer a full
3D pose. The use of a sophisticated inference algorithm permits the uniform
integration of all available evidence, avoiding an explicit combinatorial search.

6.2 Conclusion

We presented an object representation framework that encodes probabilistic re-
lations between 3D features. We discussed an Importance-Sampling–NBP in-
ference process which, together with the learning scheme of our previous work
[2], allow us to learn unsupervised part representations for real objects and to
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instantiate them in cluttered scenes. We are thus able to achieve pose recovery
without prior object models, and without explicit point correspondences.

Our method can in principle incorporate features from more perceptual
modalities than vision. Our objective is to observe haptic and kinematic fea-
tures that correlate with successful grasps, and integrate them into the feature
hierarchy. Then, given a visual scene, grasp parameters can be suggested by
probabilistic inference within the feature hierarchy.
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ABSTRACT 

The main function of human attention is commonly thought to consist in preventing 

information overload of the cognitive system. In contrast, this chapter provides empirical 

evidence and theoretical reasons to consider attention a mere derivative of action control. It 

argues that the existence of distributed representations and concurrent processing streams 

creates specific control problems. Parts of these problems, so goes the claim, are solved by 

associating categories of actions (such as reaching or grasping) with particular perceptual 

dimensions in such a way that planning an action biases the cognitive system towards feature 

dimensions that are suited to specify the action‘s open parameters. This approach has major 

implications for attentional theory in general and the issue of effortless attention in particular. 
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My first poster presentation at a scientific meeting was no success. I offered a new 

theoretical framework on stimulus and response representation (the later Theory of Event 

Coding [Hommel, Müsseler, Aschersleben, & Prinz, 2001a]) together with supportive data 

and hoped to attract the interest of all the big shots working on stimulus-response 

compatibility. But no one came. One year later I presented a much less inspired study but 

made one crucial move: I put the A-word in the title, with the effect that my poster was one of 

the most crowded, and long after the session was over I was still heavily engaged in 

discussions. This is just one of many examples demonstrating that cognitive scientists love 

attention as a topic. In contrast to sensory and motor processes, say, which rather smell like 

hardware and mechanics, the concept of attention seems to directly connect to what makes us 

human, as it somehow expresses our individual needs and wishes, preferences and interests. 

The drawback of this attractiveness is that the concept is more often than not used as a 

wastebasket, a container that serves as a pseudo-explanation for the phenomena we still fail to 

understand—so that ―attention‖ is explained by the workings of an ―attentional system.‖  

One of the more successful strategies to tackle this problem is to focus on the function 

of attentional processes, that is, to ask what attention does rather than what it is. Indeed, the 

modern cognitive sciences have benefited greatly from this strategy, even though over the 

years we have seen rather dramatic changes in the way the functions of attention have been 

characterized. In the following, I will briefly discuss some of the more influential 

perspectives, which all have their benefits and their drawbacks. This discussion (for broader 

treatments, see Allport, 1993; Neumann, 1987; and Schneider, 1995) will reveal that early 

approaches emphasized attentional function subserving higher order cognition and 

consciousness, whereas more recent approaches increasingly appreciate the importance of 

attentional processes for action (selection-for-action). In this chapter, I would like to push this 

trend one step further by arguing that attention does not only subserve action-control 
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processes but may actually have emerged to solve action-control problems in a cognitive 

system that relies on distributed representations and multiple, loosely connected processing 

streams. 

THE FUNCTIONS OF ATTENTION 

Most of the grand, influential attentional theories have considered attention as a 

mechanism that administers and organizes scarcity. In the 19th century authors were mainly 

impressed by the limits of consciousness, which was assumed to be restricted to the 

representation of only one thought or event at a time (e.g., James, 1890). Given the emphasis 

on introspective methods, this limitation was rarely systematically investigated but taken for 

granted, and attention was thought to make the best of it. The main idea was that if 

consciousness can only contain one event, then attention better ensures that this event is of 

optimal use, which can be guaranteed by directing attention to relevant events (the 

endogenous aspect of attention) and having attention attracted by interesting events (the 

exogenous aspect of attention). 

Even though modern cognitive approaches more or less did away with introspective 

methods, the assumed function of attention did not change much. In view of the increasing 

importance and availability of computers, researchers like Broadbent (1958) replaced 

consciousness by working memory as the central processing unit, which, however, was 

considered to be equally limited in processing capacity. Accordingly, attentional mechanisms 

were thought of as filters that discriminate between relevant and irrelevant information, and 

effectively gate out the latter in order to prevent working memory from overload. Again, the 

filters were thought to be endogenously controlled in principle, but this control could be 

overruled by overlearned or highly important stimuli. Emphasis on the coordinative and 

administrative aspects of attention was replaced by capacity theories (e.g., Kahneman, 1973), 

which considered the flexible use of attentional resource policies and selection strategies in 
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multiple task performance and everyday life. But the main function of attention was again to 

prevent a central processing unit from overload by gating out irrelevant information. 

Recent attentional theories are more broadly informed by neuroscientific knowledge 

about the structure and processing characteristics of the primate brain and thus necessarily 

more complex. Some theories are particularly interested in the spatial limitations of attention 

or, more precisely, in the apparent limitation of the brain to integrate information from only 

one point in space at one time (e.g., Treisman, 1988; Wolfe, 1994). Other approaches are less 

pessimistic with regard to strict spatial limitations, but they do assume that attended locations 

are processed at a higher spatial resolution (e.g., Bundesen, Habekost, & Killingsbaek, 2005). 

Even though such theories are much more elaborated than their predecessors, they still share 

the basic logic that limited capacity must be administered and that attention has the job of 

doing that. 

All the approaches that I have discussed so far do not only share the limited-capacity 

notion but they also consider consciousness, or some philosophically less laden equivalent 

(like working memory or central processor), as the system that suffers from these limitations 

and has thus to be saved from overload. A few approaches have questioned this latter 

implication, however. Authors like Allport (1987) and Neumann (1987) have considered that 

it may not, or not so much, be conscious representation that constitutes the functionally 

important bottleneck but our action potentialities. As an example, visual attention may 

selectively focus on one of many apples on an apple tree not because one's conscious 

awareness would otherwise be overloaded but, rather, because one can actively pick only one 

apple at a time anyway. On the one hand, these approaches differ from the main tradition by 

considering action more important than consciousness, culminating in the claim that selection 

is for action. On the other hand, however, the limited-capacity notion is not given up, as it is 
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still scarcity (of action possibilities) that represents the main problem and attention that solves 

it. 

In this chapter, I would like to challenge not only the assumption that attention 

functions to prevent consciousness from overload (an aim that I share with selection-for-

action approaches) but also that the management of scarcity has anything to do with the 

original biological function of attention. In particular, I will argue that attention is a direct 

derivative of mechanisms subserving the control of basic motor actions. I'm aware that this is 

an extreme statement that is likely to require modification in the light of new findings, but at 

the same time I believe that it can be inspiring and helpful by generating new insights and 

research questions. To motivate my suggestion, I will first set the theoretical stage by 

discussing the implications of the primate brain‘s preference to represent stimulus events and 

action plans in a distributed, feature-based fashion and to process information concurrently 

along multiple pathways. Then I will discuss a number of empirical findings that support the 

general idea that action planning and action control can affect perception and attention and 

then go on to develop a preliminary theoretical framework that grounds attention in action 

control. 

DISTRIBUTED REPRESENTATIONS AND COMMON CODING 

Artificial intelligence, philosophical approaches, and many psychological models 

assume that the basic units of human cognition can be considered as symbols, so that 

cognitive processes can be reconstructed as symbol manipulation. Increasing evidence and 

deeper insights into the structure of the primate cortex suggest a different picture, however. 

Visual objects, for instance, are known to be coded in terms of their features, which are 

concurrently analyzed on various feature maps specialized in the processing of orientation, 

shape, color, motion, and more (DeYoe & Van Essen, 1988). Even at higher representational 

levels, objects do not seem to be represented by single units but by composites of codes 
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representing the parts and elements of objects (Tanaka, 2003). This does not rule out the 

possibility that symbolic representations exist in addition to that, but it does point to the fact 

that the human brain has a strong tendency to represent perceptual events in a distributed, 

feature-based fashion. This tendency is not restricted to perceptual coding. Among other 

things, separate neural networks are coding the direction of an arm movement (Georgopoulos, 

1990), its force (Kalaska & Hyde, 1985), and distance (Riehle & Requin, 1989), suggesting 

that action plans are composites of codes of separately specified action features.  

The distributed, feature-based representation of perceptual events and action plans is 

also reflected in numerous behavioral observations. For instance, searching for a single visual 

feature (a particular shape, say) in perceptually crowded scenes or arrays is much easier than 

searching for a feature conjunction (a particular shape in a particular color; Treisman & 

Gelade, 1980) and if people are to report feature conjunctions under attentionally demanding 

conditions they tend to fabricate illusionary conjunctions (Treisman & Schmidt, 1982). With 

regard to action planning, different parameters of manual movements can be precued 

separately and through different stimuli, with the eventual reaction time decreasing as a 

function of the number of precues (e.g., Rosenbaum, 1980; Lépine, Glencross, & Requin, 

1989). Even interactions between stimuli and actions provide evidence for feature-based 

representations: For instance, stimulus events prime responses, and action plans affect 

perceptual processes, if and to the degree that stimuli and responses share features, such as 

location (Hommel et al., 2001a; Kornblum, Hasbroucq, & Osman, 1990). 

Especially these latter observations—that stimulus representations and response 

representations can interact, and that these interactions depend on feature overlap—have 

important implications with regard to the question of how stimuli and responses are 

cognitively represented and how these representations are related. According to Hommel et al. 

(2001a), both perceived events (i.e., stimuli) and to-be-produced events (i.e., action plans) are 
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represented by cognitive codes of their distal features and, thus, in a common format. These 

codes are composites of sensorimotor units, which relate perceived action effects to the 

motoric means employed to produce them (Elsner & Hommel, 2001). According to this logic, 

seeing a red pen on one's desk, say, is the result of having directed one's eyes, and perhaps 

even one's head and body, towards the location of the pen, so that the visual information the 

pen provides is the action effect of these motor movements and will thus be integrated with 

them. Perceiving and acting is thus the same process, consisting of moving one's body in 

order to generate particular perceptions. If so, there is no qualitative difference between the 

representation of a stimulus event (which includes the action that has given rise to it) and the 

representation of an action plan (which includes the perceptual event the action aims at—the 

action goal, that is). 

If perceptual events and action plans are represented in a common format, and if this 

format refers to bundles or bindings of perceptual features and motor parameters (Hommel, 

2004), one would expect that control processes operating on these cognitive representations 

have characteristics that reflect this distributed, feature-based format. Indeed, there is 

increasing evidence that input and output control (i.e., attentional and intentional selection) 

operates on feature dimensions. For instance, if people search complex visual scenes for 

visually deviant targets (i.e., stimuli that pop out because of their unique color, shape, etc.), 

they are better if they can anticipate with regard to which feature dimension an upcoming 

target will deviate (e.g., Müller, Heller & Ziegler, 1995). This suggests that people can 

strategically increase the weights or ―gain‖ of a particular feature dimension in order to 

facilitate the coding of features falling on it (Found & Müller, 1996). The same conclusion is 

suggested by observations from studies on task switching. In such studies, subjects often carry 

out responses to stimuli that are defined by one of multiple feature dimensions, such as to the 

color vs. the meaning of colored color words (Allport, Styles, & Hsieh, 1994), or to the 
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horizontal vs. vertical location of stimuli (e.g., Meiran, 1996). Performance is much better if 

the task-relevant feature dimension is repeated than if it is alternated, suggesting that 

switching between different task sets takes time and effort. Importantly for our purposes, 

implementing a new task set is assumed to include directing attention to the target-defining 

stimulus dimension (Logan & Gordon, 2001) and the response-defining action dimension 

(Meiran, 2000). That is, executive control operates on feature dimensions, presumably by 

altering the weights that determine the degree to which features coded on these dimensions 

are considered by, or affect, cognitive processes. 

MULTIPLE PROCESSING PATHWAYS 

There is increasing evidence that the human brain does not only code perceived and 

produced events in a distributed fashion but that it also concurrently processes different 

aspects of events along different neural pathways. One of the best-known distinctions between 

parallel processing codes is that between the dorsal and the ventral pathway (Ungerleider & 

Mishkin, 1982). Early approaches have characterized these two pathways in terms of where- 

versus what-processing. Whereas the dorsal pathway was considered to process spatial 

attributes of perceived events, the ventral pathway was thought to process identity-related 

attributes, such as shape and color. Later approaches, Milner and Goodale (1995) in 

particular, have suggested an alternative interpretation in terms of action-related (or 

pragmatic) processing versus perception-related processing. That is, the dorsal pathway was 

considered to directly feed into action control, without being accessible for conscious 

perception, whereas the ventral pathway was thought to mainly subserve conscious and 

unconscious perceptual processes. In view of increasing evidence that is not quite consistent 

with this particular subdivision, recent reformulations have suggested an interpretation in 

terms of online control of action—attributed to the dorsal pathway—versus action planning—
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a presumably ventral activity (Glover, 2004; Hommel, Müsseler, Aschersleben, & Prinz, 

2001b).   

Interestingly, these neuroscientifically motivated considerations fit well with 

theoretical developments in the domain of action planning and control. Modern cognitive 

approaches were driven by the insight that human action is commonly goal driven and must, 

thus, be controlled by some kind of internal representation (Lashley, 1951). Authors like 

Keele (1968) have pushed this possibility to an extreme and assumed that all muscle 

parameters and commands of a movement are stored and used to construct motor programs 

that prestructure all aspects of a movement in advance. Others, however, have pointed out that 

this possibility would put too high demands on storage and render action planning very 

inflexible, as each slight change of a movement would require a separate program (Schmidt, 

1975). Theoretically more reasonable are hybrid approaches that assume that only some, 

structural or invariant features of an action are stored and used for later programming, 

whereas more variable features are specified by online information (e.g., Schmidt, 1975). 

Consistent with this consideration, studies have shown that transferring from one task to 

another is easier if the two tasks share invariant features, whereas changes in variant features 

do not affect performance much (see Heuer, 1991).  

Behavioral and neuroscientific approaches thus converge on the idea that action 

control is comprised of two processes: action planning, which consists of specifying the basic 

structure of an action, including its most relevant, invariant features and can be performed 

online as well as off-line (i.e., some time before the action is executed), and online action 

adjustment, which consists of fine-tuning the action by specifying the remaining features and 

open parameters. A particularly elegant illustration of the interplay between action planning 

and action adjustment is provided by studies using the so-called double-step paradigm. For 

instance, in a study by Prablanc and Pélisson (1990), subjects were asked to move their right 
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index finger from a home position to a light spot, and the spatial and temporal parameters of 

the movement were measured. In some trials, the target spot was moved a little further away 

from the subject while he or she was already moving. Importantly, the target was moved 

during an eye blink, so that subjects were unable to see the change. The most relevant 

outcome was that, first, the finger correctly reached the target even in change trials and that, 

second, this was achieved without any measurable hesitation of the moving hand. In a manner 

of speaking, the hand was smarter, better informed, and more adaptive than the mind. So, 

even though we can assume that goal-directed reaching movements are prepared and 

programmed in advance, a slight change in the location of the target does not require time-

consuming modifications of the program or complete reprogramming. This means that the 

original program did not include specific information about the target location but left the 

specification of the details to online routines that adjusted the action on the fly. 

Distributing the labor over different processing channels has obvious advantages: 

storage and preplanning is minimized and yet the resulting action is as precise as necessary. 

However, just like distributed representations create binding problems (Treisman, 1996), 

distributed processing creates coordination problems. In one way or another, action-planning 

processes need to inform action-adjustment processes about which parameters to fill or 

specify, and how to do so. For instance, Milner and Goodale (1995) claim that their dorsal 

action pathway does not have any memory capacity and does not interact with, nor is 

informed by, ventrally-mediated, conscious or unconscious decision making. This would 

imply that the channel that is dedicated to action control has no way to plan any action, 

retrieve or access any action plan, and cannot have any idea about currently relevant action 

goals. It is difficult to see how such a channel can do the job it is supposed to do: to select 

relevant sensory features and feed them into the action programs. Obviously, coherent, goal-
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directed action requires some kind of coordination between planning and adjustment 

processes, so that the latter can provide what the former leave open. 

This chapter is devoted to this kind of coordination problem, and I will present a 

principled approach to how it might be solved. An important insight pointing to a possible 

solution is that concurrent processing streams need to be conditionalized by the current action 

goal. Action goals, so I will assume, govern the selection and planning of appropriate actions, 

and this planning process biases concurrent processing streams, such as the one in charge of 

action adjustments, towards information that is suitable to specify the action parameters that 

planning processes left open. A particularly interesting implication of this line of thought is 

that it requires action-related processes to affect perception and attention to perceptual input. 

Indeed, as the next section shows, there are numerous findings suggesting that action planning 

does affect perception and attention. 

ACTION CONTROL AND ATTENTION 

An early suggestion that visual attention may be affected by action planning emerged 

from studies on the so-called meridian effect (Rizzolatti, Riggio, Dascola, & Umiltà, 1987). 

This effect can be observed in studies that use attentional cues. Consider, for instance, a 

subject focusing on a central spot in a visual display, which further consists of four possible 

target locations marked by small frames, two at the left and two at the right of fixation. Now 

assume that, in each trial, one of the four locations is precued with high validity—that is, the 

subject knows in which of the four frames the target is likely to appear. If the target then 

actually appears in the precued frame, reaction times can be expected to be fast, suggesting 

that subjects ―moved their attention‖ to the frame (Posner, 1980). But what if the target 

appears in an uncued frame? As Rizzolatti et al. (1987) observed, reaction times are not only 

slower in this case but depend on the spatial relation between the cued frame and the eventual 

target location. If, for instance, one of the two inner frames was cued, performance was better 
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if the target frame was located on the same side of the cue than on the opposite side. In other 

words, moving attention further into the same direction was less costly than changing the 

direction. According to the authors, this may suggest that attention is moved by programming 

(but not necessarily executing) an eye movement, which may require the sequential 

specification of a direction parameter and a distance parameter—in this order. If the direction 

stays the same (as when, say, the inner left frame is cued but the target appears in the outer 

left frame), only the distance parameter needs to be modified, which can be done faster than 

modifying the direction parameter or both parameters. 

Further evidence for the general idea that the programming of eye movements is 

involved in directing visual attention to locations in space (see also Klein, 1980) stems from 

Deubel and Schneider (1996; Schneider & Deubel, 2002). Their subjects were to carry out 

saccades to visual targets on the left or right of a fixation point. Before moving their eyes they 

were briefly flashed with a visual string of stimuli containing a to-be-discriminated target 

symbol. As it turned out, performance was good only if the location of the visual target 

coincided with the goal of the saccade, suggesting that programming the saccade involves 

moving attention to the goal location in advance of the saccade—which then facilitates the 

processing of stimuli appearing there. These observations are consistent with the premotor 

theory of attention but go beyond previous findings in directly demonstrating that saccade 

programming actually matters for spatial selection. 

Interactions between the programming of eye movements and attentional selection 

support the idea that action planning affects attentional control, but they are too restricted to 

provide a basis for a comprehensive action-based theory of attention. First, even though 

linking overt and covert visual attention (i.e., attending by moving the physical versus the 

―mind‘s‖ eye) has a long tradition in psychology (e.g., James, 1890; Posner, 1980), this may 

be due to the particularly strong and straightforward sub-cortical connections between retinal 
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input processing and movements of the eyeballs. This raises the question of whether other 

than oculomotor action planning can affect attention. Second, the observed interactions 

between action and attention were restricted to spatial selection. Even though the spatial 

selection of relevant information plays an important role in perception and action, human 

attention subserves more functions than that—just think of object-based selection, action 

selection, and integration (Schneider, 1995). Fortunately, however, there is increasing 

evidence of interactions between manual and verbal action planning and attentional functions 

other than spatial selection. 

First evidence for the impact of manual action planning on visual processing was 

provided by Müsseler and colleagues. Müsseler and Hommel (1997), for instance, had 

participants prepare a left- or right-hand key press and carry it out whenever they felt ready. 

To signal their readiness they pressed a spatially neutral readiness key before performing the 

prepared action. Pressing the readiness key triggered the presentation of a masked visual 

arrowhead that pointed to the left or right. At the end of the trial, participants reported at 

leisure in which direction the arrowhead pointed, which, given the masking procedure, was 

difficult and attention-demanding. The important observation was that the accuracy of the 

perceptual report was dependent on the relation between the prepared response and the 

direction of the arrowhead. If participants prepared and carried out a left-hand response, they 

had substantially more difficulty detecting a left-pointing than a right-pointing arrowhead, and 

the opposite was true for right-hand responses. In other words, planning a spatially defined 

manual action ―blinded‖ the participants to perceptual events that shared features with the 

action.  

Even though this finding seems counterintuitive, it fits with the idea that action 

planning consists in the binding of distributed feature codes that specify the action‘s relevant 

characteristics (Stoet & Hommel, 1999). Planning a left-hand action would thus require the 
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binding of a <left> code with other relevant codes specifying, say, the speed, force, and extent 

of the key press. If we further assume that perceptual and action-related features are coded in 

the same format (Hommel et al., 2001a; Prinz, 1990), ―occupying‖ (Stoet & Hommel, 1999) a 

given feature by binding it into an action plan should indeed impair the creation of another 

binding to represent a feature-overlapping perceptual event—such as a spatially compatible 

arrowhead. Other observations confirmed that this line of reasoning is not restricted to manual 

action plans or spatial relationships. For instance, planning a manual left or right action 

―blinds‖ participants to compatible left- or right-pointing arrowheads but not to the words 

―left‖ or ―right‖, whereas planning a vocal action (i.e., saying aloud ―left‖ or ―right‖) impairs 

the perception of compatible words but not arrowheads (Hommel & Müsseler, 2006). 

Another demonstration of interactions between manual action planning and visual 

attention was provided by Craighero, Fadiga, Rizzolatti, and Umiltà (1999). They had 

participants manually grasp invisible objects that were tilted to the left or right. The type of 

grasp was planned ahead but the execution had to await the presentation of a go signal. The 

orientation of this go signal did or did not match the orientation of the to-be-grasped object. It 

turned out that participants were responding faster if the invisible target object and the go 

signal matched in orientation (and even if the go signal was responded to by foot), suggesting 

that planning a grasping action prepared the visual system for the processing of target-related 

features. Similarly, Bekkering and Neggers (2002) had participants detecting and grasping 

(versus pointing to) visual targets defined by a conjunction of orientation and color features. 

The findings revealed that fewer orientation errors were committed when participants 

prepared for grasping as compared to pointing, whereas color errors were rare in all 

conditions. The authors argue that planning a particular movement enhances the processing of 

features that specify the target of this movement. At first sight, these observations do not 

seem to fit with the inverse effect on feature overlap reported by Müsseler and Hommel 
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(1997). However, while Müsseler and Hommel required participants to consciously perceive 

and report the perceptual events, participants in the Craighero et al. and the Bekkering and 

Neggers studies were only using these events for triggering a more or less prepared 

response—a situation that is unlikely to require feature binding.  

Let us summarize so far. The apparent distribution of labor between off-line action-

planning processes and online action adjustment introduces a control problem and raises the 

question of how action planning can make sure that adjustment processes select the 

appropriate sensory information and feed it into the relevant motor-control structures. We 

have seen a number of empirical phenomena suggesting that planning an action has a direct 

impact on attentional and perceptual processes, and we have also seen that this holds for 

oculomotor, manual, and vocal actions, and corresponding perceptual dimensions. In 

principle, it thus seems possible that action planning processes do not only specify the task-

relevant characteristics of a given action but that they also bias action-adjustment routines 

towards the relevant perceptual dimensions. And yet, there is one fly in the ointment: whereas 

research on visual attention suggests that task goals lead to the priming and stronger 

weighting of appropriate perceptual dimensions, at least most of the available evidence for 

action-attention interactions points to stimulus-specific biases (e.g., the priming of one 

particular orientation in Craighero et al., 1999). The theoretical challenge thus consists in 

explaining why and how action planning can bias perceptual processing towards perceptual 

dimensions that provide information for specifying the open parameters of the action in 

question. 

INTENTIONAL CONTROL OF ATTENTION: A NEW FRAMEWORK 

The theoretical framework I would like to propose here was motivated by an 

observation of Schubotz and von Cramon (2001, 2002). They had participants carry out an 

oddball task while lying in an fMRI scanner. Sequences of stimuli that followed a particular 
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rule were presented (e.g., a repeated sequence of particular colors, locations, or shapes), and 

the participant was to report at leisure at the end of the trial whether one of the stimuli 

violated the rule. The important observation was that this perceptual monitoring task 

consistently activated the lateral premotor cortex, even in the absence of any motoric 

response. A meta analysis of these and similar observations revealed systematic relationships 

between the task-relevant perceptual dimension and the particular area in the premotor cortex 

where the activation was located (Schubotz & von Cramon, 2003). Three of these relations 

were particularly systematic: Location-relevant perceptual monitoring engaged premotor 

areas that are involved in the control of saccades and reaching movements; the monitoring of 

object-related features (such as color or shape) activated premotor areas involved in the 

control of grasping movements; and the monitoring of rhythmic events engaged premotor 

areas responsible for controlling vocal actions and manual tapping. As the authors point out, 

these relationships suggest that action-related brain areas are directly involved in the control 

of attention and, in particular, in directing attention towards action-related perceptual 

dimensions. 

These considerations were further developed by Fagioli, Hommel, and Schubotz 

(2007a). Preparing for a reaching movement, these authors reasoned, should sensitize the 

perceptual system for features of dimensions that are relevant for specifying the open 

parameters of reaching movements. Most likely, this criterion is met by location information. 

Preparing for a grasping movement, in turn, should sensitize the system for processing 

information about the final phase of the grasp, such as the size of the object signaling the 

hand‘s aperture. To test these hypotheses, the authors had participants reach towards or grasp 

an object in front of them. Before the action was executed, however, participants were 

presented with a sequence of stimuli following a particular rule, as in the setup of Schubotz 

and von Cramon (2001), and they were to detect possible oddballs. If an oddball occurred, the 
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prepared reaching or grasping movement was carried out. As expected, the reaction times for 

these movements varied with the perceptual dimension on which the oddball was defined. 

Whereas reaching movements were initiated faster with location oddballs than with size 

oddballs, the opposite applied to grasping movements. To rule out that this effect was due to 

the oddball-induced priming of the movement, another experiment was carried out in which 

the detection of the oddball was signaled by a foot response. Again, preparing for a reaching 

movement facilitated the detection of location oddballs, and preparing for a grasping 

movement facilitated the detection of size oddballs. 

These observations are consistent with the idea that action control encompasses the 

priming of perceptual dimensions, but one may argue that this connection is less direct than 

suggested here. For instance, it may be that a general executive control system does not only 

select appropriate responses but also implements a particular attentional set. Indeed, Logan 

and Gordon (2001) have suggested that executive control functions both bias attention 

towards task-relevant perceptual dimensions and specify the necessary stimulus-response 

rules without directly relating these two processes to each other or even deriving the 

attentional bias from action-control demands. In an attempt to provide more specific evidence 

for action-induced attentional biases, Fagioli, Ferlazzo, and Hommel (2007b) investigated 

whether the biases observed by Fagioli, Hommel, and Schubotz require active action 

planning. If activating an action plan is sufficient to induce the stronger weighting of related 

perceptual dimensions, they reasoned, such weighting should also be observed if the action 

plan is activated involuntarily. Participants were again monitoring sequences of stimuli and 

were to press a foot pedal as soon as they detected an oddball. They did not carry out any 

other action and no reaching or grasping movement in particular. However, prior to the 

stimulus sequences short video clips were presented, which showed a person carrying out a 

reaching or grasping movement. These videos were not relevant to the task and did not predict 
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or inform about the stimulus sequences or the correct responses. Nevertheless, participants 

were faster to detect location oddballs after seeing a reaching movement and size oddballs 

after seeing a grasping movement. Apparently, the videos activated reaching- and grasping-

related action plans and this activation was sufficient to increase the weights of reaching- and 

grasping-related perceptual dimensions. 

=== FIGURE 1 === 

Taken together, these findings support the idea that the mere activation of an action 

plan—whether through top-down processes in the service of the current action goal or 

bottom-up, stimulus-induced processes—leads to an increase on the weights of those 

perceptual dimensions that allow for the specification of action parameters commonly left 

open by action planning. Figure 1 summarizes the theoretical implications of this 

consideration. As pointed out above, stimuli are assumed to be coded on feature maps, with 

each feature activating a code on the respective feature dimension (or multiple codes 

competing for coding the stimulus: Reynolds, Chelazzi, & Desimone, 1999). In the example 

given, a circular object at some top location is coded on a shape and a location map—a drastic 

simplification that is not meant to deny the existence of numerous other feature maps (such as 

color, motion, etc.), of multiple spatial maps (coding for, e.g., allocentric, egocentric, and 

retinal location), and of other sensory modalities.  

This information is propagated to two different processing pathways, one subserving 

perception and action planning (similar but not identical to the ventral pathway of Milner & 

Goodale, 1995, and comparable to the action-planning pathway of Glover, 2004) and one 

subserving online action adjustments (comparable to Milner and Goodale's dorsal pathway 

and Glover‘s action-control pathway). Activating an action plan, such as for grasping or 

reaching (symbolized by the grasping and pointing hands in the figure), increases the weight 

(ω) of the output of particular feature maps, which increases the impact of information coded 
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there on further information processes (i.e., perception and action planning on the one hand 

and action adjustment on the other). Following the Theory of Event Coding (Hommel et al., 

2001), perception and action planning are not further differentiated, which acknowledges that 

these two functions highly interact and can be considered two sides of the same coin. 

Perception and action planning creates action plans reflecting the current goal. Action 

plans consist of specified parameters (structural features of the planned action that are 

relevant for reaching the goal) and not-yet-specified parameters that are to be filled by online 

adjustment processes; in the figure, these parameters are symbolized by black and white 

circles, respectively. The open parameters are specified by continuously transmitting sensory 

information from feature maps to ongoing actions. This transmission is weighted by the 

output weight ω of the respective dimensions. Accordingly, given that planning a grasping 

action increases the weights for shape information, action-adjustment processes will mainly 

consider  information provided by the shape map and use it to specify the remaining grasping 

parameters (such as hand aperture). 

Note that the output weights have two functions in this model. On the one hand, they 

help to overcome the control problem posed by the existence of multiple concurrent 

processing streams by biasing online adjustment processes towards goal-relevant perceptual 

dimensions. On the other hand, they also bias perception and action planning towards these 

dimensions, a characteristic that is important to account for the findings of Fagioli et al. 

(2007a, 2007b). These findings suggest that planning an action leads to the faster conscious 

detection of stimuli varying on action-relevant perceptual dimensions, which implies that 

planning must have affected perceptual processes. Recent findings support the idea that action 

planning modulates conscious perception in systematic ways. Wykowska, Schubö, and 

Hommel (2008) presented participants with visual-search displays that contained to-be-

detected pop-out targets—that is, stimuli that differed from all other stimuli of the display on 
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one dimension. As in the studies of Fagioli and colleagues, participants prepared either a 

reaching or a grasping action, and the target-defining dimensions were luminance (which was 

considered more important for reaching than for grasping) and size (which was considered 

more important for grasping than for reaching). If participants knew in advance on which 

perceptual dimensions a target would pop out, the prepared action biased attention 

systematically: preparing a reach facilitated the detection of luminance-defined targets and 

preparing a grasp the detection of size-defined targets. However, this effect was not observed 

when participants did not know the target-defining dimension in advance. Under this kind of 

uncertainty participants are known to not prepare for a particular perceptual dimension but to 

rely on saliency signals—that is, they respond to any dishomogeneity in the visual field 

without identifying the dimension on which it occurs (Bacon & Egeth, 1994). Given the 

absence of action-induced biases on this type of processing, it makes sense to assume that 

these biases target the output of feature-map coding, but not the input or processes preceding 

or circumventing feature coding.  

THEORETICAL IMPLICATIONS 

The proposed theoretical framework has a number of interesting theoretical implications 

that break with the main line of reasoning underlying traditional attentional research. Most 

importantly, it denies that attentional functions emerged to distribute sparse cognitive 

resources to prevent the cognitive system from overload. In contrast, it proposes that 

attentional functions originally evolved to deal with control problems arising from distributed 

representation and processing and from the share of labor between off-line, anticipatory action 

planning and online action adjustment in particular. Once these functions were available, they 

could also be used for other purposes—that is, the weights of perceptual dimensions could be 

manipulated for other reasons than action adjustment and without actually preparing overt 

actions. It is this generalization that makes people good performers in visual-search 
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experiments and related tasks. However, outside of the psychological laboratory there are not 

too many occasions in which selective attention is needed for other purposes than action 

control—we commonly do not detect feature conjunctions in complex visual environments 

for the sake of detecting them but do so in the service of particular action goals. Considering 

this, selection-for-action approaches (Allport, 1987; Neumann, 1987) go in the right direction 

in emphasizing the theoretical importance of actions. However, the available evidence allows 

for an even more radical interpretation, according to which attentional functions do not only 

consider action opportunities but may be a mere byproduct of action control in a distributed 

processing system. 

Given the systematic interactions between particular types of actions and particular 

perceptual dimensions, it is interesting to ask where this systematicity comes from. One 

possibility is phylogenetic development—that is, the discovery that some perceptual 

dimensions are more important for some actions than others may be an evolutionary 

achievement that became genetically coded over time. Alternatively, the selective use of 

perceptual dimensions may be an ontogenetic discovery. Consider, for instance, a learning 

process that is sensitive to the success of actions. In the beginning, actions may be carried out 

on the basis of any available information, with a noisy and random weighting of information 

provided by the available feature maps and very mixed results. The open parameters of an 

action—a grasp, say—would thus be randomly filled with all sorts of feature information. 

However, extensive experience will reveal that using size information renders grasping 

actions more successful than, say, using color information, and correlation learning would be 

sufficient to detect the relationship between different perceived sizes of the grasped object and 

the hand aperture in the final phase of a grasp. In other words, exploration in infancy and 

early childhood may allow for the discovery of optimal relationships between the 
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consideration of particular perceptual dimensions on the one hand and particular action 

categories on the other. 

Let us conclude by considering the implications of this suggested framework for the 

topic of this book, the issue of whether and when attentional processes are effortful or 

effortless. According to the suggested framework, attentional operations themselves are not 

effortful but are more or less automatically triggered by action-control processes, which again 

are coordinated by the current action goal (see Fagioli et al., 2007b). Hence, the selection, 

representation, and maintenance of an action goal would be a necessary precondition for 

attentional processes to operate, and these processes are commonly considered effortful. The 

most common task to investigate goal implementation requires participants to switch between 

different, mutually incompatible action goals (e.g., Monsell, 2003). Using this task has 

revealed two major findings that are important for our purposes. First, performance is strongly 

impaired in trials that require a goal switch, which has been taken to reflect time demands 

associated with establishing the new goal before going on with the task details (e.g., Rogers & 

Monsell, 1995; Meiran, 1996). Second, even task repetitions have been found to show 

performance decreases over time, suggesting that goal maintenance requires some effort (e.g., 

Altmann, 2002). Even though such observations seem to make a strong case for effortful goal 

operations, there are reasons to not jump to conclusions. Waszak, Hommel, and Allport 

(2003) provided evidence that task goals can become associated with particular stimuli, so 

that these stimuli can act as exogenous retrieval cues for these goals. Along the same lines, 

Logan and Bundesen (2003) observed that most of the difficulty in switching between 

different goals is due to a shift in the task cues that signal the different goals—again 

suggesting that goal selection can become stimulus driven under appropriate circumstances. 

Indeed, Bargh and Gollwitzer (1994; Bargh, Gollwitzer, Chai, Barndollar, & Troetschel, 

2001) have claimed that everyday behavior is often driven by external cues, which would 
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allow for effortless goal selection. Similarly, even if goal maintenance turned out to require 

effort in artificial laboratory tasks, the goals we maintain in everyday life are commonly 

consistent with, and thus supported by, long-term motives and overarching goals as well as by 

environmental cues. Indeed, situations in which the available stimuli are specifically 

associated with different tasks, switching between tasks and goals was not found to be 

effortful or performance-costly (Jersild, 1927). Taken altogether, it may thus be possible that 

the frequent use of artificial tasks that are not deeply anchored in the participant‘s 

motivational structure and not supported by environmental cues have lead to a rather drastic 

overestimation of the cognitive effort needed to deal with everyday life. 
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FIGURE CAPTION 

Figure 1: A process model of action-induced attention, see text for explanation. 

 

 

 

 



When an object is more than a binding of its features:

Evidence for two mechanisms of visual feature

integration

Bernhard Hommel and Lorenza S. Colzato
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People spontaneously integrate the features of visual events into episodic structures
that are reactivated if their ingredients match aspects of the current input. Feature
integration has been attributed to either the detection of feature conjunctions or the
ad hoc binding of feature codes (e.g., by neural synchronization). We report
evidence suggesting that both kinds of integration mechanisms coexist. Replicating
earlier findings, repeating one visual feature facilitated performance but only if
other visual features were also repeated. However, this effect was more pronounced
with real objects as compared to arbitrary combinations of shapes and colours.
Moreover, the real-object effect was restricted to visual feature integration but did
not extend to visuomotor integration, suggesting that the underlying mechanism
subserves perception only. We suggest a dual-process feature-integration model that
distinguishes between ad hoc binding, which operates on any possible combination
of features alike, and conjunction detection, which selectively operates on familiar
feature combinations.

Keywords: Object perception; Event file; Feature integration.

Primate brains represent many aspects of the objects and events they

perceive and produce in a distributed, feature-based fashion. The human

visual cortex, for instance, consists of various neural maps that code for

different visual features of perceived objects, such as orientation, shape, or

motion (see DeYoe & van Essen, 1988), and the frontal cortex houses maps

coding for the direction, distance, and force of intentional actions (see

Hommel & Elsner, in press). These observations have been taken to imply

various integration or binding problems (e.g., Treisman, 1996), as they raise
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the question how the brain knows which of the feature codes activated at a

given time are related to the same event.

Authors differ with respect to how serious they consider these problems to

be and how easily they think these problems can be solved. For instance,
some authors have claimed that serially operating attentional mechanisms

are required to bind related information together (e.g., Treisman & Gelade,

1980), whereas others assume that the retinotopic organization of visual

maps provides sufficient information for properly integrating at least visual

features (van der Heijden, 1995). Most authors have focused on one of two

neural principles that may mediate feature integration and help solving

binding problems. One principle is that of convergence: Lower level neurons

may code for simple features, such as Bround�orBgreen�, and project
onto higher level neurons that code for feature conjunctions (e.g., Bround�

ANDBgreen�). This may lead up to even higher level representations of

whole objects (Barlow, 1972). Given the considerable variability of objects in

terms of their instances and retinal projections, as well as the numerous ways

in which features can be potentially combined, the exclusive reliance on

convergence mechanisms would lead to a combinatorial explosion and is

therefore not particularly plausible. Accordingly, a second mechanism has

been suggested in which integration does not (necessarily) rely on conjunc-
tion detectors. The idea is that integration comprises of synchronizing the

firing patterns of feature-coding neurons, in such a way that the neurons

coding for features of the same object act as a unit (Engel & Singer, 2001;

Raffone & Wolters, 2001; von der Malsburg, 1999).

Even though these two mechanisms are commonly treated as mutually

exclusive alternatives, the benefits and costs they imply suggest that they

both play a role in dealing with binding problems (Colzato, Raffone &

Hommel, 2006; VanRullen, 2009 this issue). Synchronization-based integra-
tion has the advantage of being particularly flexible and parsimonious in

terms of long-term memory structures but the disadvantage that even

features that are very likely to cooccur would need to be bound anew every

time they are encountered. Hence, this integration method would be

economical in terms of cognitive structure but wasteful in terms of

processing time. In contrast, convergence-based integration has the advan-

tage of allowing for the fast and effortless registration of feature combina-

tions of practically unlimited complexity but the disadvantage that (apart
from possible genetically hardwired conjunction detectors) this registration

presupposes extensive learning and some degree of separability of conjunc-

tions (as conjunction with too much feature overlap would lead to the

activation of too many conjunction detectors). Hence, this integration

method would be economical in terms of processing time but wasteful in

terms of structure. Given that our environment calls for both the recognition

of highly reliable feature combinations (as with natural objects) and the

INTEGRATING FEATURES, OBJECTS, AND ACTIONS 121

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
B
i
b
l
i
o
t
h
e
e
k
 
S
o
c
i
a
l
e
 
W
e
t
e
n
s
c
h
a
p
p
e
n
]
 
A
t
:
 
1
9
:
0
4
 
1
6
 
J
a
n
u
a
r
y
 
2
0
0
9



processing of highly arbitrary combinations (as commonly used in psycho-

logical experiments), it makes sense to assume that both convergence-based

and synchronization-based mechanisms are at work in generating human

perception.
The present study was conceived of with this distinction in mind. As we

will argue, there is behavioural evidence suggesting that at least two different

mechanisms are at work in human visual feature integration, one that

operates on any feature conjunction that is encountered (presumably based

on synchronization) and another that selectively operates on frequent

conjunctions that have been stored (presumably based on convergence).

Before addressing the motivation and rationale of our study in more detail

we will provide a brief overview of the theoretical background relevant for

the study and the experimental paradigm we used.

OBJECT FILES

Most studies addressing feature binding focused on the visual modality.

Some studies investigated whether there actually are binding problems in

visual feature integration. For instance, Treisman and Schmidt (1982), and

many others since then, demonstrated that creating attentionally demanding

conditions results in an increasing numbers of incorrect bindings or ‘‘illusory

conjunctions’’*suggesting that feature integration is not a trivial task and

raising doubt whether it is solely handled by convergence mechanisms

(which have a hard time predicting such observations). Other studies have

looked into whether people actually do bind features, even under circum-

stances that do not seem to require any binding. Particularly appropriate for

that purpose turned out to be the preview paradigm developed by Kahne-

man, Treisman, and Gibbs (1992) and used by many others since then.

The simplest, stripped-down form of this paradigm is illustrated in

Figure 1 (please ignore the R1 cue and R1 for the moment). The sequence of

trial events comprises a nominally task-irrelevant prime or preview display

(S1) followed by a probe display (S2). Let’s assume in this example that S1

and S2 can either be a circle or triangle, can be red or green, and can be

presented in the top or bottom position. The observer’s task is simply to

identify S2’s shape as quickly as possible. Colour and position information

are completely irrelevant to the task and can be safely ignored. Because S1

requires no response, it too can be ignored. Critically, S1 may consist of the

same or a different shape as S2 and may appear in the same or a different

colour and at the same or a different location. Analysing performance on S2

(i.e., R2) as a function of the repetition or alternation of shape, colour, and

location (from S1 to S2) may or may not produce main effects, such as better

performance if a particular feature repeats. These kinds of effects should
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reflect the priming of feature codes (e.g., leftover activation in the

corresponding codes) and are thus unlikely to reflect binding processes

(Kahneman et al., 1992).

Theoretically more interesting are interactions between repetition effects,

because they indicate that the impact of repeating one feature depends on

the identity of the other. Such interactions have been frequently observed:

Repeating one feature produces better performance if other features are also

repeated (e.g., Kahneman et al., 1992) but worse performance if these other

features alternate (e.g., Hommel, 1998). To take our example, responding to

a red circle (as S2) is easier following the presentation of another red circle

than following a green circle (as S1), but more difficult following a red than a

green triangle. Likewise, responding to a top circle is easier following a top

than a bottom circle, but more difficult following a top than a bottom

triangle. These observations suggest that registering the cooccurrence of two

or more given features is sufficient to create some sort of binding between

them, so that reencountering one of them tends to reactivate the whole

binding in a pattern-completion-like process (Hommel, 2004). As a

consequence, partial repetitions induce the retrieval of no longer valid

feature codes, which disturbs current coding processes and induces code

conflict. There is thus evidence that people do bind features*no matter how

plausible one finds the available arguments for or against the logical

necessity of feature binding. And they do so even under the most unlikely

circumstances, that is, even if neither the bound features nor the object they

refer to need to be attended or reported, even in the absence of any

attentionally challenging display or task, and even when no more than 250�
500 ms are available for creating such bindings (Hommel & Colzato, 2004).

Figure 1. Sequence of events in the present experiment. Participants prepared a left- or right-hand

response as indicated by a cue (R1 cue) and carried it out (R1) when the next stimulus (S1) appeared.

Then they waited for the next stimulus (S2) and carried out a left- or right-hand response (R2) to its

shape. S1 and S2 varied in shape, colour, and location, so that all three features could repeat or

alternate. As R1 did not depend on S1 (but on the R1 cue), the response could repeat or alternate

irrespective of the stimulus sequence.
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Direct evidence for the retrieval of object files has been obtained in an

fMRI study by Keizer et al. (2008). They presented subjects with preview

(S1) and probe displays (S2) that both consisted of two blended pictures

showing a face and a house. Either the face or the house moved in one of two
possible directions, and subjects were to respond to the direction of S2

irrespective of which object moved. Most interesting were the conditions in

which S1 showed a moving house and S2 a moving face: If the direction of

motion in these two displays was the same more activation of house-related

information in the parahippocampal place area was observed than if the

motion differed. This suggests that the direction of motion was integrated

with the object that moved, so that repeating the motion reactivated the

representation of the object that had just accompanied this motion. Hence,
binding features creates episodic cognitive structures that tend to be

reactivated as a whole as soon as one of their ingredients matches the

current input. This is indeed what underlies the original idea underlying

Kahneman et al.’s (1992) object file concept: Bindings are functional in

establishing object constancy by maintaining information about an object

even in the absence of current sensory input and by relating this information

to later reoccurrences of this object, even though these reoccurrences may

only match part of the maintained information. This is why we can track
objects over longer periods of occlusion and across changes in a number of

visual features.

Interactions between repetition effects indicative of feature binding have

been obtained for various features. Shape, colour, and location features have

been shown to interact (Hommel, 1998, 2007; Hommel & Colzato, 2004) just

as well as face, house, and motion information (Keizer, Colzato & Hommel,

2008)*suggesting that binding can span ventral and dorsal processing

streams. An interesting observation in all these studies is that location does
not seem to play a particularly dominant role. Some authors have claimed

that object files can only be reactivated or reassessed if the current object

matches the respective object file in terms of location (Kahneman et al.,

1992; Mitroff & Alvarez, 2007). This would suggest that nonspatial matches

are insufficient by themselves to retrieve a previous object file, which again

implies that nonspatial features can only interact if this interaction is

mediated by a location match. Even though it is clear that spatial location

and spatial matches are important in multielement displays, simply because
location is commonly crucial to track the identity of an object, spatially

unmediated interactions between nonspatial features are possible (e.g.,

Colzato, Raffone, & Hommel, 2006; Hommel, 1998, 2007), which discon-

firms approaches that rely on spatial correspondence as a retrieval cue. On

the other hand, spatial location clearly plays a central role in the encoding of

object files. Most studies on feature integration confound the sharing of

spatial location with belongingness to the same perceptual object. Van Dam

124 HOMMEL AND COLZATO

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
B
i
b
l
i
o
t
h
e
e
k
 
S
o
c
i
a
l
e
 
W
e
t
e
n
s
c
h
a
p
p
e
n
]
 
A
t
:
 
1
9
:
0
4
 
1
6
 
J
a
n
u
a
r
y
 
2
0
0
9



and Hommel (2008) disentangled these factors by testing whether two given

features appearing in the same location would be still integrated even if they

obviously belonged to two different objects. Indeed, orientation and colour

features were bound (i.e., orientation- and colour-repetition effects inter-

acted) irrespective of whether they appeared as part of the same object or of

different objects (e.g., one stationary and the other moving continuously, or

a banana in a particular orientation overlaying an apple of a particular

colour). In contrast, integration was markedly reduced when the two objects

were separated in space (cf. Xu, 2006). Thus, spatial location is important for

the encoding but not the retrieval or reactivation of object files.

MULTIPLE INTEGRATION MECHANISMS

The available evidence suggests that cooccurring visual features are more or

less automatically bound into object files, that is, temporary links between,

or pointers to the codes representing, the features of a perceived visual event.

To take our example, and following Hommel (2004) and Colzato et al.

(2006), this process can be captured by the cartoon model sketched in Figure

2a. Registering a red circle appearing in a top position would lead to the

activation of corresponding codes in shape, colour, and location maps, and

these codes are cross referenced by creating a temporary object file

(symbolized by the folder).

Note that Figure 2 considers a further impact from the current attentional

set, which is assumed to prime task-relevant feature dimensions (shape in

our example). The reason to include such a top-down mechanism derives

from a number of observations. On the one hand, the fact that bindings are

created under the most unlikely conditions seems to suggest that feature

integration is a highly automatic process. Indeed, systematic manipulations

of the amount of attention directed to the to-be-integrated features and

available for integration failed to modulate feature integration effects

(Hommel, 2005, 2007), suggesting that the encoding of event files is a

spontaneous process (cf. Logan, 1988). On the other hand, the retrieval of

event files turned out to be rather highly controllable. One indication for that

is that features varying on task-relevant feature dimensions are more likely

to be involved in interactions with other features. For instance, having

participants respond to the shape of S2 yields particularly strong binding-

related effects involving shape repetition while having them respond to

colour yields particularly strong effects involving colour repetition (e.g.,

Hommel, 1998). Even trial-to-trial shifts between shape- and colour-relevant

versions of the task induce stronger binding-related effects for the currently

task-relevant feature dimension, suggesting that attentional set has an

immediate impact (Hommel, Memelink, Zmigrod, & Colzato, 2008). As it
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Figure 2. Cartoon model of feature binding and binding retrieval. (a) The coding of arbitrary

feature conjunctions (adapted from Colzato et al., 2006). Colours are indicated by fill patterns. Shape

is directly task relevant (by having it signalling responses) and location is indirectly task relevant (by

defining the responses in terms of spatial locations), so that the shape and location dimensions are

primed by the attentional set. Features on primed dimensions are assumed to be more likely integrated

with other features and/or retrieved by stimuli that feature-overlap with the respective binding. (b) The

coding of highly familiar feature conjunctions or real objects represented in long-term memory.

Stimuli that match long-term representations to a sufficient degree activate these representations,

which again induce top-down priming of the stimulus features that are coded on object-defining

dimensions (shape and colour in the example). Top-down priming may work by increasing the gain of

the respective feature dimension, which multiplies the stimulus-induced activation of this dimension’s

feature codes. Note that short-term bindings and long-term representations relate differently to

individual feature codes: Whereas short-term bindings are considered to ‘‘point’’ to, and thus remain

linked with the individual codes, long-term representations only respond to the presence of features or

feature combinations. Likewise, short-term bindings can reactivate individual feature codes upon

retrieval of a code that has been bound with them, whereas the top-down effect of long-term

representations is restricted to priming feature dimensions but not individual codes.
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does not matter whether the set is established before or after the hypothetical

binding process (i.e., before after S1 presentation), it makes sense to assume

that the impact of the attentional set selectively targets object file retrieval

but not encoding (Hommel et al., 2008).
In Figure 2a we have considered two types of impact of the current

attentional set. One is rather obvious: Having participants to respond to the

shape of stimuli makes the shape dimension task relevant, so that it should

receive top-down priming. However, stimuli are not the only events in

reaction time tasks; participants also need to prepare and carry out

particular actions. Given that actions can be assumed to be cognitively

represented in terms of their perceptual effects (reflecting the ideomotor

principle; see Hommel, Müsseler, Aschersleben, & Prinz, 2001; James, 1890;
Lotze, 1852), preparing and controlling a particular set of actions entails

attending the perceptual dimensions on which the actions are defined

(Adam, Hommel, & Umiltà, 2003; Fagioli, Hommel, & Schubotz, 2007). If,

as in our example, responses are defined by their spatial location (left vs.

right keypress), this introduces task relevance of location in general. If we

assume that the task relevance of a feature dimension leads to the priming of

all feature values defined on it (Fagioli et al., 2007; Found & Müller, 1996;

Hommel, 2007), making left and right response locations relevant should
lead to the priming of any location information (i.e., whether it refers to a

stimulus event or a response)*just as indicated in Figure 2a. Accordingly,

the impact of (repetitions of) stimulus location increases as a consequence of

choosing spatial responses. Indeed, Hommel (2007) could provide evidence

that repetitions of stimulus location strongly affect binding-related effects

with spatially defined response sets but not with nonspatial responses.

The model shown in Figure 2a suffices to account for the basic findings

from most studies using the design introduced by Kahneman et al. (1992),
and the binding process it implies reflects more characteristics of synchro-

nization-based binding than of convergence-based integration. For one, it is

difficult to see how convergence detectors might produce partial-repetition

costs. Clearly, activating the same detector twice, as with the complete

repetition of a particular shape�colour conjunction, say, should speed up

performance and it commonly does. But consider a partial repetition (of

either the shape or the colour) and a nonrepetition. Partial repetitions may be

thought to also activate the same detector twice, though to a lower degree, or
to fail activating the same detector. In the first case one would expect that

performance for partial repetitions falls between complete repetitions and

nonrepetitions; whereas in the second case one would expect that perfor-

mance on partial repetitions and nonrepetitions is equally worse than on

complete repetitions. As already mentioned, however, the standard finding is

that performance on complete repetitions and nonrepetitions is equally good

and better than on partial repetitions (e.g., Hommel, 1998). Closer
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consideration of the possible noise and competition between alternative

conjunction detectors helps a bit. For instance, one may assume that

encountering one combination of two possible colours and two possible

shapes (a red circle, say) leads to the activation of at least three conjunc-
tion detectors: A strong activation of the target detector (Bred��
Bcircle�) and some milder activation of feature-sharing detectors (say,

Bred��Bsquare�and Bgreen��Bcircle�). If the target repeats, all

three detectors would be reactivated; this would lead to a particularly strong

activation of the target detector, which now dominates the feature-sharing

detectors even more. More concretely, if we count three activation units per

target-induced activation and one unit per activation through feature overlap,

this would mean that the target detector as an activation level of 6 as
compared to an activation level of 2 for each of the two main competitors. It

is easy to see that this approach correctly predicts worse performance with

partial repetitions: If a red circle is followed by a green circle, say, this would

first activate the same three detectors (Bred��Bcircle��3,Bred��
Bsquare��1, andBgreen��Bcircle��1) as in the previous example

and then the target detector (Bgreen��Bcircle��3) and the feature-

overlapping detectors (Bgreen��Bsquare��1 andBred��Bcir-

cle��1). Now the activation level of the target detector would be 4,
just as much as its main competitor (Bred��Bcircle�), a situation that

should result in impaired performance. The approach can also account

for the observation that nonrepetitions produce better performance than

partial repetitions. If a red circle is followed by a green square, this

would activate (Bred��Bcircle��3,Bred��Bsquare��1, and

Bgreen��Bcircle��1) followed by (Bgreen��Bsquare��3) and

(Bgreen��Bcircle��1 andBred��Bsquare��1). The target ac-

tivation would now add up to 3 and face activation levels of 2 in each of the
two main competitors. Even though the target is now exposed to stronger

overall competition than with partial repetitions (3:4 as compared to 4:4), the

target would be in the position to outcompete each of the two competitors

separately. Hence, choosing the right parameters, one may end up with a

model that can account for better performance under nonrepetition than

partial repetition. But again, it is difficult to see how it can account for equal

performance under complete repetitions and nonrepetitions.

These difficulties suggest looking for alternative or at least additional
mechanisms that are able to integrate features. Particularly promising with

regard to the available findings seems the assumption that features are

bound by an ad hoc binding mechanism, such as synchronizing the firing

patterns of feature codes. If such a mechanism has just bound, say, the

feature codesBred�andBcircle�, and if this binding has been maintained

or stored, repeating one but not the other feature (as with a red square)

could retrieve this binding (and thus reactivate the codesBred�and
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Bcircle�), which would result in coding conflict between Bcircle�and

Bsquare�codes (Hommel, 2004). Coding conflict would only occur with

partial repetitions but not with complete repetitions (where there is no

conflict) or with alternations (where there is no retrieval). Another argument
for a role of synchronization derives from the observation that manipula-

tions targeting the muscarinic-cholinergic transmitter system affect both

visual binding and synchronization in the visual cortex. Muscarinic-

cholinergic agonists and antagonists have been demonstrated to respectively

facilitate and impair neural synchrony in the gamma band (�30�70 Hz) in

the visual cortex of the cat (Rodriguez-Bermudez, Kallenbach, Singer, &

Munk, 2004) and muscarinic-cholinergic antagonists were found to interfere

with feature binding in the rat (Botly & de Rosa, 2007). Consistent with that,
binding-type interactions between repetitions of visual features in humans

are boosted by caffeine (a muscarinic-cholinergic agonist) and reduced by

alcohol (a muscarinic-cholinergic antagonist), but unaffected by nicotine (a

nicotinic-cholinergic agonist that does not affect muscarinic pathways;

Colzato, Erasmus, & Hommel, 2004; Colzato, Fagioli, Erasmus, & Hommel,

2005). These parallels are consistent with the assumption that visual feature

binding is mediated by neural synchronization processes that are driven by

muscarinic-cholinergic neurotransmitters (Colzato et al., 2005).
Recent observations however suggest that the model sketched in Figure

2a is incomplete in important ways. In a series of experiments, Colzato et al.

(2006) investigated the relationship between binding and longer term

learning. The basic idea was that learning particular feature conjunctions

may change the way the features they entail are bound, by either increasing

the strength of the binding (because it would find increasing support by

long-term associations) or by eliminating binding effects (because online

binding would be no longer necessary). Surprisingly, however, even though
more frequent feature combinations facilitated performance as such,

binding-related effects were not at all affected by learning. This was true

for highly frequent arbitrary conjunctions of features, such as orientation

and colour, and for real objects, like red strawberries and yellow bananas.

Even though performance was better if strawberries appeared in red and

bananas in yellow, there was no indication that, say, strawberries are more

strongly (or weakly) bound to red than they are to yellow, pink, or purple.

These findings suggest that binding and learning are less intimately related
then one may think. Interestingly, however, a comparison between the

different experiments of Colzato et al. suggested that real objects created

larger partial-repetition costs (i.e., binding-related effects) than arbitrary

combinations of simple features did, which may point to a contribution from

long-term memory.

To account for this pattern of results, Colzato et al. (2006) suggested that

feature integration may proceed via two routes, the ad hoc binding of
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cooccurring features (presumably mediated by synchronization processes)

and the registration of previously acquired conjunctions by conjunction

detectors stored in long-term memory (presumably using convergence

mechanisms). This brings into play long-term memory representations the
way we sketched in Figure 2b. Whereas ad hoc integration takes place as

described in Figure 2a, overlearning feature conjunctions are thought to

establish a conjunction detector in long-term memory. These detectors may

be of any complexity and thus function as object representations or cardinal

cells in the sense of Barlow (1972). However, establishing a new detector

makes sense only, so we suggest at least, under two conditions. First, the

conjunction it can detect needs to be significant in the sense of reliably

indicating a particular stimulus event and, second, the conjunction needs to
be diagnostic in the sense that it should be functional in discriminating the

given stimulus event from other events. The rationale of this reasoning is that

devoting (presumably limited) cognitive structure to a task that in principle

could also be solved by ad hoc binding presupposes some surplus

functionality, which would not be given if a new conjunction detector

would be unable to reliably detect the stimulus it stands for or discriminate it

from alternative stimuli.

We further assume that, whenever a particular stimulus activates such a
conjunction detector, the detector will provide top-down support by

facilitating the processing of all the features belonging to the stimulus

(Colzato et al., 2006)*which may be achieved by priming the respective

stimulus dimensions and thus multiplying any stimulus-induced activation of

codes falling on them. This assumption is grounded in evidence coming from

several lines of research showing that it is easier to attend multiple features

of the same object (e.g., Baylis & Driver, 1993; Duncan, 1984) and more

difficult to ignore distractors if they are part of the same object (e.g., Baylis
& Driver, 1992; Hommel, 1995; Kahneman & Henik, 1981). This implies

that processing one feature of an object automatically opens the attentional

gate to other feature dimensions of this object, whether this is useful or not.

In the example shown in Figure 2b, this kind of top-down priming would

facilitate the processing of shape and colour information, and of any other

visual feature belonging to a dimension that defines the stimulus object.

Given that stimulus location is not an object-defining feature, location

information would not benefit from this top-down priming, however.
Two parallel mechanisms of feature integration could account for the

observations of Colzato et al. (2006) in the following way. With arbitrary,

not highly overlearned feature combinations that do not signify a unique

object (as geometric shapes are commonly not related to or correlated with

particular colours), the situation would be as depicted in Figure 2a: Shape

coding would be primed, due to the task relevance of shape, but colour

coding would not (stimulus location was not varied in that study).
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Accordingly, even if shape�colour conjunctions would be automatically

integrated, colour-induced retrieval would be weak at best and the

corresponding effects would be modest and fragile. Indeed, Colzato et al.

found only small effects reflecting shape�colour binding and even these

effect tended to disappear with increasing practice (presumably due to

increased focusing on the relevant shape information). Real objects with

which participants are familiar would be more likely to have led to the

creation of reliable and discriminative conjunction detectors or object

representations in long-term memory. As depicted in Figure 2b, this would

lead to a match between stimuli and the long-term representation and thus

induce top-down facilitation of the object features, including both shape and

colour. Accordingly, it would matter less that colour is actually not relevant

for the task, implying stronger and more stable shape�colour binding

effects*exactly what Colzato et al. observed.

AIM OF STUDY

The present experiment was set up to test the post hoc considerations of

Colzato et al. (2006) in a more systematic fashion. We used a similar task (as

sketched in Figure 1) but compared real objects and arbitrary feature

conjunctions that varied on three dimensions (shape, colour, and stimulus

location) in a within-subjects design. Shape was directly relevant for the task

as participants were to discriminate and respond to the shape of S2. Even

though stimulus location varied randomly and could safely be ignored, using

spatially defined responses (left vs. right keypress) made location indirectly

task relevant. Colour was entirely irrelevant. We expected the standard

interactions between feature-repetition effects indicative of feature binding

but were particularly interested in testing three more specific hypotheses.

First, we expected that interactions between shape and colour repetition

(indicating shape�colour binding) would be more pronounced, and perhaps

even restricted to, real objects. As explained already, real objects are likely to

match representations stored in long-term memory, which should induce

top-down priming of all object-related features. As shape is primed by task

relevance anyway, it would be colour coding that benefits from this priming

process, so that colour codes would interact more strongly with shape codes

in the real-object condition.
Second, we expected that the difference between arbitrary feature

combinations and real objects would not affect stimulus-location coding

and, thus, not mediate location-related interactions. As explained earlier,

long-term representations are unlikely to contain information about the

location of a given object in space, as location is not an object-defining
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attribute. Accordingly, location coding would not receive or benefit from

top-down priming.
Third, we expected that the hypothetical real-object effect would be

restricted to stimulus-related feature integration (and/or retrieval). Previous

studies have shown that feature binding as such is not restricted to stimulus

processing but operates across perception and action. Hommel (1998) has

extended the classical preview design to include response repetitions by

having participants to respond to the first stimulus (S1) with a previously

cued and already prepared response (R1; see Figure 1). As in this design R1

does not correlate with the features of S1, stimulus features and responses

can vary independently, so that stimulus�feature repetition and response

repetition can be orthogonally manipulated (so to avoid the acquisition of

stimulus�response associations). If this is done, the same type of crossover

interaction as with stimulus�feature repetitions can be observed: Repeating a

stimulus feature facilitates performance if the response also repeats but

impairs performance if the response alternates (Hommel, 1998). Again, it

seems that the mere single cooccurrence of a stimulus attribute and a

response is sufficient to create a binding between their codes, so that

repeating either the attribute or the response is sufficient to reactivate both

or all members of this binding. Indeed, repeating some of the stimulus

attributes induces a tendency to repeat the response as well in a free-choice

reaction task (Hommel, 2007). However, visuomotor integration clearly

differs from the process responsible for the integration of visual features. Not

only do the two integration processes operate at a different point in time

(visual binding seems to be stimulus locked, whereas visuomotor binding

seems to be response locked; Hommel, 2005) but they are also driven by

different neurotransmitter systems: Whereas muscarinic-cholinergic manip-

ulations affect visual but not visuomotor binding (Colzato et al., 2004,

2005), manipulations targeting dopaminergic pathways affect visuomotor

but not visual binding (Colzato & Hommel, 2008; Colzato, Kool, &

Hommel, 2008; Colzato, van Wouwe & Hommel, 2007a, 2007b). Moreover,

if it is true that establishing detectors for highly frequent, unique, and

reliable feature conjunctions serves the purpose of facilitating object

perception, it makes sense to assume that the impact of such detectors are

restricted to perceptual processes*visual integration that is. Accordingly, we

expected the standard interactions between visual-feature repetition and

action repetition (Hommel, 1998) but no mediation of these effects by the

arbitrary-conjunction vs. object manipulation.
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METHOD

Thirty students of the Leiden University served as subjects for partial

fulfilment of course credit or a financial reward. All reported having normal

or corrected-to-normal vision, and were not familiar with the purpose of the

experiment.

The experiment was controlled the Experimental Run-Time System

(ERTSTM) running on a PC attached to a 17-inch monitor. Participants

faced three grey square outlines, vertically arranged, as illustrated in Figure

1. From a viewing distance of about 60 cm, each of these frames measured

2.68�3.18. A banana (0.38�0.68), a strawberry (0.58�0.68), a triangle

(0.38�0.68), and a circle (0.58�0.68) served as S1 and S2 alternatives, which

were presented in blue or (close-to-magenta, purplish) pink (to avoid any

preexperimental object�colour associations)1 in the top or bottom frame.

The stimuli were taken from Experiment 4 of Colzato et al. (2006; see p. 711

for bitmaps) and presented in the same colours (parameters were red�0,

green�0, blue�255, hue�160, saturation�240, and luminance�120, for

blue and red�255, green�0, blue�255, hue�200, saturation�240, and

luminance�120, for pink). Response cues were also presented in the middle

frame (see Figure 1), with rows of three left- or right-pointing arrows

indicating a left and right keypress, respectively. Responses to S1 and to S2

were made by pressing the left or right shift-key of the computer keyboard

with the corresponding index finger.

The experiment consisted of two sessions of 35 min, one with real objects

(banana and strawberry) and one with arbitrary feature conjunctions

(triangle and circle). In both sessions participants carried out two responses

per trial, a previously cued simple response (R1) and a binary-choice

1 More specifically, our idea was to get the hypothesized object representations in long-term

memory involved*which required the use of stimuli that were likely to have memory

representations*without letting them do the integration job on their own (i.e., without the need

for ad hoc feature binding)*which required the use of feature combinations that were unlikely

to be covered by these representations. Following Colzato et al. (2006), we thus used shapes of

real objects (which should suffice to activate the memory representations) but presented them in

colours that were unlikely to be part of the memory representation*using two colours that

according to the findings of Colzato et al. are not associated with either of the two object shapes.

Theoretically speaking, we expected that this manipulation would activate object

representations and the corresponding conjunction detectors but still require ad hoc binding

of the uncommon shape�colour conjunction. The former was considered to provide top-down

priming of the latter with real objects but not with arbitrary feature conjunctions. As an

example, facing a banana should activate a banana-related conjunction detector, which would

lead to top-down priming of all identity-relevant features belonging to the present banana (i.e.,

to both the familiar shape and the in this case unfamiliar colour). This would prime the colour

and increase the likelihood that it is being integrated. As the geometric shapes were not

considered to have conjunction detectors linking them to particular colours, no top-down

priming should occur for these shapes and present their colours.
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response (R2) to the shape of the second of two target stimuli (S1 and S2; see

Figure 1). They first prepared a left- or right-hand response as indicated by a

cue (R1 cue) and carried it out (R1) upon presentation of the next stimulus

(S1). S1 thus merely triggered the already prepared response; its features

were entirely irrelevant and uncorrelated with the response. Then partici-

pants awaited the next stimulus (S2) and carried out a left- or right-hand

response (R2) to its shape. Participants were informed that there would be

no systematic relationship between S1 and R1, or between S1 and S2, and

they were encouraged to respond to the onset of S1 only, disregarding the

stimulus’ attributes. The mappings of stimuli to response keys (S20R2) and

the order of sessions were balanced across participants. The sequence of

events in each trial is shown in Figure 1. The experiment was composed of

512 trials resulting from a factorial combination of the two possible shapes,

colours, and locations of S2, the stimulus-type (real objects vs. arbitrary

feature conjunctions) and the repetition vs. alternation of shape, colour,

stimulus location, and the response, and three replications per condition.

RESULTS AND DISCUSSION

After excluding trials with missing (�1500 ms) or anticipatory responses

(B200 ms), mean reaction times (RTs) and proportions of errors for R2

were analysed (see Table 1 for means and Table 2 for ANOVA terms).

ANOVAs were run with stimulus type (real objects vs. arbitrary feature

conjunctions), the repetition versus alternation of stimulus shape, colour,

and location (S10S2), and of the response (R10R2) as within-participant

factors.

In RTs, the main effect of stimulus type indicated that subjects reacted

faster to the arbitrary feature conjunctions than to real objects and the

stimulus-location repetition costs in RTs and errors reflect ‘‘inhibition of

return’’*the common observation that attending to an irrelevant stimulus

impairs later responses to relevant stimuli appearing in the same location

(Posner & Cohen, 1984). More interesting for present purposes were the

interactions. First, shape repetition interacted with stimulus location (in

RTs) and with colour (in RTs and errors)*repeating one object feature but

not the other feature impaired performance as compared to complete

repetitions and alternations. Importantly, only the shape-by-colour interac-

tion was modified by stimulus type, thus producing a three-way interaction.

As suggested by Figure 3, the shape-by-colour interaction was considerably

more pronounced with real objects, F(1, 29)�28.14, p�.0001, than with

arbitrary feature conjunctions, where the interaction was not reliable, F(1,

29)�1.39, p�.247. We checked whether the stronger interaction with real

objects might be due to the higher RT level in this condition. However, the
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outcome of two analyses speaks against this possibility. First, we median-

split participants by their mean RT in the real-object condition and reran the

ANOVA with level as additional between-participant variable. Whereas the

three-way interaction was still reliable, F(1, 28)�4.80, p�.04, there was no

hint for any mediation by level, F(1, 28)B1. Second, we computed, for each

participant, the increase in shape�colour effect size and the increase in RT

from the arbitrary-feature�conjunction condition to the real-object condi-

tion.2 Given that the two measures were uncorrelated, r�.06, p�.7, it seems

safe to conclude that a higher RT level as such does not increase the shape-

by-colour interaction. The observation that the interaction is mediated by

the type of stimulus fully supports our expectation that real objects provide

top-down priming for colour coding that compensates for the lack of task

relevance. Accordingly, colour did not interact with any other feature

dimensions in the case of arbitrary conjunctions but it did interact with

shape, the other object-specific feature dimension, in the case of real objects.

A second cluster of interactions in both RTs and error rates involved

response repetition. It interacted with shape repetition and with stimulus-

location repetition, and was involved in a three-way interaction with shape

TABLE 1
Means of mean reaction times and standard deviations (SD) for responses to Stimulus
2 (RT, in ms) and percentages of errors on R2 (PE), as a function of stimulus type (real

objects vs. arbitrary feature conjunctions), the match between Response 1 and
Response 2, and the feature match between Stimulus 1 and Stimulus 2

Response

Arbitrary feature conjunctions Real objects

Repeated Alternated Repeated Alternated

Match

RT

(SD)

PE

(SD)

RT

(SD)

PE

(SD)

RT

(SD)

PE

(SD)

RT

(SD)

PE

(SD)

Neither 482 (19) 10.6 (2.4) 474 (21) 2.3 (1.9) 511 (20) 10.6 (1.9) 482 (22) 2.1 (1.0)

Shape (S) 499 (25) 7.9 (1.7) 492 (21) 10.2 (2.0) 510 (20) 7.7 (1.2) 515 (21) 7.9 (1.7)

Location (L) 522 (27) 9.6 (2.0) 495 (21) 2.7 (0.1) 532 (23) 7.7 (1.9) 509 (17) 5.8 (1.3)

Colour (C) 497 (26) 14.2 (2.9) 463 (21) 2.7 (0.7) 512 (24) 10.8 (2.2) 483 (19) 4.3 (1.2)

S�L 475 (19) 3.9 (1.3) 499 (17) 13.7 (1.9) 497 (20) 4.8 (0.8) 523 (16) 14.6 (2.2)

C�L 512 (24) 10.4 (2.1) 498 (23) 6.9 (1.1) 549 (27) 10.2 (2.5) 528 (22) 7.1 (2.0)

S�C 494 (27) 5.4 (1.4) 478 (22) 8.1 (1.6) 495 (22) 5.2 (0.8) 510 (20) 5.0 (1.1)

S�L�C 462 (20) 3.7 (1.1) 497 (20) 14.6 (3.0) 477 (19) 2.5 (0.9) 499 (20) 12.7 (2.6)

2 Effect sizes were computed by subtracting the mean RT for complete repetitions and

alternations from the mean RT for partial repetitions (i.e., shape repetition and colour

alternation or shape alternation and colour repetition). Note that this amounts to the

interaction term corrected for possible main effects.
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and stimulus location. The latter indicated that location only interacted with

the response if shape was repeated, F(1, 29)�31.92, pB.001 (RTs), and F(1,

29)�24.89, pB.001 (errors), but not if shape alternated, ps�.4.The reliable

interactions all followed the standard form with better performance for

shape repetitions and for stimulus-location repetitions if the response

repeated but worse performance for shape repetitions and stimulus-location

repetitions if the response alternated. Most interesting for present purposes,

stimulus type and response repetition were not involved in any reliable

TABLE 2
Results of analysis of variance on mean reaction time of correct responses (RT) and

percentage of errors (PE)

RTR2 PER2

Effect MSE F MSE F

Stimulus type (T) 16069.44 5.04* 52.98 0.07

Shape (S) 6254.84 2.39 112.02 0.84

Colour (C) 6909.71 0.58 61.11 0.43

Location (L) 3292.18 8.92** 38.78 6.06*

Response (R) 55221.34 1.32 223.37 0.45

T�S 1362.66 0.50 45.02 0.01

T�C 1991.67 0.10 62.18 0.09

T�L 1902.42 0.05 48.32 0.05

S�C 1277.82 13.62*** 47.95 16.16**

T�S�C 916.60 4.97* 31.46 0.25

C�L 1297.17 0.02 81.96 0.87

T�C�L 1523.76 0.13 61.09 1.41

S�L 8461.69 10.01** 65.27 1.56

T�S�L 1800.15 0.36 36.28 0.54

S�C�L 4844.92 0.28 53.57 0.30

T�C�S�L 2747.68 2.06 53.76 1.74

T�R 2574.38 0.08 80.22 0.24

S�R 2005.57 36.98*** 169.77 44.73***

T�S�R 1665.66 1.64 54.28 2.74

C�R 1942.08 0.02 47.21 0.22

T�C�R 1374.84 0.37 30.53 0.01

S�C�R 1672.61 0.13 45.61 0.60

T�S�C�R 1450.68 0.05 35.13 0.12

L�R 1281.34 12.20** 132.17 26.25***

T�L�R 1038.80 2.21 49.11 0.48

C�L�R 1715.44 1.36 59.88 1.69

T�C�L�R 3157.48 1.61 48.81 1.76

S�L�R 1086.53 7.92** 44.76 10.21**

T�S�L�R 1759.39 2.56 44.42 0.29

C�S�L�R 2297.17 0.37 55.09 0.29

T�C�S�L�R 862.35 0.01 50.56 1.85

*pB.05, *pB.01, ***pB.001; df�1, 29 for all effects.
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interaction. This suggests that visual integration is influenced by stimulus

type but visuomotor integration is not.

CONCLUSIONS

Taken altogether, our findings support the assumption of two different

feature-integration mechanisms in visual perception (see also VanRullen,

2009 this issue). One mechanism seems to be agnostic about the familiarity

repeated alternated
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Figure 3. Mean reaction times and error percentages for R2 as a function of stimulus type and of

repetition versus alternation of stimulus shape and colour.
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or possibility of particular combinations of features and integrates any

feature that falls into a given temporal integration window (Akyürek,

Toffanin, & Hommel, 2008). We speculate that this mechanism is mediated

by, or relies on neural synchronization processes, as is suggested by the
observation that both visual integration and synchronization in the visual

cortex seem to be driven by the same neurotransmitter system. The other

mechanism is sensitive to the familiarity with the stimulus and it seems to

provide attentional top-down support for real, familiar objects. Recognizing

such objects presupposes a stored detector of the underlying feature

combinations, and we speculate that such detectors are created for frequent

combinations only*even though we cannot rule out the possibility that the

naturalness of the stimulus also plays a role. In any case, there are reasons to
assume that feature integration can take place in more than one way and

that the principles of integration-through-convergence and integration-

through-synchronization do not exclude but complement each other.

More generally speaking, our findings provide support for the assump-

tion that the retrieval of object files is cocontrolled by two types of top-down

priming processes. Offline priming, as one may call the impact of the current

attentional set, precedes the stimulus and reflects the task relevance of

feature dimensions for selecting the stimulus and the response (see Figure 2a
and b). This priming is offline in the sense that it can be established any time

before a given stimulus or response event occurs. Online priming, as it may

be characterized, can be induced by stimuli that have entries in long-term

memory, such as familiar real objects. Sensory information coming from

these stimuli is likely to access corresponding memory entries in a first fast

forward sweep, followed by a recurrent top-down process refining and

contextualizing the input (Lamme & Roelfsema, 2000). Whereas the first,

bottom-up part of this scenario is likely to be rather nonselective, the
recurrent wave will be shaped by the current attentional settings. Given that

this wave follows the first contact between the sensory information and the

memory content, the outcome of this contact will contribute as well.

Accordingly, the eventual representation of the present stimulus and the

degree to which this representation is permitted to reactivate available object

files will thus be codetermined by the task set and the stimulus-induced

memory activation*provided that the stimulus matched some memory

content it could activate.
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Selection of Robot Pre-Grasps using Box-Based Shape Approximation

Kai Huebner and Danica Kragic

Abstract— Grasping is a central issue of various robot
applications, especially when unknown objects have to be
manipulated by the system. In earlier work, we have shown the
efficiency of 3D object shape approximation by box primitives
for the purpose of grasping. A point cloud was approximated
by box primitives [1]. In this paper, we present a continuation
of these ideas and focus on the box representation itself. On the
number of grasp hypotheses from box face normals, we apply
heuristic selection integrating task, orientation and shape issues.
Finally, an off-line trained neural network is applied to chose a
final best hypothesis as the final grasp. We motivate how boxes
as one of the simplest representations can be applied in a more
sophisticated manner to generate task-dependent grasps.

I. INTRODUCTION

In a service robot scenario, robot grasping capabilities are
necessary to actively execute tasks, interact with the envi-
ronment and thereby reach versatile goals. These capabilities
also include the generation of stable grasps to safely handle
even objects unknown to a robot. In earlier work [1], we
motivated the idea that the key to this ability is not primarily
to select a grasp depending on the identification of a selected
object, but rather on its shape. We presented an algorithm
that efficiently wraps given 3D data points of an object into
primitive box shapes by a fit-and-split algorithm based on
Minimum Volume Bounding Boxes. Though box shapes are
not able to approximate arbitrary data in a precise manner, it
was shown that they give efficient clues for planning grasps
on arbitrary objects or object parts. This seems reasonable,
since it should not be necessary to find the most stable grasp,
but sufficient to find one of those that are stable. Additionally,
the part-describing box concept allows for grasp semantics
mapped to boxes in the set, e.g. “approach the biggest part
to stably move the object” or “approach the smallest part to
show a most unoccluded object to a viewer.” The description
of an object by a shape-based part representation, which
is claimed to be necessary for this kind of task-dependent
grasping, is thereby made available, and also needed as a
criterion what grasp is the “best” in terms of a given task.

In this context, we present our novel approach for con-
necting shape, boxes, tasks and grasping in this paper. We
briefly introduce our basic work as also other related work
in Section II. While we refer to [1] for the description of the
box decomposition algorithm, we focus on taking advantage
of the box representation. We develop a sequence of steps,
including heuristics and learning of grasp qualities to select
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one final, task-dependent grasp for an object. We will discuss
the simple ideas that are used to reach this goal in Section
III. Section IV practically shows an experiment, where we
connect to 3D data from a real, though convenient scene for
the first time. We finally conclude our work in Section V.

II. RELATED WORK

When talking about a robot grasping unknown objects,
one has to think about a representation that not only eases
grasping, but which can also be efficiently delivered from the
sensor data. Though there is interesting work on producing
grasp hypotheses by visual features from 2D images only,
e.g. [2], most techniques rely on 3D data. 3D data, which in
its simplest form may be a set of 3D points belonging to an
object’s surface, can be produced by several kinds of sensors
and techniques, e.g. distance imaging cameras, laser scanners
or stereo camera systems. Since the last solution is cheap,
easy to integrate and close to the human sensory system,
a multitude of concepts in the area use 3D point cloud
data from stereo disparity. These point clouds are usually
afflicted with sensor noise and uncertainties, which has to
be taken into account for precise shape approximation of
such data. In [1], we have referenced and stated our claim
that precise shape approximation, e.g. using superquadrics,
might not be necessary for extracting grasp hypotheses. The
work of Lopez-Damian et al . [3], [4] is related to ours in
terms of object decomposition and grasping. Additionally,
they propose a grasp planner to find a stable grasp. However,
their concept uses polygonal structures instead of 3D points.
Though one could produce polygonal surfaces from 3D point
data, for example by the Power Crust algorithm [5], this
introduces another step causing additional effort both in
processing time and noise handling. In this paper, we have
also used the Power Crust, but only to visualize the 3D data.

It has to be mentioned that our approach is not explicitely
handling contact-level grasp planning. A grounded theory
on stable contact-level grasps has been developed in the
literature. Conclusions of the ideas and outcome can be found
in [6], [7]. In this theory of grasp planning, finger contact
locations, forces and grasp wrench spaces can be simulated.
Different criterions can be defined to rate grasp configu-
rations, e.g. force closure, dexterity, equilibrium, stability
and dynamic behavior [6]. However, the dependency on a-
priori known or dense and detailed object models is apparent.
Miller et al . [8] therefore proposed grasp planning on simple
shape primitives, like spheres, cylinders and cones, clearly
demanding a pre-classification of object shape. Dependent on
the primitive shape, one can test several grasp configurations
on this shape. This work was continued by Goldfeder et



al . [9], using more sophisticated shape primitives, known
as superquadrics.

In our work, we also work with shape primitives. We chose
the box shape as one of the most simple ones and integrate
an efficient bounding box algorithm for 3D point data [10].
However, while the classical contact-level solution includes
a merge of both transport (leading the hand to the grasp
position) and grip (closing the fingers to perform the grasp),
we see a benefit in loosely decoupling these two components.
The psychophysical shortcomings of completely decoupling
the grip from the transport component have been discussed
in [11], even if this is described as the classical approach. It
is also hardly questioned that the transport component refers
to extrinsic object properties only (e.g. position, orientation)
while the grip component depends on intrinsic properties
(e.g. size, shape, weight). Derbyshire et al . [12] even mo-
tivate action to be an intrinsic property.

The work presented here does neither separate nor com-
bine these two components. It is more a connecting module
inbetween them. First, the transport component is just seen as
a predecessor. It would demand grasp planning and collision
detection in a definition of successful robot hand transport,
being a research topic for itself. However, the final location
of a grasp is also clearly dependent on the task at hand,
making the task another extrinsic property.

Second, the grip component is a successor of our grasp
hypotheses generation. The final grip is not handled in a
comparable way to classical contact-level grasp planning,
as this connects directly to all perceptually sensed intrinsic
properties. Thus, we classify our idea as a pre-grip compo-
nent that is both dependent on selected extrinsic (orientation,
task) and intrinsic (size, shape) properties (see bold in Tab.
I). We see precise shape, weight or surface texture properties
as being part of an adjacent fine-controller based on tactile
feedback and corrective movements, like included in [13].

III. FEATURES OF THE BOX REPRESENTATION

The result of our box decomposition technique is the
following: given a set of 3D points, we can find a compact
box set B = {B1, . . . , Bn} that encloses the points and
thereby offers a primitive shape approximation. For each
box Bi in the set, we focus on its six rectangular faces
{F(i,1), . . . , F(i,6)}. In [1], each face spawned up to four
grasp hypotheses by using the face normal as approach
vector and the four edges as orientation vectors, using a
pre-defined grasp. Fig. 1 shows some of the models that
were used, a model of a 5-finger hand, as also an exemplary
box decomposition of the duck model. Finally, we showed
that even if we drastically reduce the grasp hypotheses,

TABLE I
GRASP COMPONENTS AND OBJECT PROPERTIES

Grasp component extrinsic properties intrinsic properties
Transport position –
Pre-Grip orientation, task size, rough shape

Grip – precise shape, weight,
surface texture

Fig. 1. Left: Some objects and a robot hand model, simulated in GraspIt!
[14]. Right: A result of the box approximation for the duck model [1].

this concept does not significantly reduce the grasp quality,
but opens up new possibilities like task-oriented grasping
or object part description. We will now present some of
these issues, which have been integrated in a grasp selection
mechanism, starting with task-dependencies.

A. Task Dependencies

Task dependency of grasps is an important issue, which
shows that “best” grasps do not have to be the most stable
ones. Picking up a cup from the “open side” will be un-
suitable for the task of filling the cup, as a very stable full-
enclosing grasp (power-grasp) will be unsuitable for handing
over or presenting the cup to someone. Application of such
re-usability semantics by defined keep-out zones has been
proposed in [15]. Object properties like hollowness are hard
to detect for today’s systems, as also are high-level properties
like filled or empty. Our box set method allows intuitive
mapping of less complex actions to simple box properties.

Given a box set B, one can easily compute criteria like
the overall mass center (assuming uniformly distributed mass
density), each volume and dimension of a box, or the
relations between boxes. For example, one can define the
outermost or innermost, the largest or smallest, the top or
the bottom, etc. Given a task, we can easily map an action
like pick-up, push, show, rotate, etc., to a selected box. In
fact, we can even order the boxes according to the above
criteria. For example, in order to pick-up something to place
it somewhere else, it may intuitively be a good choice to
grasp the largest box. When showing the same object to a
viewer, it may be better to grasp the outermost box.

Similarly, different grasp configurations can be linked to
tasks when using a simple representation like a box. We
apply another simple mapping from an action to a pre-
defined movement here. We already introduced two of these
in [1]: the backup power-grasp, which approaches a box until
contact, retreats a bit and than closes fingers simultaneously,
and the pincher-grasp, which approaches the box until it
is in position to closing fingers and contact the box most
centrally. One might extend this idea towards the selection
of different grasp pre-shapes [16], or even the selection
of controllers for different tasks. In fact, Prats et al . [17]
also use box representations for task-oriented grasping with
hand pre-shapes and task frames. However, they assume
geometrical knowledge about each object (using a database
of 3D models) and structural and mechanical knowledge
about a task (e.g. “turning” a door handle).



B. Box Face Visibility

From the box level, we now continue to the face level.
Each box provides six rectangular faces in 3D space. Here,
we have to consider that incomplete data is produced by a
single sensor view of an object, as the back of the object
is not visible. Thus, box decompositions are clearly view-
dependent and do only envelope visible data points. For this
reason, it may be helpful to only take those box faces into
account that are visible from the viewpoint. Note that here,
“visibility” is understood as the face being oriented towards
the viewpoint only, not being visible in sense of occlusion by
other objects. We see another motivation for a face visibility
check considering the relation between an end-effector, i.e.
the robot hand, and the object. Intuitively, humans tend to use
grasping movements that involve minimum activity effort. A
short experiment at least showed evidence for this:

Test persons had to grasp various objects on a table to
describe their appearance, thus the task of grasping was
implicit. It showed up that in case of cups, the handle was
pinch-grasped when it was orientated towards the human
hand, while otherwise the cup body was power-grasped.

Though this experiment is not compelling in terms of a
psychophysical evaluation and will therefore not be described
any further, it is intuitive in the same way as the viewpoint
face check. Valid faces can thereby be selected by being
accessible from a given end-effector viewpoint, even if one
end-effector might be busy, e.g. holding another object.

In opposition to these observations that a visibility check
keeps a large potential, the technical computation if a 3D
plane is oriented towards or away from a 3D point is trivial
and easy to use. In this way, we also integrate orientation
properties into our concept.

C. Box Face Occlusion and Blocking

While the visibility criterion is a check for orientation
of faces towards a camera’s or an end-effector’s viewpoint,
occlusions and blockings between faces in the box set are
also considered. As an example, grasping the head of the
duck (Fig. 1) towards the bottom face is not profitable, as
this face is “occluded” by a face of the body box. In another
way, one may also classify other duck head grasps as being
unprofitable. Imagine the 5-finger hand grasping the duck’s
head box B1 from one of the side faces and have in mind
that the fingers will not contact the approached face F(1,a),
but two of its neighbors, F(1,b) and F(1,c), depending on the
grasp orientation. We then define F(1,a) as “blocked” in this
grasp orientation, if F(1,b) or F(1,c) is occluded, and remove
these grasp hypotheses from the set.

This technique has proven to be very useful in further
reducing the number of hypotheses. Technically, the detec-
tion of opposing faces is more complex than the visibility
check and therefore forms the end of the heuristical selection
sequence. Each face of a box has to be compared to each face
of all other boxes. The handling of such situations demands
an additional computational effort. For this reason, and as it
reduces the number of hypotheses drastically, we currently

strictly remove all occluded and blocked hypotheses from
our selection.

It may be mentioned that the calculations necessary are
purely geometrical problems on faces and points. Like
the whole grasp selection process, visibility, occlusion and
blocking are currently computed in software (C/C++), one
might think about taking advantage of graphical processors
to speed up and optimize the geometrical operations.

D. Projection Grids and Learning

The previous steps have been heuristical, aiming at re-
ducing the number of grasp hypotheses according to an
object’s task, orientation and shape. Even if it was not named,
also the size, i.e. the dimensions of a face, is considered.
A face that exceeds the maximum grasp opening in one
dimension cannot be grasped. However, there is usually a
set of remaining hypotheses from which we would like to
select one final grasp. Our current approach to this issue is
learning of grasp qualities from 2.5D shape projections.

Considering a box and the points that it envelopes, each
face produces a projection of the points onto the face plane.
In fact, these projections were already computed for best cut
detection [1]. Discretization was made by dividing the face
into equally sized cells, thus projections were represented
as dynamically sized binary grids. To adapt this represen-
tation and enrich it, we now compute linear information,
i.e. minimum distance information to the face plane, in
a normalized, fixed-sized grid. Fig. 3 shows 18 of such
projection grids with size 15×15 for the faces produced
by the duck decomposition in Fig. 1. This representation
both allows analyzing the 2.5D depth map of each face
and fulfills the input space conditions of a classical neural
network learner like the one we will use here (see Fig. 2).

In the following experiment three models (homer, mug and
duck, see Fig. 1) have been processed by the algorithm and
the projections been grasped in the grasp simulator GraspIt!
[14]. By providing the two quality measures eps, a worst-case
epsilon measure for force-closure grasps, and vol, an average
case volume measure, GraspIt! is automatically used as a
teacher for the supervised network, estimating the stability
of a grasp on a given face F and its 2.5D projection grid
proj(F), respectively. Since due to the normalization in width,
height and depth, information about the dimension of F is
lost, the box dimensions dim(F) are added in terms of three
additional neural network inputs.

Fig. 2. The neural network structure for off-line learning of grasp qualities
from face representations. It holds 228 input, 30 hidden and 3 output
neurons. eps and vol are grasp quality measures that GraspIt! delivers [14].
The force closure is also learned separately even if it equals (eps > 0).



IV. EXPERIMENT

We will now present an experiment on the determination
of one final grasp hypothesis from a real 3D point cloud.
The 3D data is produced from disparity using a stereo
vision system, consisting of a Yorick [18] head equipped
with two Allied Vision Marlin cameras. The scene is shown
in Fig. 4a. As earlier experiments have been performed in
simulation only, one focus of the experiment is to test the
box decomposition on real 3D data which is influenced by
natural dense stereo noise and incompleteness. The second
focus is the practical processing of the proposed heuristical
and learning selection mechanism, including the considered
decisions on task, view-point, shape and size properties.

A. Producing 3D Data

In Fig. 4b, the disparity image produced by the stereo
image pair can be seen. It is clearly influenced by incom-
pleteness, both observable by some holes and by the backside
which is not visible. Additionally, and though we have cared
for a uniform background, there is little noise at the bottom
left of the image. The effects of these uncertainties become
clearer in Fig. 4c, representing the 3D model of the object.

B. Box Decomposition

We use the box decomposition algorithm [1] to deliver a
box approximation of the point cloud. The decomposition
steps can be seen in Fig. 6. The fit-and-split algorithm
iteratively fits and splits minimum volume bounding boxes,
initially starting with the root box enclosing all points (Fig.
6b). The first split, chosen due to maximum volume gain,
nicely cuts the outliers from the main shape. The gain
parameter Θ∗ of 0.41 relates to the new overall box volume
being 41% of the box volume before the cut. Out of the two
new boxes, the one including the noise keeps to few points
and thus is automatically removed. During the following cuts
(Fig. 6c-d), the volume gain value increases continuously,
since the more the boxes approximate the shape, the less
volume can be gained by a cut. After three cuts, the algorithm
stops, as a gain threshold below 0.93 will not be reached
by any new split. The gain threshold is a parameter of the
algorithm and manually set. In practice, threshold values

face A B C A’ B’ C’

body
box

tail
box

head
box

Fig. 3. The set of projection grids for the decomposition in Fig. 1. Three
boxes result in 18 faces, where 15×15 grid resolution was chosen. Note
that the tail projection is noisy as there are very few points in a very small
box. Also note the difference between Head C and C’. C is from below,
showing the hollow head, while C’ is the projection of the head top.

(a) Stereo images (b) Disparity image (c) 3D points

Fig. 4. 3D points from disparity. (a) shows the two images taken from the
stereo vision system. From those, disparity values are calculated (b). These
can be used to produce 3D points (c). Note that polygonal structures have
just been artificially computed with PowerCrust [5] to visualize results. The
box decomposition algorithm uses pure 3D point data only.

between 0.9 and 0.95 have led to good results. The higher
the threshold, the more cuts will be applied and the more
precise the shape will be approximated by boxes.

C. Heuristical Box and Face Selection

With three boxes in the final set, 18 faces and their
projections can be accessed. As the decomposition of the real
duck is different from the model duck, the box constellations
and the projection faces are different. Due to noise and
resolution, they are even hard to recognize for the human
eye (compare Fig. 5 with Fig. 3 to its left).

As we restrict to grasp orientations parallel to a face’s
edge, each of the faces theoretically produces four grasps
of different orientation. On all 18 faces, this would make
72 theoretical grasp hypotheses available. If we chose a
selection of a box by giving an initial task (see Section
III-A), as we will do in the following two examples, we
could reduce this set to one box with 6 faces, according
to 24 grasp hypotheses. The face check selection according
to occluded and blocked grasp hypotheses (Section III-C)
is presented exemplary for the duck’s head box in Fig. 7.
As stated, six faces yield four grasp hypotheses each. These
rotations are easy to process from one source projection,
as the transformation only includes coordinate switching.
One face has completely been rejected by occlusion check.
It corresponds to the bottom face of the head box. Other
faces have been blocked with respect to grasp directions.
Intuitively, these are exactly those grasp hypotheses that
would cause finger contact on the bottom face, which is

face A B C A’ B’ C’

breast
box

head
box

body
box

Fig. 5. The set of projection grids for the decomposition in Fig. 6e. Three
boxes result in 18 faces, where 15×15 grid resolution was chosen. As the
grids are low-resolution, shape is hard to recognize for the eye. One might
see the duck pecker facing upwards in head B’. Head B, its opposing face,
is visibly a hollow shape. The pick grasp is on Body B’ (Fig. 8 left).



(a) Source (b) Root (c) 1st cut, Θ∗ = 0.41 (d) 2nd cut, Θ∗ = 0.85 (e) 3rd cut, Θ∗ = 0.91

Fig. 6. Decomposition on the source data (a) with a gain threshold of 0.93: (b) The first approximation produces the root box of all points. (c) The first
cut separates the noise from the shape. Noise are very few points, so these are not treated further. (d) shows the 2nd cut which still has a good volume
gain of 85%. (e) presents the final cut, as further steps did not reach a gain smaller than 0.93.

occluded. For this example, the set of grasp hypotheses is
thereby reduced from 24 to 12 hypotheses. Having in mind
the option of a viewpoint check as discussed in Section III-
B, these could further be reduced to 8, as the head top (C’)
and only two of the opposing faces (A or A’ and B or B’) are
oriented towards the camera. Note that all the heuristics are
optional and not dependent on each other. Using all of them,
72 initial hypotheses were reduced to 8 in this example.

D. Final Grasp Decision and Learning

After having reduced the hypotheses to a small set, we
have to finally decide where and how to grasp. The “where”
component equals a decision on grasping one of the faces
with one orientation. To do this, we apply the neural network
structure presented in Section III-D. The face projections of
the remaining hypotheses are fed into the net that has been
previously off-line trained with artificial examples. After
sorting out those hypotheses that do not result in good force-
closure response larger than 0.5 (third output), we decide for
the one hypothesis with optimal vol grasp quality.

Until here, we have not explicitely mentioned the task-
dependent decisions (Section III-A). Assume these two
tasks and have a look on the corresponding results in Fig. 8:

head A B C A’ B’ C’
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Fig. 7. Face check selection for the duck’s head box only. Each head
face (columns; see Fig. 5) gives access to four different grasp orientations
(rows). Note Head C being completely occluded (×), as it is the face that
connects to the Body box. Some grasp directions are blocked (−) from the
side. The show grasp is on Head C’ 90o (Fig. 8 right).

(T1) task : pick → box : largest, grasp : backup,
(T2) task : show → box : outermost, grasp : pincher.

The derivation of the final grasp has been performed as
presented, where depending on the task, a box selection has
been applied. On the final set of hypotheses grids, the one
that the trained neural network votes best for is selected.
For both examples, these final hypotheses are also marked
in Fig. 5 and 7, respectively. Note that in Fig. 5 the selected
projection that keeps the best hypotheses is marked for (T1),
body box face B’, while in 7 the best hypothesis, head box
face C’ 90o, is shown for (T2). Additionally, the different
choice of grasp type is visible in Fig. 8. In the pick task, the
backup grasp focusses on enclosing the whole box, while for
the show task the pincher grasp focusses on placing fingers
centrally to the contact faces.

In this example, the 3D point cloud had 86310 points,
the decomposition algorithm tried 6 fit-and-split iterations,
whereof 3 were successful. The decomposition is still the
main effort in computation time, it took 22 seconds. The
computation of projections as also the heuristical and neural
network decisions are neglectable, taking altogether less than
half a second. The experiments were performed on a Double
Intel Core2 Quad CPU with 2.66 GHz.

(T1) (T2)

Fig. 8. Left: The final decision for the pick grasp (T1). Gripper configura-
tion has been chosen to be the backup grasp for enclosing the object. Only
faces of the largest box (body) have been taken into account. The algorithm
finally decided for the top face of the body box, as the neural net forecasted
the best grasp qualitiy measure on its projection.
Right: The final decision for the show grasp (T2). Gripper configuration has
been chosen to be the pincher grasp for putting fingertips on face center
points. Only faces of the outermost box (head) have been taken into account.
The algorithm finally decided for the top face of the head box, as the neural
net forecasted the best grasp quality measure on its projection.



V. CONCLUSIONS

We presented the continuation of box approximation for
the purpose of robot grasping. While we specified the core
algorithm of box approximation in earlier work, we now
concentrated on subsequent steps that all take advantage of
the very simple shape representation of boxes. Starting from
boxes and their faces that the core algorithm produces, we
extended the idea of “grasping on boxes” towards an applica-
ble grasping strategy. This strategy only includes heuristical
selection based on efficient geometrical calculations, as also
learning from off-line simulation. Basic task-dependencies
have been included in this process easily. We see the strength
of our approach in its simplicity and its modularity. The
simplicity is clear by using boxes and faces in 3D space.
Geometric calculations are much more easy to do in contrast
to more sophisticated shape primitives like superquadrics. As
presented, boxes and faces can additionally take advantage
of linear shape projections. The modularity is established by
mostly independent criterions and heuristics that complement
each other and even leave space for extensions.

There are many possibilities to extend and optimize the
current framework both in theory and practice. In theory,
we have to evaluate and optimize the current algorithm.
Considerations have to be made for the neural net structure,
e.g. if it might be better to extend the learning to grasp
qualities dependent on the chosen grasp pre-shape, i.e. setting
three quality outputs for each available grasp pre-shape.
Additionally, the simulation part for learning is currently
done using static simulation. Thus, contact will stay static
between gripper and object, while in dynamics, and reality,
the object pose will change dependent on the force applied
to it. We are working on this issue also with regard to what
we called the grip component. For the sake of efficiency and
intuitive motivation, we are aware that our approach is a
pre-grip component on very robust shape information. The
grip component, as an additional module, would contribute
in terms of fine correction based on haptic feedback [13].
In practice, we are still missing some necessary parts to
physically perform a grasp with a real robot manipulator.
Our current work is also on putting these parts together and
connect them to the work proposed here.

The box representation of an object is simple. However,
the projection of an object onto the box faces ignores the
real 3D shape of the object in the box, not considering the
correct surface normals of the object in the grasp planning.
Thus, there is a possibility that planned grasps are infeasible,
which addresses the limitation of the proposed planning. In
future work, we will examine finger positioning estimations
on the projections, connected to the work of Morales et al .
[19]. The effectiveness of the approach in real applications
has also to be evaluated through experiments.

As future work, one could also imagine higher-level part
classification. Given all three projections of a box, one could
try to learn and classify the enclosed shape, which with high
probability corresponds to an object part. This relates to work
on view-based object (part) representation. Classification of

shape is a beneficial, but also complex task, as additionally,
the box constellation might be very different as influenced by
noise, perspective view and uncertainties (e.g. compare the
different box constellations of the two ducks in Fig. 1 and
Fig. 6e). For the purpose of grasping on faces, this is not a
very severe problem, while in part and object classification,
it probably will be. Therefore, evaluations of these high-level
ideas are not a topic of our short-term goal.
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Abstract— The goal of this paper is to investigate how to acquire 
useful action knowledge by observing the results of exploratory 
actions on objects. We focus on poking as a representative type of 
nonprehensile manipulation. Poking can be defined as a short 
term pushing action. Here we propose an explorative process 
that allows the robot to learn the relationship between the point 
of contact on the object boundary and the angle of poke and the 
actual response of an object. The robot acquires this knowledge 
without having any prior knowledge about the action. Initially, 
the robot was only able to move in random directions. Such self 
emergent processes are essential for the early cognition. 
The proposed process has been implemented and tested on the 
humanoid robot Hoap-3. 

I. INTRODUCTION 
The main motivation of this work is that many decades of 

research in the fields of robotics and artificial intelligence (AI) 
did not result in an intelligent “android like” robot. Why 
classical AI and robotics did not succeed in building an 
intelligent robot that can think like a human? 

Traditional AI did not succeed due to the lack of a solid 
theoretical foundation as discussed in a very pointed way by 
Dennett [1], when he had introduced the “frame-problem”. 
Additional weakness of the AI in the real world scenarios is 
the uncertainty in the world information, due to uncertain 
sensor information. However, in our opinion the most 
important drawback is that there is no self-emergence in 
classical AI. The instructor/user has to put more knowledge 
into the system than he gets it out of it. Nothing emerges by 
itself. In [2] Lungarella et al. present a survey on 
developmental robotic, which tries to solve the problems 
mentioned above. 

In this work we investigate how to improve the self-
emergence process when learning continuous object-action 
effects. Our research is part of an EU project PACO-PLUS, 
whose objective is to develop new methods to endow an 
artificial robotic system with the ability to give meaning to 
objects through perception, manipulation, and interaction with 
people. One of our guiding principles is that new object-action 
knowledge on a humanoid robot can emerge by exploring the 
external world. More specifically, by performing actions on 
different object, the robot can learn the results and 
preconditions of the actions. 

We build cognition on a paradigm of Object-Action 
Complexes (OAC). Objects and Actions are inseparably 
intertwined and that categories are therefore determined (and 
also limited) by the action an agent can perform and by the 
attributes of the world it can perceive; the resulting, so-called 

Object-Action Complexes (OACs) are the entities on which 
cognition develops (action-centred cognition). Entities 
(“things”) in the world of a robot (or human) will only 
become semantically useful “objects” through the action that 
the agent can/will perform on them. Objects are not just 
"things" upon which active agents act, but may be able to 
execute their own actions. Thus each active agent is just 
another instance of an OAC. This paradigm of OACs offers 
two novel key issues which will assure that a system with 
advanced cognitive properties can be developed.  

Objects and actions cannot be separated, because objects 
can induce actions (cup → drink), while actions can redefine 
objects. While this paper is concerned with OACs at the level 
of early perception-action events, the project strives to provide 
a continuous path from such events to complex cognitive 
processes, where OACs are used as basic building blocks. 

To acquire new primitive actions, the robot starts by 
randomly acting on various objects in its environment. The 
goal of this explorative process is to acquire new information 
that was not built into the system. As an example we study 
how to learn a relatively simple pushing behaviour. We also 
show how this knowledge can later be used to move (or to 
control) an object in a desired direction. 

Pushing, poking, and rolling are examples of nonprehensile 
manipulation of objects, i.e. object manipulation without a 
grasp. This kind of manipulation is used when it is difficult to 
grasp an object, when an object is too large or too heavy, etc. 
In this paper we focus on poking as a representative type of 
nonprehensile manipulation. Poking can be defined as a short 
term pushing action. Conceptually, our goal is to investigate 
how to acquire useful action knowledge by observing the 
results of exploratory actions on objects. For this purpose we 
study how poking behaviour can be obtained both when the 
agent generates the exploratory pushes (pokes) and/or when 
the agent only observes poking actions, performed by other 
agent or human. 

When poking an object, the object motion depends on the 
object’s shape, weight distribution and on the support friction 
forces. A lot of work has already been done in the field of 
mechanics on controllability and planning of poking [5],[6]. 
Obviously, poking could easily be implemented by assuming 
a proper representation for the physics of the task, but such an 
approach relies on a priori knowledge about the action and 
therefore does not solve the complete learning problem. 
Additionally, it is sometimes difficult to obtain the model 
parameters using available sensors (e.g. it is very difficult to 
obtain friction between the object and the pusher using vision). 
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If the physical model of the object and the action is not 
available, the robot has to experiment with different poking 
actions on the object. In this way the robot acquires new 
knowledge from exploration and human demonstration in the 
same way as infants learn their actions – performing actions 
on objects, i.e. playing with toys. While poking has been used 
to study cognitive processes before [4], our work focuses on 
different issues, that is learning complete controllers, whereas 
Fitzpatrick et al. were primarily concerned with extracting 
object properties associated with poking actions.  

After learning, the robot can use the newly acquired 
knowledge in order to poke an object in a specified direction. 
The robot is able to reason how and where an object has to be 
pushed to move where desired. Our implementation can be 
divided in two parts. Firstly, the robot learns how an object 
moves when it is poked from a certain position and from a 
certain direction. This can be accomplished by experimenting 
with different poking actions, in which the robot pushes the 
object several times from different directions and at different 
locations on the object boundary. During this process the 
agent builds a knowledge base, which describes the 
relationship between the point and angle of push on the one 
side and the actual object movement on the other side. 
Secondly, the acquired poking knowledge is used to control 
the object movement, i. e. to push the object along a 
prespecified trajectory.  

II. METHODS 
The method for learning poking action has been 

implemented on a humanoid robot Hoap-3 (Fig. 1). It is 60 cm 
tall, 9 kg heavy robot equipped with CCD cameras, 
microphone, foot load sensors and distance sensors. It has 6 
DOF in each leg/foot, 1 DOF in the waist, 3 DOF in the neck 
and 5 DOF in each arm. 

As already stated, the goal of the robot is to learn the result 
of a poking action. It starts by experimenting with different 
poking actions applied to different objects placed on a table. 
Afterwards the robot uses the acquired knowledge to reason 
about the object movement with respect to the performed 
action. The reasoning should be used later to find the right 
poking action in order to move the object as desired. 

The scene (experiment) has been realized as follows (see 
Fig. 1). The robot stands at a table and uses a tool to poke the 
object on the table. The objects used in the experiments are 
planar polygonal objects. To simplify the environment only 
one object is placed on a table at a time. To realize one point 
poking actions, the robot holds a tool in its hand. It is a stick, 
which increases the robot’s workspace. At the end of the tool 
we have mounted a cylinder, which assures a one point push. 
The part of the tool which has been used for pushing (the 
cylinder) will be denoted as a pusher. The robot uses only one 
arm in this experiment. Otherwise, the robot is fixed in the 
environment. To measure the position and the orientation of 
the object on the table, the robot uses stereo cameras mounted 
on its head. 
 

 
Fig. 1: Robot during pushing action  

III. VISION SYSTEM 
All objects used for poking were placed on a table. The 

table is planar, which makes the design of a vision system 
much simpler. To acquire positions and orientations of the 
object on the table, it is sufficient to use one camera. We used 
colour markers to simplify vision processing. We placed two 
markers on each object in order to extract both position and 
orientation of the object. Additionally, we marked the pusher 
to enable visual servoing.  

To define the transformation (mapping) between the image 
coordinate system and the world coordinate system, where the 
robot is situated in, a calibration has to be performed. The 
mapping incorporates extrinsic (position and orientation of the 
camera) and intrinsic (focal lengths, pixel size, image centre) 
camera parameters. We could estimate the intrinsic and 
extrinsic camera parameters using other methods (kinematics, 
chess board…). However, in our case we rather used the robot 
to move the marker in front of the vision system. Using more 
than 100 measurements, we calculated the transformation 
matrix using least-square error methods.  

The use of the robot in the calibration process makes the 
system much simpler and more flexible. Additionally, the 
result can be more precise, since same data is used during the 
calibration as well as during poking. So the same sensor 
uncertainty appears twice and the errors can cancel each other 
(e.g. kinematics data, vision data…). That means that the 
same kinematic error which appears during calibration, will 
also appear during the control – and that will already be 
included and handled in the calibration process. 

The accuracy of the robot and the vision system is rather 
low. To improve the precision of motion, we had to use visual 
servoing techniques. To determine the position of the pusher 
using vision system we put a marker on top of it. Since the 
vision is calibrated only in one plane, the marker has to lie in 
that plane. This is true during poking; however, when the 
pusher is above of the object, the position is not totally correct 
any more. In this case the robot kinematics is more accurate. 
To solve this, we have implemented a continuous switch 



between kinematics and vision information, where the amount 
of each depends on the distance from the calibrated plane. 

IV. LEARNING 
In the first phase of the process, the robot has to learn the 

behaviour of an object, when the object is poked from a 
certain direction and at a certain angle (see Fig. 2). 

In this phase the robot experiments with different poking 
actions. The robot has to push an object from different sides of 
an object as well as under different angles. In the beginning of 
the process the robot (agent) has no knowledge about the 
poking action and the robot experiments with different poking 
actions completely randomly. Afterwards, the robot should 
only perform action at the points (or angles) where the 
knowledge (or the model) is not precise enough. 
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actual object 
movement 

(xvel, yvel, Φvel) 

xworld 
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point of 
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Fig. 2: Schematics of a poking action 

After applying a poking action, an object accelerates and 
changes its position and orientation. Since the objects are very 
light and the friction between the object and the table is 
relatively high, we can neglect the dynamic properties of the 
motion. Typical response of the object is shown in Fig. 3. The 
object velocity settles in less that 200 ms. The reason for very 
noisy object velocity is that we have used vision to obtain the 
position of the markers. However, since training can be done 
off-line, the data can be filtered and processed before the use.  

 
Fig. 3: Typical response (velocity) or an object after applying a poking action  

Due to the fact that an object settles its response in a very 
short time, we can model object behaviour statically. We 
model the relationship between the displacements of the 
pusher and the displacement of an object. The displacements 
of the pusher are expressed by two parameters: the point and 
the angle of contact on the object boundary. The velocity of 
the pusher is kept constant. The point of contact is expressed 
as the angle between the line segment connecting the point of 
contact and the centre of the object and the x-axis of the 
object’s coordinate system. Similarly, the angle of a contact is 
expressed as the angle between the pushing direction and the 
tangent at the point of contact. 

The response of an object is represented by three 
parameters, i.e. the planar velocity of the object centre and the 
rotational velocity about the centre point on the object. The 
agent’s view of the experiment is shown in Fig. 4. 

 

 
Fig. 4: Agent view of a scene during learning  

 
To represent the relationship between the point and the 

angle of a contact and the object response, we used a neural 
network with two hidden layers. Based on the measurements 
we performed an optimization process and compared neural 
networks with different number of neurons in each layer. 
Since we could acquire quite a large set of data, one part of 
data has been used for learning while the other part of data has 
been used for verification of the neural network. 

The result of the comparison of different neural networks 
showed that the most reasonable selection is to use different 
networks for different outputs. The resulting neural networks, 
which model the object behaviour satisfactory and are still 
simple enough, are shown in the following table: 

 
 NN 

inputs 
Number of 
neurons in 
1st hid. layer 

Number of 
neurons in 
2nd hid. layer 

NN 
output 

x position 
and angle 

11 3 Velocity 
in x dir. 

y position 
and angle 

12 6 Velocity 
in y dir. 

Φ position 
and angle 

9 4 Velocity 
in Φ dir. 



Note that only the directions of object movement are 
considered in the optimisation. The amplitudes of velocities 
can be modulated by stronger (faster) pushing action. 

V. CONTROLLING 
After the learning phase is completed, the robot can 

generate poking actions to move an object in the desired 
direction. The task of the robot in this phase is to perform a set 
of poking actions in order to bring an object where desired. 
Here, a higher-level motion planner should provide the 
desired movement of the object. The agent has to find out 
where and how to poke the object to achieve motion close to 
the desired one. During this process the agent has to use the 
knowledge acquired in the learning phase. Agent view of the 
poking scene is shown in Fig. 5. 

VI. RESULTS 
The proposed approach has been implemented on a 

Mitsubishi Pa-10 industrial type robot and on a humanoid 
robot HOAP-3. The accuracy and the workspace of the 
Mitsubishi robot are much larger than in the case of the Hoap 
robot; therefore, it has been much more straightforward to 
perform and to verify the learning and the control process. 

On the other hand the experiments performed on a Hoap 
robot took us much more time and effort. In the experiments 
we used only the right arm, which has five DOFs. Technically, 
to achieve a pushing action with a cylinder (pusher), five 
DOFs are necessary. Three DOFs are needed to control the 
position of the pusher and two DOF are needed to control the 
rotations. One DOF of rotation about the cylinder axis is not 
important and therefore does not need to be controlled. The 
robot’s right arm also has five DOFs. 

Since the robot is rather small and there are no redundant 
DOFs very small workspace can be achieved. To improve that, 
we have treated the orientations as less significant and have 
controlled them in the null space. Additionally, we have used 
two tools in the same robot hand. One tool has been mounded 
in such a way that the robot achieved points near the body, 
while the other tool enables achieving points more far away. 
At the ends of both tools two cylinders has been mounted, 
which were used for pushing.  

To control the robot we used a velocity based task 
controller and a quaternion control in the null space for both 
orientations. 

 

 
Fig. 5: Agent view of a scene during controlling object movement  

 
Note that, the robot can not always achieve the desired 

velocity. The desired velocity is or can be defined in three 
directions (three DOFs); however, the robot controls only two 
input variables, the point and the angle of contact. 
Additionally, any arbitrary velocity vector can not be achieved 
due to the physical limitations of the action (this is still a 
nonprehensile action). 

We performed the learning process on a set of different 
planar objects shown in Fig. 6. Fig. 7 shows the response of a 
square object in all three directions with respect to the point 
and angle of contact. 

To achieve optimal motion in a given situation, the agent 
needs to optimize a criterion function with respect to the point 
and angle of push, e. g. the weighted square error between the 
desired motion and the predicted one. Thus we need to find a 
global minimum of the following function: 

 

  (1) 2( ( )) ,des prede X X= −W

 

where Xdes represents the desired motion in all three DOFs 
and Xpred represents the motion of the object which is 
predicted by the neural network, respectively. W is a weight 
specifying the importance of each direction.  

It is easy to find a local minimum of a function defined in 
(1) using classical optimisation techniques. However, to find a 
better solution and to avoid falling into local minima, we run 
the optimization process several times with different initial 
values in order to find a better solution or even the global 
minimum. The solution, which might not be the globally 
optimal one, results in motion that is usually close to the 
desired motion. After applying the poking action, the object 
pose changes and the new point of contact and angle of push 
are determined, which can be better than the previous ones. 

Fig. 6: A set of objects that were used for learning  

 



 
Fig. 7: Relationship between point and angle of contact and object response 

In the learning process the robot generated random poking 
action from all sides of objects (point of contact on the 
boundary travels from 0 to 2π) and from different angles in 
the range from – π to π. The robot also generated actions that 
do not result in any object motion (for all angles that are less 
than – π/2 or more than + π/2), where the motion of the pusher 
is directed away from the object. Based on our experiences we 
know that such actions do not result in any motion. The 
learning would be much faster if we provide as much 
knowledge as possible; however, we wanted that the agent 
learns this rule by itself, without any hard coding. The goal of 
our work is to develop a system which could develop 
cognitive ability of the robot - a system where a robot could 
evolve in a more intelligent machine. Therefore, such things 
should not be hardcoded. 

To validate the learned controller, we defined a task of 
consecutive point-to-point movements, where the object 
orientation was not important. In case of Mitsubishi robot the 
trajectory has been more complex. The object had to move 
between the corners of the square of size 30 cm x 30 cm (see 
Fig. 8). In Fig. 8, points are marked by small circles. Fig. 8 
also shows the actual movement of the object (blue line). The 
object starts from initial position an moves to point P1, then 
moves through P2, P3 and to P4, and finally returns to P1. The 
movement of the object is not very precise because the action 
learning has not been perfect. In any case, we cannot expect 
that a nonprehensile action would result in a movement with 
the same precision as an action with a grasp (with full control 
over an object). Nevertheless, the learned poking action is 
precise enough to keep the object within a few centimetres of 
the desired path. 

In the case of the Hoap robot the trajectory has been much 
simpler. The robot had to move a smaller object to a point in 
space (marked with a red circle in Fig. 9). The trajectory has 
been defined in such a way that the robot needed to use both 
tools in order to be able to achieve the task. 

Fig. 10 shows the rotation of the object during the whole 
movement cycle. Since the rotation of the object has not been 
controlled, it is changing randomly. This was achieved by not 
including the object rotation in the process of searching the 

most appropriate point for pushing. The weight W was, 
therefore, set to: 

 
1 0 0
0 1 0 ,
0 0 0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

W
 (2) 

 
where 0 as the last diagonal element correspond to the object 
rotation. Fig. 11 shows the points of contact and the angles of 
contact during the whole cycle. It can be seen that point and 
angle of contract change significantly depending on a current 
object state. 
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Fig. 8: Object positions during point–to-point movement between the corners 

of a square (experiments on a Mitsubishi robot) 
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Fig. 9: Object positions during point–to-point movement  

(experiments on a Hoap-3 robot) 
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Fig. 10: Object rotation during point-to-point movement 
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Fig. 11: Point and angle of contact during point to point movement 

VII. DISCUSSION AND FUTURE WORK 
 
In this paper we described how to learn the relationship 

between a point and an angle of a poke and the response of an 
object. The robot acquired this knowledge by exploration 
without having any prior knowledge about the action. While 
very precise learning of pushing actions can take a very long 
time, the agent learns a rough but reasonable approximation of 
the action already after a few explorative pushes. This initial 
knowledge can already be used for a rather rough control of 
the object movement. Next, while controlling the motion the 
robot can update its knowledge base by observing the actual 
movement of the object. Thus the relationship between the 
desired and the actual object motion gradually becomes more 
accurate and the control of the object movement direction 
improves. Additionally, to make the learning of poking 
actions more optimal, human instructor can demonstrate the 
most representative pokes (e.g. perpendicular pokes from a 
few different sides). 

However, the knowledge, that the robot obtained by 
exploration, is useful only for the object that was used for 
training. Currently, for each new object exploration has to 
start from the beginning, thus it takes a long time before a 
satisfactory large object library is built. There is no 

generalisation. Our plan for the future is to learn more general 
pushing controllers instead of learning the behaviour of every 
object. The generalisation can be achieved by performing 
many different pushing actions on different objects. The 
actions and object has to differ in relevant characteristics in 
order to identify the general pushing rule. To solve such 
problems, some authors use the recurrent neural networks 
with parametric bias [7],[8]. In these works, static images of 
objects are linked to dynamic features of objects. 

Using such general laws, people can predict the movement. 
However, when the actual movement of the object differs 
from the predicted one, humans include the feedback loop and 
adapt their actions in order to achieve the desired motion of 
the object. In the same way closed loop control has been used 
in our work. The robot/agent can predict only the approximate 
behaviour of the object. Due to the object properties that has 
not been modelled or cannot be measured, e.g. friction, mass 
distribution, etc., the actual motion differs and the robot has to 
adapt its motion to improve the motion of an object. 

In summary, we realized the process of associating object-
action events through an explorative, self emergent process. 
Such processes are of great importance for the early cognition. 
No knowledge about pushing was provided to the robot. We 
only provided rules about how to explore the environment and 
the robot obtained the controller by itself. 
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Abstract

In this work, we describe and evaluate a grasping mechanism that does not make use of any specific object prior knowledge. The
mechanism makes use of second-order relations between visually extracted multi–modal 3D features provided by an early cognitive
vision system. More specifically, the algorithm is based on two relations covering geometric information in terms of a co-planarity
constraint as well as appearance based information in terms of co-occurrence of colour properties. We show that our algorithm,
although making use of such rather simple constraints, is able to grasp objects with a reasonable success rate in rather complex
environments (i.e., cluttered scenes with multiple objects).

Moreover, we have embedded the algorithm within a cognitive system that allows for autonomous exploration and learning in
different contexts. First, the system is able to perform long action sequences which, although the grasping attempts not being always
successful, can recover from mistakes and more importantly, is able to evaluate the success of the grasps autonomously by haptic
feedback (i.e., by a force torque sensor at the wrist and information about the distance of the gripper after a gasping attempt).
Such labelled data is then used for improving the initially hard-wired algorithm by learning. Moreover, the grasping behaviour has
been used in a cognitive system to trigger higher level processes such as object learning and learning of object specific grasping.

Key words: Vision based grasping, Cognitive systems, Early cognitive vision

1. Introduction

The capability of robots to effectively grasp and manip-
ulate objects is necessary for interacting with the environ-
ment and thereby fulfil complex tasks. These capabilities
need to be implemented and evaluated in natural environ-
ments, considering both known and unknown objects. Con-
sidering the important requirements for the next generation
of service robots such as robustness and flexibility, robots
should be able to work in unknown and unstructured en-
vironments, be able to deal with uncertainties in feature
acquisition processes as well as to work fast and reliable.
These requirements also assume that the robots are able to

deal with initially unknown objects as well as to be able to
learn from experience. The work introduced here describes
an algorithm for grasping of unknown objects as well as
the improvement of this algorithm through learning. The
basic idea is the modelling and generation of elementary
grasping actions – simple perception-action pairs suitable
for generation of grasps where very little or no information
about the objects to be grasped is known a-priori.

The body of work in the area of robotic grasping is sig-
nificant (see, e.g., [1–10]). We distinguish approaches based
on the level of a-priori object information used to model
the grasping process. In particular, objects to be grasped
may be assumed to be known, that is, both the shape and
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the appearance of the object are known and used to as-
sociate specific grasping strategies to them through explo-
ration, (see, e.g., [2,3]) or different types of supervised learn-
ing (see, e.g., [9,10]). When objects are assumed to be un-
known, the assumptions of the system naturally need to be
much more general in order to generate suitable grasping
hypotheses (see, e.g., [4]).

In this work, we describe an adaptable grasping algo-
rithm in which no prior object knowledge is used in the
beginning but which is used to establish grasping making
use of such object knowledge. More specifically, we

1) define an initial grasping behaviour not requiring any
prior object knowledge. This behaviour is based on co-
planar contours extracted by the early cognitive vision
system [11,12] and already shows a high success rate in
complex scenes,

2) refine this initial grasping behaviour by supervised learn-
ing in which however the labelling of the training data is
done automatically during an exploration process, and

3) use the initial object independent grasping behaviour to
constitute object shape representations (see also [13])
and associate grasping affordances to those 1 and hence
lead to grasping based on object prior knowledge.
The paper is organised as follows. We first give an

overview of the state of the art in robot grasping in Sec-
tion 2, where we also outline distinguishing features of our
approach in comparison to existing work. In section 3 we
describe the visual representations from which the grasps
become computed. In section 4, we describe how the grasps
are computed from the visual features. The experimental
setup and the evaluation of the grasping strategy is de-
scribed in section 5. In section 6, the role of the grasping
strategy in the cognitive system is discussed. In particular,
we discuss the aspects of fine-tuning the grasping strategy
by learning and the application of the grasping strategy in
a bootstrapping process wherein objects and grasp knowl-
edge thereof become acquired by autonomous exploration.

2. Related work

In this section, we present an overview of the current
research in the area of robotic grasping and relate it to our
work.

One area of research in the field of object grasping are
analytical approaches (see, e.g., [15,5–7]) that model the
interaction between a gripper and an object to compute
promising grasps. When contact points between the robot
hand and the object are determined and the coefficients of
friction between the two materials are known, it is possible
to calculate a wrench space - i.e., 6D space of forces and

1 Here we only briefly describe the role of the initially object inde-
pendent grasping behaviour in object knowledge based grasping. Its

use for such grasping requires additional complexities such as ob-

ject memory, pose estimation and a probabilistic representation of
object–grasp associations that are beyond the scope of this paper.

These are are fully treated in a separate publication (see [14]).

torques that can be applied by the grasp. A force-closure
grasp can resist all object motions provided that the grip-
per can apply sufficiently large forces. These forces can be
measured by tactile sensing (see e.g. [8]) and grasp quality
can be computed as objective functions which can be fur-
ther enhanced by optimising the parameters of a dextrous
hand (see, e.g., [16,17]). In most of those approaches it is
assumed that either the shape properties of the object are
known or that these can be easily extracted using visual
information which can be difficult in realistic settings.

Related to the analytical approaches are considerations
on the robot embodiment. Since robot hands often have
many degrees of freedom, the search space of possible
grasp configurations is very large. Analytical approaches
are therefore usually used together with some heuristics
which guide and constrain the optimisation process. For
example, heuristically-based grasp generators often in-
clude some grasp preshape types (see, e.g., [18,19,4]) based
on human grasping behaviour. Domain specific knowledge,
e.g. workspace constraints, hand geometry, task require-
ments or perceptual attributes are also used (see, e.g.,
[20,21,17]). In addition, simulations can further speed up
the learning process (see, e.g., [22,23]).

In industrial applications, the association of grasps to
known objects is often done manually or by guiding the
gripper directly to an appropriate pose during a training
phase where the object is in a known pose. Learning by
demonstration (see, e.g., [24–26]) can be a very efficient tool
to associate grasps to known objects, in particular when
dealing with humanoid robots. Once prior knowledge is
present in terms of a 3D object model and defined grasping
hypotheses (see, e.g., [27]), the grasping problem is basi-
cally reduced to object recognition and pose estimation.

Another approach is learning by exploration. In the re-
cently submitted work [14], grasp densities become asso-
ciated to 3D object models which allow for memorising
object–grasp associations with their success likelihoods. In
this context, a number of learning issues become relevant
such as active learning (see, e.g., [28]) and the efficient ap-
proximation of grasp quality surfaces from examples (see,
e.g., [9]). An interesting approach, which can be positioned
inbetween grasping with and without object prior knowl-
edge, is the decomposition of a scene into shape primitives
to which grasps become associated (see, e.g., [17,18]).

Grasping unknown objects is acknowledged to be a dif-
ficult problem which varies in respect to the complexity
of objects and scenes. Many projects (see, e.g., [29,4,10])
share the following sequence of steps S1–S4:

S1 Extracting relevant features
S2 Grasp hypotheses generation
S3 Ranking of grasp hypotheses
S4 Execution of the best candidate grasp

The complexity of a system depends on the choice of sen-
sors, the diversity of considered objects, the scene configu-
ration and the kind of a-priori knowledge assumed. A num-
ber of examples relies on visual sensors and a simple gripper
with 2 or 3 fingers [30–32,4]. In [32–34] the 2D contours of
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an object are used as a relevant feature and grasp planning
as well as quality evaluation are based on approximating
the centre of mass of the object with the geometrical centre
of the contour. Often the camera is positioned above the
scene, pointing vertically down and in some cases several
object contours were captured from different angles [30].
Most contemporary vision based approaches assume a sim-
ple situation where the scene consists of one object placed
against a white background, such that the segmentation
problem is minimal. Other approaches use range scanning
sensors, [35–37]. This is an attractive choice, since they
provide detailed geometrical model of an object. When a
detailed 3D model is available the grasp planning does not
differ a lot from the case of grasping known objects.

Some recent work considers also the generation of grasp-
ing hypotheses based on local features rather than the ob-
ject shape model [10]. The algorithm is trained via super-
vised learning, using synthetic images as training set. From
two or more images in which grasping hypotheses are gen-
erated, the system performs approximate triangulation to
derive 3D position of the grasping point. The work of [38]
makes use of explicit information in terms of 2D position
and orientation to learn feature combinations indicative for
grasping. The tasks of computing such feature combina-
tions can be linked to the concept of ‘affordances’ proposed
by Gibson [39]: The occurrence of a certain feature combi-
nation potentially triggers a certain grasping action indi-
cating the ‘graspability’ of the object. A challenging task is
to learn such object affordances in a cognitive system (see,
e.g., [40]). Our work does not rely on object specific prior
learning but it can generate the grasp hypotheses based on
the current relationship between scene features. In partic-
ular, our system uses 3D features which can provide more
optimal grasps in terms of approaching the object and ori-
enting the hand accordingly.

Once a contact with the object is made, tactile informa-
tion can be used to further optimise the grasp (see, e.g.,
[8,41,42]). In [41], a data–base that matches a tactile infor-
mation patterns to successful grasps is used to guide the
grasping process. Self-Organzing Maps are used for the in-
terpolation of grasp manifolds associated to shape primi-
tives. In [8], so called ’Contact Relative Motions’ (CRMs)
triggered by tactile informationare are used to translate the
grasp synthesis problem into a control-problem with the
aim of finding the shortest sequences of CRMs to achieve
stable grasps. Our prior work presented in [42] shows how
tactile feedback can be used for implementation of correc-
tive movements and closed loop grasp adaptations. In this
work, we show how tactile feedback can be used to confirm
the success of an executed grasp.

Note that some initial work on our approach described
here has previously been presented at a conference [43]
where the system was tested only in simulation and thus
did not deal with any real-world problems. In the work pre-
sented here, we have implemented the grasping system on
an actual hardware consisting of a stereo vision system and
a robot arm. As a consequence of the extensive evaluation

done here, it was required to make a number of significant
modifications compared to [43]. Moreover, we have intro-
duced an adaptive component in our approach and discuss
the work in the context of a concrete cognitive system.

2.1. Contributions and relation to prior work

As outlined in the previous section, grasping of unknown
objects in unconstrained environments is a hard problem
due to the small amount of prior knowledge that can be
assumed. To create a system that solves this problem in
a general way with high success rate, a number of strate-
gies need to become combined and learning needs to be an
integral part of such a system. Our algorithm provides a
strategy based on 3D edges and other visual modalities and
can be seen as being complementary to strategies based on
2D features or 3D descriptions extracted by range scan-
ners. Here, we point out specific contributions of our work
related to the existing grasping approaches.

D1 Weak prior knowledge: Our grasping strategy is based
on a weak prior information of objects to be grasped: In
particular, it is based on the existence of co-planar pairs
of 3D edges. We will show that such basic cues can al-
ready lead to a large amount of successful grasps in com-
plex scenes (see D4) and hence can be used in a boot-
strapping process of a cognitive system in which stronger
bias is developed by experience (see D6 and [13]).

D2 3D representation: Our approach makes use of the full
potential of 3D information. The prior knowledge we use
generates a full 3D pose and hence we can also grasp
objects that are tilted in any 3D orientation (see figure
12).

D3 Error recovery: Because of the weak prior we can not
expect our approach to work with a success rate close
to 100%. We prefer to generate a certain percentage of
successes on arbitrary objects rather then high quality
grasps on a constrained set of objects. However, for this
the system needs to be able to continue in case of unex-
pected events and non successful grasps (see figures 8, 9
and 12).

D4 Applicable on difficult scenes: Most work in grasping
is based on ‘single grasp attempt/single object’ situation.
In contrast, we will work on rather complex scenes with
multiple objects and no pre-segmentation. We can show
that even in such scenes, we have a reasonable success
rate. Moreover, due to the error recovery (D3) we are
able to perform full sequences of grasping attempts (see
[44] for a movie).

D5 Autonomous success evaluation: We can confirm the
success by means of haptic information. By that, we are
able to building up an episodic memory (see figure 11) of
evaluated grasping attempts, containing: 1) the grasping
hypotheses, 2) the visual features that generated them,
and 3) a success evaluation. These triplets are used as
a ground truth for further learning and fine-tuning (see
D6).

3



D6 Memorisation and learning: The autonomously gen-
erated ground truth is stored in an episodic memory and
is used as input for a learning based on neural networks
to refine the pre-wired grasping strategy.

D7 Realisation on different embodiments: We show
that the grasping behaviour can be realised on different
embodiments. More specifically, we applied it with a
two-finger gripper as well as a three finger hand.

3. Visual representation

The grasping behaviour described in this work is based
on the early cognitive vision system [11,12]. We use a cal-
ibrated stereo camera system to create sparse 2D and 3D
features, namely multi-modal primitives (described in Sec-
tion 3.1), along image contours. In this system, we com-
pute local information covering different visual modalities
such as 2D/3D orientation, phase, colour, and local mo-
tion information. This local information is then used to
create semi-global spatial entities that are called contours
(described in Section 3.2). In Section 3.3 two perceptual re-
lations, co-planarity and co-colourity are defined between
primitives and between contours, and later used in calcula-
tion of grasping hypotheses. Note that primitives, contours
and their perceptual relations are particularly important
in the context of this work, since the grasping hypotheses
defined in Section 4 are based on them.

3.1. Multi-modal primitives

2D primitives represent a small image patch in terms of
position x, orientation θ, phase φ and three colour values
(cl, cm, cr) describing the colour on the left and right side of
the edge as well as on a middle strip in case a line structure
is present. They are denoted as π = (x, θ, φ, (cl, cm, cr)).
Pairs of corresponding 2D features across two stereo views
afford the reconstruction of a 3D primitive encoded by the
vector

Π = (X,Θ,Φ, (Cl,Cm,Cr))

in terms of a 3D position X and a 3D orientation Θ as
well as phase and colour information generalized across the
corresponding 2D primitives in the left and right image (for
details, see [12]).

Figure 1 illustrates what kind of information exists on
different levels of the feature extraction. The process starts
with a pair of stereo images (figure 1 (a)). Then the filter
responses (figure 1 (b)) are calculated which give rise to the
multi-modal 2D primitives and contours (figure 1 (c)). After
finding corresponding 2D feature pairs across two stereo
views, the 2D information is used to create 3D primitives
and 3D contours (figure 1 (d)).

Right ImageLeft Image(a)

(b)

(c)

(d)

Fig. 1. Different type of information that is available in the repre-

sentation. (a) Original stereo images. (b) Filter responses. (c) 2D
primitives and contours. (d) 3D primitives from two different view

points and 3D contours.

3.2. Contours

Collinear and similar primitives are linked together by
using the perceptual organisation scheme described in [45]
to form structures denoted as contours. Since the linking
is done according to geometrical and visual good continu-
ation, contours represent parts of a scene as geometrically
and visually smooth curves. As their building blocks, con-
tours are also multi-modal entities containing visual modal-
ities such as mean colour and phase. Therefore, they do not
only contain geometrical but also appearance based infor-
mation. In figure 2, 3D contours of an example scene are
presented.
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Fig. 2. 3D contours extracted from the scene that is shown in the
bottom left (left image). Red dots indicate the first primitive in a

contour, green the middle, and blue the last primitive in the contour.

3.3. Relations between primitives and contours

The sparse and symbolic nature of the multi-modal fea-
tures gives rise to perceptual relations defined on them that
express spatial relations in 2D and 3D (e.g., co-planarity,
co-colourity). The co-planarity relation (see figure 3b) be-
tween two spatial 3D primitives Πi and Πj is defined as:

cop (Πi,Πj) =
Θj ×Vij

|Θj ×Vij | •
Θi ×Vij

|Θi ×Vij | (1)

where Vij is the vector connecting the two primitives po-
sitions.

Two 3D primitives are defined to be co-colour if their
parts that face each other have the similar colour. Note that
the co-colourity of two 3D primitives is computed using
their 2D projections. We define the co-colourity (see figure
3 (a)) of two 2D primitives πi and πj as:

coc(πi, πj) = 1− dc(ci, cj), (2)

where ci and cj are the RGB representation of the colours
of the parts of the primitives πi and πj that face each other;
and dc(ci, cj) is the Euclidean distance between RGB val-
ues of the colours ci and cj .

Since contours represent larger portions of scenes than
local features, contours and their relations can give a more
global overview of the scene. The contour relations used
in this work are straightforward extensions of primitive re-
lations. While calculating relations between two contours,
the primitives that create the contours are associated be-
tween the contours and the relations are calculated as the
mean relations between associated primitives.

b)a)

P

πkπjπi

Πj

vij

ni

Θj njnp

Πi

Θi

Fig. 3. Illustration of the perceptual relations between primitives. a)
Co-colourity of three 2D primitives πi, πj and πk. In this example,

πi and πj are co-colour, so are πi and πk; however, πj and πk are

not co-colour. b) Co-planarity of two 3D primitives Πi and Πj . ni

and nj are normals of the planes that are defined as cross products

of individual primitives orientations Θi, Θj and the orientation of

the connecting line Vij , (see sec. 4.1). np is the normal of a common
plane defined by combining the two normals ni and nj .

Fig. 4. Elementary grasping actions (EGAs), figure adapted from

[43]. The red lines indicate 3D edges that have been reconstructed
from stereo images. They appear in pairs, and represent the pair

of contours that are connected by relations of co-planarity and co–

colourity. The red dots represent the 3D primitives in the middle
of each contour. In case of EGA 2, the gripper fingers are initially

closed and the grasp is accomplished by opening fingers and thus

applying force to the concave objects from inside out. EGA types 3
and 4 each generate two actions, one for each parent primitive. See

also figures 10 and 12.

4. Grasping Strategy

The grasping behaviour proposed in this work is a low-
level procedure that allows for the robot manipulator to
grasp unknown objects. As explained in section 3, the early
cognitive vision system extracts multi-modal visual feature
descriptors from stereo images. Multi-modal relations be-
tween primitives support perceptual grouping. Second or-
der relations, co-planarity and co-colourity, between con-
tours indicate possible co-planar edges originating from the
same object, or even the same surface in a scene. The grasp-
ing behaviour is based on four basic grasping actions that
can be performed on a pair of such contours using a paral-
lel gripper. In the early cognitive vision system, edges are
represented as 3D contours. As described in Section 3, 3D
contours are sets of the linked 3D primitives. The pair of
contours that are both co-planar and co-colour are called
”similar contours”. For each of the two similar 3D contours,
one representative 3D primitive is chosen. These two prim-
itives are called ’parent primitives’ and they contain the in-
formation about respective contour’s position and orienta-
tion. Figure 4 shows the four types of elementary grasping
actions (EGAs) defined by two parent 3D primitives.

It is important to notice that in a real scene only some

5



of the four suggested grasps are meaningful. For example,
if an object in the scene is not concave, only grasps of type
EGA1̃ can be successfully performed. Since the information
provided by the initial image representation is not sufficient
to determine which of the grasping actions are suitable, the
system suggests grasps of all four EGA types. Suggested
grasping actions are therefore called grasping hypotheses.
The term is also appropriate since grasping actions can fail
because of other factors (such as uncertainties in the posi-
tion and the orientation of the gripper that come from the
uncertainty of the visual reconstruction, from limitations
of the manipulator, or from an unforeseen collision with the
environment) even if the intended action was reasonable.

4.1. Elementary Grasping Actions (EGAs)

Two parent primitives Πi,Πj produce a set of parameters
used for defining the four EGAs. The parameters (see figure
3) are given as follows:
– position and orientation of the common plane p defined

by co-planar parent primitives. It is denoted by position
Pp of the point in the common plane half way between
Xi and Xj and orientation np of the plane normal

– distance between parent primitives: dp = ‖Vij ‖ (figure
3)

– direction connecting the parent primitives: D = Vij

dp

– individual primitives orientations Θi and Θj

This section starts with the definition of the common
plane p and then proceeds to show how specific EGA types
are constructed.

The common plane p is represented by Pp and np which
are calculated as:

np =± Θi ×D + Θj ×D
‖Θi ×D + Θj ×D ‖ (3)

Pp =
Xi + Xj

2

where Xi is the position of the ith 3D primitive in the
scene. Note that we assure that (Θi ×D) · (Θj ×D) > 0
by choosing the direction of the Θj , so that vectors Θi×D
and Θj ×D point into similar directions.

The plus-minus sign on the right hand side of the equa-
tion above indicates that the direction of the normal of the
averaged plane is also arbitrary. It is important to know
which direction of the plane normal to use in order to pre-
dict meaningful grasps. The initial scene representation
does not provide this information. Nevertheless, it is intu-
itively clear to the human viewer why the top side of the box
on figure 4 (EGA 1) should be grasped from above. This
observation can be expressed mathematically. The normal
of the visible side of a surface always forms an obtuse an-
gle to the vector originating from the point of view and
pointing to the surface (figure 5). When this observation is
turned around, it follows that visible surfaces should adopt
the direction of the normal that forms an obtuse angle to
the camera ray in order to give expectable grasps. Another

Fig. 5. Choosing the correct surface normal. n1, n2, and n3 are

outward surface normals marking the sides of the cube visible on
the illustration. The two sides visible from the marked point of view

have surface normals n2, and n3. r1, r2 and r3 are camera rays,

vectors originating from the marked point of view and pointing to
the surface normals.

aspect of this observation concerns camera placement. Vis-
ible features of an objects should be the ones reachable by
the manipulator. This kind of reasoning is applicable for
EGA 1, EGA 2 and EGA 3 cases, while EGA 4 type of
grasp does not depend on the direction of the plane nor-
mal but still requires that only one direction is adopted as
the opposite direction would only duplicate already exist-
ing hypotheses.

Using the argumentation above, we adopt a heuristics
where only one direction of normal is used for generating
EGAs. The advantages are that the number of produced
hypotheses is dramatically reduced (number of EGA 1, 2
and 3 grasps is halved), and in the majority of cases the
wrong hypotheses are excluded.

4.1.0.1. Mathematical formulation of EGAs A grasp is
defined by the position and the orientation of its tool refer-
ence frame (Tool Centre Point (TCP) reference frame) in
relation to, for example, the Robot’s Base reference frame
(figure 6), and the initial distance d between gripper fingers.

If the origin and the orientation of the TCP reference
frame are defined as in figure 6 such that ZTCP (Z axis
of TCP frame) is parallel to the gripper’s fingers, XTCP

axis connects the fingers, and YTCP = ZTCP ×XTCP , and
the origin is placed between two fingers, on some negative
ZTCP distance (depth of the grasp) from fingertips, then
elementary grasping actions are given with expressions as
follows.

EGA 1 :

PTCP = Pp

ZTCP =−np (4)

XTCP = D

dp < d ≤ dmax

Initial finger distance d should be bigger than the distance
between parent primitives dp, so that grasping position can
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Fig. 6. The figure shows the Tool Centre Point (TCP) reference
frame, it is given in respect to the robot’s base (RB) frame. The

position and orientation of the TCP reference frame is used when

defining elementary grasping actions.

be approached without colliding with the object. It is lim-
ited by the maximum fingers opening distance dmax. The
XTCP can have the opposite direction as well (−D) when
using a parallel gripper, as the gripper has reflection sym-
metry across ZY plane.

EGA 2 : is a grasp that is designed for concave objects,
it has same the position and the orientation as EGA 1 but
the initial finger distance is zero and fingers are opened in
order to grasp an object (figure 4, EGA 2).

Since the grasping tool is a simple parallel gripper, EGA
1 and 2 will be successful only when the parent primitives
individual orientations are orthogonal to the line connect-
ing them, meaning that the two parent co-planar contours
should be mirror symmetric and the two representative
primitives should be positioned opposite to each other:

|Θi ·D| < C ∧ |Θj ·D| < C (5)

where C is a positive real number smaller then one. If this
is not the case, the grasp is unstable or not possible.

Both EGA 3 and 4 give two grasping actions, one for ev-
ery parent contour. EGA 3 and 4 use the individual orien-
tations of the parent primitives (projected to the common
plane) as YTCP direction and do not rely on the orienta-
tion of the connecting line. This is why orthogonality to the
connecting line is not a requirement. The calculations are
analog to the case of EGA 1 (equation 5).

5. Experiments

This section gives a description of the experimental setup
(section 5.1) and explains the testing procedure (section
5.2). Qualitative and quantitative results are given in sec-
tion 5.3 and then become discussed in section 5.4.

5.1. Experimental setup

This section gives a description of the hardware (section
5.1.1) and software elements (section 5.1.2) used in the ex-
perimental setup.

Fig. 7. Experimental setup.

5.1.1. Hardware
The hardware setup consists of a Staubli RX60 six de-

grees of freedom industrial robot arm, a fixed Bumble-
bee2 colour stereo camera, a FTACL 50-80 Schunk Force
Torque sensor and a PowerCube 2-finger-parallel gripper
tool mounted on the Force Torque sensor, (figure 7). The
floor is covered with flexible foam layer. The stereo camera
has a fixed position with respect to the robot. A common
frame of reference is derived through a robot-camera cali-
bration procedure.

The force torque sensor is used for active collision de-
tection. The sensor is mounted between the wrist and the
tool of the robot, and it measures forces or torques acting
on the tool. By comparing forces and torques that can be
expected from the influence of the gravitational force alone
with those that are actually measured by the sensor, it is
possible to detect any external collision or force that acts
on the tool, (see figure 8).

The control application for executing the grasping at-
tempts is run on a PC machine under Linux operating sys-
tem. The system uses a Modbus interface to communicate
to the Staubli robot and RS232 serial communication to
communicate to the gripper and the force torque sensor.
A firewire interface connects the camera to a Windows PC
machine that exchange information with the control appli-
cation through a TCP/IP connection.

5.1.2. Software
The implementation is based on three distinct software

environments CoViS, RobWork [46] and Orocos [47]. Co-
ViS is a cognitive vision system that is modelling early cog-
nitive functions of biological visual systems, (section 3). It
is being developed by the Cognitive Vision Group at Uni-
versity of Southern Denmark. RobWork is a framework for
simulation and control of robotics with emphasis on in-
dustrial robotics and their applications. Orocos Real-Time
Toolkit (RTT) is a C++ framework for implementation of
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Fig. 8. The graph shows the total measured and the total calculated
torques, and the difference between measured and calculated values

as a function of time for a sample grasping attempt where a collision

happened. Figure 12 shows an example collision situation and the
corresponding grasping hypotheses.

Fig. 9. State diagram showing workflow of exploration using the
grasping behaviour.

(realtime and non-realtime) control systems. RobWork and
Orocos are integrated into a single control application that
communicates to the CoViS application using a TCP/IP
connection.

5.2. Testing

Figure 9 shows the state diagram for the grasping pro-
cedure. The procedure starts by capturing and processing
images, and producing grasping hypotheses (GHs). GHs

are then processed, certain number of grasping actions are
tested and results are stored. The CoViS system creates
many grasping hypotheses (from several thousand grasping
hypotheses) for each scene, depending on the scene com-
plexity and the quality of the reconstruction. As only few
grasping hypotheses can be tested, (the scene will eventu-
ally become affected by robot actions), it is necessary to
adopt a criteria for ranking the available hypotheses.

In this work, grasping hypotheses are first ranked by the
amount of the verticality of the grasp, or more precisely:

RS = ZTCP · (−ZW )

where the ranking score RS is in the interval [-1,1]. ZTCP

is the orientation of the Z axis of the TCP frame (see figure
6) expressed in the World reference frame, and (−ZW ) is
the vector pointing vertically down. Hence, grasps where
the gripper fingers are pointing down vertically have the
highest rank for eliminating such heuristics by learning see
section 6.1.

The system then tries to find a maximum of five top
ranked grasps that are reachable by the robot and can
be accessed with a collision free movement of the robot.
Collision free trajectories are calculated using the RRT-
connect (Rapidly-exploring Random Trees) motion planner
[48] with PQP (Proximity Query Package) collision detec-
tion strategy [49]. Figure 10d. shows the simulation envi-
ronment used for motion planning. It includes the 3D mod-
els of the robot (kinematic and geometric) and the floor,
and for each new scene it imports the reconstructed con-
tours of the objects present in a region of interest in front
of the robot.

Grasping attempts can result in successful, unstable or
unsuccessful grasps or can report a collision in which case
the robot stops and returns to the initial position. This
evaluation is done autonomously by measuring the distance
between the fingers. More precisely, we say that a grasp is
– unsuccessful if the distance between the fingers after clos-

ing (or opening) is 0 (or maximal),
– unstable if the distance is larger than 0 (or smaller than

maximum) during the closing (opening) of the finger but
0 (or maximal) after having picked up the object,

– successful if the distance is larger than 0 (or smaller than
maximum) during the closing (opening) of the finger as
well as after picking up the object.

Moreover, collisions are detected by the force torque sensor.

5.3. Results

The experimental evaluation presented in this section is
designed as an exploratory case analysis. The aim is to
illustrate different aspects of the system’s behaviour, its
capabilities and weaknesses. Two types of experiments were
performed.

In the first group of experiments (described in section
5.3.1), a test scene contains a single object. The robot at-
tempts to remove it from the scene by using the grasping

8



Fig. 10. a) The image taken during one of the experiments (Section
5.3.1) captured by the left camera. b) Some grasping hypotheses

generated for that scene, displayed in a visualisation environment. c)

A successful grasping hypotheses (EGA 3) where parent contours are
magnified. The primitives in the top left corner come from the robot

and the background. d) RobWork simulation environment shows

3D models of Staubli robot and floor. Additionally, the information
about 3D edges in the scene is provided by the vision system. The

3D contours are composed of 3D primitives, which are modeled as

small cubes. The models are used for planning collision free motions
of the robot and for the visualisation purposes.

behaviour. Fourteen objects have been used in the evalua-
tion (figure 11). The size and the shape of the objects are
chosen so that grasping is connected to different degrees of
difficulty.

The second group of experiments (described in section

Experimental situation 1 2

number of grasping hypotheses (GH) 66 373

number of accepted GHs 11 37

number of unreachable GHs 46 243

number of GHs where tool is in collision 9 93

number of GHs where collision free path was not found 0 0

Table 1
The results of processing full sets of GHs for the first two experi-

mental situations (see figure 13). Finding a collision free path is an

easy task due to the fact that the scene is not complex.

5.3.2) were performed on five complex scenes 2 containing
a selection of the very same objects investigated in section
5.3.1 which are however distributed randomly with high
degree of clutter and occlusion (see figure 15). The goal
was to remove as many objects as possible from the scene.
A short video showing an experimental setting similar to
complex scenes described here is available at [44] (snapshots
of the video are shown in figure 12).

5.3.1. Single objects
Each of the fourteen objects has been presented to the

system in several different positions and orientations that
vary in terms of grasping difficulty. Experiments performed
with the first object are described in detail. Results on other
experiments are given briefly.

Object 1
Three experiments were performed with object 1 (see fig-

ure 13). In the first experiment, the object was successfully
grasped in the first attempt with the grasp of EGA 3 type.
The same happened in the second experiment and the suc-
cessful grasping hypotheses are shown on figure 10c. In the
third experiment, the object was not grasped because it
turned out to be unreachable by the robot. The object was
also placed further away from the camera system than in
the first two experiments, which gave a lower quality recon-
struction and thus a fewer number of grasping hypotheses.

As mentioned in section 5.2, the ranked list of grasping
hypotheses (GHs) is processed top-down. The processing
stops when a certain number (five here) of accessible GHs
have been found, or when there are no more GHs available
(see section 4.1). In order to give an illustration of a typical
processing outcome, full sets of GHs have been processed
for the first two experimental situations, and the results
are shown in yable 1. The order of the conditions that a
grasping hypothesis has to fullfill in order to be accepted
is identical to the order in the table, (e.g., GHs are first
checked for reachability, then it is checked wether the posi-
tion of the tool during grasping is collision free and if both
of those conditions are satisfied the system will try to cal-
culate a collision free trajectory).

2 We show results on three of these scenes. Results on the other two

scenes are described in [50]
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Fig. 11. Office and toy kitchen objects used in the experiments. Objects are of mostly uniform colours, and their size and the shape is
suitable for grasping with the parallel jaw gripper. The marks illustrate average success rate in grasping individual objects measured in the

experiments (see also table 3).

Experimental situation 1 2

number of contours 27 30

number of all contours pairs 351 435

number of similar contours pairs 201 241

number of accepted parents pairs 17 94

number of discarded parents 184 147

number of GHs 66 373

Table 2

Intermidiate values from grasping hypotheses generation program.

As can be seen from table 1, only a small percentage of the
computed grasping hypotheses become actually performed.
Most computed grasping hypotheses can be disregarded by
constraints that can be computed beforehand.

Table 2 shows some intermediate values from the grasp-
ing hypotheses generation program for the first two scenes
of figure 13. The number of contours, contour pairs and the
number of similar contour pairs are derived from the whole
image representation. Parent primitive pairs are then as-
signed to the pairs of similar contours. A parent pair is
discarded if any of the two primitives does not belong to a
certain region of interest in front of the robot. Background
features that originate from the robot and the edge of the
ground surface (figure 13) generate a lot of undesirable sim-
ilar contours and that is why the number of discarded par-
ent pairs is high. This however does not explain why there
is a significant difference between number of good parent
pairs and consequently generated grasping hypotheses in
the two cases. The difference arises because the represen-
tation of object 1 contains less detail in the first case, as it
is further away from the camera.

As mentioned in the introduction of this section, it is im-
portant to notice that individual experimental situations
were designed to demonstrate different aspects of the sys-
tem’s performance and are not suitable for direct statis-

object nr. 1 2 3 4 5 6 7 8 9 10 11 12 13 14

successful grasps(%) 67 30 50 50 50 0 0 25 0 50 0 33 17 6

unstable grasps (%) 0 0 3 0 0 0 0 18 0 0 100 33 0 11

collisions (%) 0 42.5 16 0 39 33 17 41 77 11 0 0 29 83

unsuccess grasps (%) 33 27.5 31 0 11 0 33 16 23 39 0 33 29 0

no grasps (%) 0 0 0 50 0 66 50 0 0 0 0 0 25 0

Table 3
The results of experiments with single objects.

tical analysis. However, we still present a weak numerical
comparison of the experimental results on different objects.
Figure 14 shows experimental situations for the 14 objects.
Table 3 gives the corresponding distribution of different
grasping outcomes.

One of the factors that influences the outcome of a grasp-
ing attempt is the placement of the object with respect to
the camera since reconstructed primitives have uncertain-
ties that vary with the distance from the image centre and
with the distance from the camera. Small objects that are
placed too far away also do not have a good enough recon-
struction for triggering grasps. Object 11 turned out to be
too heavy to be lifted from the ground. Objects 3, 4, and 10
have edges that are positioned very close to the floor so that
small errors in the vertical direction can cause collisions
with the floor. In some cases (object 12 - situation 3, object
5 - situation 3, object 2 - situation 2) the object’s opening
was not available for vertical (top down grasps) which are
ranked highest, so that potentially successful grasps with
non-vertical orientations where not chosen. In few cases
shadows triggered grasping attempts.

5.3.2. Multiple objects
In the second evaluation stage, grasping hypotheses were

tested on three complex scenes. For each scene, the robot
performed 30 grasping actions in order to remove as many
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Fig. 14. Experimental situations for objects 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14. Photos captured by the left camera.

objects as possible from a scene.
Figure 15 show three complex scenes. Photos on the left

show initial situations and photos on the right show the
same scenes after performing 30 grasping attempts. As can
be seen by comparing the changes, even in these complex
scenes with many objects, strong occlusions and clutter, a
good number of grasping attempts have been successfully
performed.

Table 4 gives results of the experiments for complex
scenes. The relative success of the grasping behaviour de-
pends on the number of the attempts taken into account.
The 30 grasping attempts were usually enough for the sys-
tem to perform all possible successful grasps. We experi-
enced that in case the system continues working after this
point, the number of the unsuccessful, collision and unsta-

random scene 1 2 3

number of grasping attempts 30 30 30

successful grasps 6 4 5

unstable grasps 5 2 3

collisions 18 12 16

unsuccessful grasps 1 12 6

Table 4

The results of experiments with complex scenes 1, 2 and 3.

ble outcomes grows. It happens because the remaining ob-
jects are not in the suitable position, (unreachable or gras-
pable edges are not visible), or due to the ranking criteria,
some nonsuccessful grasps repeatedly become favoured so
that other possibilities are not explored.
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Fig. 12. Five grasping outcomes from the video available at [44].

From top to bottom: Successful, Unstable, Collision, Successful and
Fail cases. A snapshot from the video (left) and the corresponding

grasping hypotheses viewed in a visualisation environment (right) is

shown for each case.

Fig. 13. Three experimental situations for the object 1. Figure shows
the original images used for acquiring image representations, cap-

tured by the left camera. The darker areas at the middle of all three
images are shadow cast by the robot when in the initial position.

Fig. 15. Complex scenes 1, 2 and 3. Images on the left show initial

scenes. Images on the right show the corresponding scenes after 30

grasping attempts with our grasping behaviour.

In a complex scene, grasping hypotheses can be defined
with edges from two different objects. The use of the co-
colourity relation (i.e., two primitives sides facing each
other have the same colour, see section 3.3) make it likely
that the parent primitives are from the same object. How-
ever, the outer colour of edges of the two objects is usually
the colour of the floor surface and if the two edges are
co-planar at the same time, a grasping hypotheses will be
created. In most cases, this is not a disadvantage as GHs
originating from different objects often give good results.

5.4. Discussion of Experiments

The grasping experiments performed on single objects as
well as those performed on cluttered scenes with many ob-
jects showed that there is a consistency in graspability of
specific objects. In other words, some objects are grasped
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percentage

EGA 1 10%

EGA 2 5%

EGA 3 50%

EGA 4 35%

Table 5
Distribution of EGA types for successful grasps in single objects

experiments.

easily and consistently whenever they are in suitable posi-
tion and image processing produces a good representation.
Other objects are grasped just occasionally. This depends
on how well individual object’s features (weight, size, shape,
colour, material) pair with the type of gripper used in the
experiments. On the other hand, it depends on how suitable
the object’s features are for the kind of image processing
used, i.e. how difficult it is to extract good co-colour and
co-planar contours. For small or distant objects, the recon-
struction was often poor. In these cases, images with higher
resolution or making use of a visual attention mechanism
could improve the performance.

The gripper used in this setup limits grasps of EGA 1
and EGA 2 types only to small objects. Large objects are
mostly grasped by the edges with grasps of type EGA 3,
if they are concave. Although object 9 could be grasped
by the handle, this did not happen because the algorithm
does not identify the handle as a specifically good grasping
position. Here object dependent grasping knowledge (see
section 6.2) acquired by supervised learning (e.g, by imita-
tion learning (see, e.g., [25])) might become an important
option for improvement.

Table 5 gives the distribution of EGA grasp types for the
successfully performed grasps in the experiments with sin-
gle objects. EGA types 3 and 4 are represented more often
because EGA types 1 and 2 have two additional constrains,
(the distance between grasped edges has to be within the
opening range of the gripper, and the edges have to be mir-
ror symmetric).

The current system has an open loop - ”look-and-move”
type of control. The drawback of this is the high sensitivity
to calibration errors. The accuracy of grasping operation
depends directly on the accuracy of the visual sensor, the
robot end-effector, and the robot-camera calibration. This
could be avoided by visual servoing. However, in our cali-
brated set up this was not necessarily required.

The exploration procedure could be additionally en-
hanced by making use of tactile sensors and based on that,
reactive grasping strategies (see, e.g., [41]). Our simple
grasping strategy could then serve as an initial ”approach”
planner. This would potentially reduce the number of un-
stable grasps and would also give rich feedback for learning
(see also section 6).

6. Grasping Reflex in a Cognitive System

The grasping behaviour introduced in this paper is an
important part of the cognitive system developed with the
project PACO-PLUS [51]. Of particular importance is that
the success of the action can be evaluated autonomously by
the system. In our case, haptic information from the grip-
per can be used to distinguish between successful, unstable
and unsuccessful grasps as described in section 5.2. Hence,
some kind of an episodic memory (see, e.g., [52]) can be
build up autonomously that can then be used for further
refinement of the grasping behaviour. In that context, we
have defined a learning procedure that allows for improv-
ing the grasping behaviour by making use of the grasping
attempts and their evaluation stored in the episodic mem-
ory as described in section 6.1. Moreover, by means of the
grasping behaviour defined in this paper, we are able to
build up world knowledge in terms of object representa-
tions and associated grasps (as described in section 6.2).

6.1. Refinement of Grasping Reflex

The exploration behaviour described in this paper per-
forms multiple autonomously evaluated grasping attempts,
stored in the episodic memory. This memory can be used as
input for learning since it preserves information that gives
indications about likelihoods of success or failure. For ex-
ample, if the parent primitives are more distant than the
maximal distance between fingers allowed by the gripper,
EGA 1 and 2 are not executable anymore. Another exam-
ple is the uncertainty of the reconstruction of the primitives
that depends on the distance of the object to the camera as
well as the ‘eccentricity’ (i.e., the distance to the principal
ray of the camera) of the parent primitives (for an exact
analysis of the uncertainty see [53]). Hence, it is possible to
learn the relation between these parameters and the suc-
cess likelihood of a grasping attempt.

More specifically, we have used the such parameters ex-
tracted from the evaluated grasping attempts as a basis
for learning algorithm. A grasp is associated with two par-
ent primitives, Πi and Πj . The 3D positions of those are
denoted Xi and Xj . The position of the grasp is denoted
PTCP . CL and CR denote the positions of the optical cen-
tre of the left resp. right camera. The following features,
illustrated in figure 16, have been computed:

F1 The height, h. It is given by the z-component of PTCP .
F2 The angle, ϕv, between the normal, np, (equation 4) and

a vector in the world reference frame pointing vertically
up

F3 The distance between parent primitives, dp.
F4 The distance to the camera, dcam.
F5 The angle, ϕcam, defined by a ray from the optical center

to TCP and vector pointing normally out of the image
plane.
F1–F3 refer to the robots ability to grasp the object in-

dependently of where the object is positioned. F4 and F5
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Fig. 16. Features used for learning.
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Fig. 17. Distribution of recorded grasps. Unstable grasps have not

been used for learning.

are related to the relative position of camera and object
which are the reason for large variation of the quality of the
3D reconstruction which will have an effect on the qual-
ity of the computed EGA. The grasping attempts used for
learning are shown in figure 17 with respect to ϕcam, dcam

and the outcome of the grasps. It can be observed that the
success of the grasp (indicated as a green cross) depends
on F4 and F5. All features can be computed using the 3D
positions of the parent primitives and the camera calibra-
tion parameters. In addition, some EGAs might be more
robust to reconstruction errors or wrong interpretations of
data. Therefore the type of the grasp needs to be taken into
consideration as well. The learning is implemented using a
radial basis function network (for details of the structure of
the network as well as for a detailed analysis of the features
F1–F5 we refer to [54]).

The effect of the learning is tested by randomly dividing
the data set stored in the episodic memory into training
set and a test set, containing about 117 resp. 20 evaluated
grasps. Then the 10 grasps which get the highest score from
the network are selected from the test set. The success ra-
tio of these is compared to the success ratio of 10 grasps
that have been selected randomly from the same test set.
This procedure has been repeated 20 times. The average
performance could be increased from below 35% to more

than 45%.

6.2. Building-up world knowledge

Grasping objects in unconstrained environments with-
out any specific prior object knowledge is known to be a
very difficult problem as outlined in the section 1. Hence, a
performance close to 100% is not to be expected. Although
humans can solve this problem, it needs to be acknowledged
that this skill only develops after years of learning (see,
e.g., [55]) and hence is likely to make use of a vast amount
of experience with a variety of objects. However, once the
object is known to the system, a much higher performance
is achievable. The grasping behaviour described in this pa-
per has been used to generate such object knowledge and
to learn grasping based on this knowledge, i.e., to build up
general world knowledge by learning, as described now.

The early cognitive vision system described in section
3 is able to extract 3D representations (see figure 18) of
objects by accumulating information over different frames
(see [56]). A pre-requisite for using this accumulation mech-
anism is that the robot has physical control over the object
(see figure 18a), allowing the robot to perform movements
leading to predictable transformations of the 3D primitives.
Based on these predictions, Kalman filtering can be used
to refine the estimates of 3D features and Bayesian reason-
ing can be used to eliminate wrong 3D features, leading
to reliable 3D object representations (see figure 18b). The
physical control is achieved by means of the grasping be-
haviour described in this paper. Although not leading to a
close to 100% success rate, by means of our haptic evalu-
ation, the system is able to judge whether something has
been grasped successfully. Then the robot can perform a
controlled movement (mostly a rotation) of the object, that
can be used in the accumulation algorithm to extract com-
plete and reliable object representations as shown in figure
18b).

Moreover, the computation of grasping hypotheses only
requires a co-planarity and co-colourity relation. The co-
planarity relation as well as the co-colourity relation are
also defined for these accumulated representations which
also consist of 3D primitives. Hence, also grasping hypothe-
ses can also be computed for such stored models (see figure
18c) and be tested after a successful pose estimation has
been performed (as done, in e.g., [57,58] based on the accu-
mulated representations). This mechanism has been used
in the PACOplus system to learn grasp densities associ-
ated to a specific object (see figure 18d and [14]). By that,
the grasping mechanism introduced in this paper which
does not require any object prior knowledge has been used
to bootstrap a system which generates an object specific
grasping mechanism with a higher success rate due to the
larger prior being incorporated.

14



b)a)

c) d)

Fig. 18. a) An image of the object held by the robot where tracked

3D primitives are indicated as local line segments. b) Illustration

of the object model consisting of successfully tracked 3D-primitives.
Nite that the hole at the handle originates from the fact that the

gripper holds the object at the handle and hence the handle is

occluded for the vision system. c) Grasping hypotheses generated by
our algorithm extracted based on the learned represention shown in

b). d) Projection of grasp densities (note that although the grasping

density is a 6D manifold, only 3D positions are shown) extracted
from empirically tested grasping hypotheses found being successful.

Fig. 19. Execution of a grasping hypothesis with a three finger hand

in the context of the work in [14].

7. Summary and conclusion

We have described a grasping mechanism that does not
make use of any specific object prior knowledge. The mech-
anism makes use of second order relations between visu-
ally extracted 3D features representing edge structures. We
showed that our algorithm, although making use of such
rather simple constraints, is able to grasp objects with a
reasonable success rate in rather complex environments.
Meanwhile, the grasping mechanism has also been used in
a system with a different embodyment as shown figure 19.

Moreover, we have described the role of our grasping be-

haviour within a cognitive system. The system is able to
evaluate the success of the grasps autonomously by haptic
feedback. By this it can create ground truth in terms of la-
belled data that has been used for improving the initially
hard-wired algorithm by learning. Moreover, the grasping
behaviour has been used to trigger higher level processes
such as object learning and learning of object specific grasp-
ing.

Grasping without prior object knowledge is a task in
which multiple cues need to be merged. In this way, we see
our 3D approach as complementary to other mechanism
based on 2D information (such as, e.g., [59,10]) or 3D sur-
face information (such as, e.g., [18]).
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Detection of Objectness and Extraction of Object Shape
through Object Action Complexes, Special Issue on ”Cognitive

Humanoid Robots” of the International Journal of Humanoid
Robotics(accepted).

[14] R. Detry, M. Popovic, Y. P. Touati, E. Baseski, N. Krüger,
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[25] J. Steil, F. Röthling, R. Haschke, H. Ritter, Situated robot

learning for multi-modal instruction and imitation of grasping,

Robotics and Autonomous Systems Special Is (47) (2004) 129–
141.

[26] R. Dillmann, M. Kaiser, A. Ude, Acquisition of elementary
robot skills from human demonstration, in: In International

Symposium on Intelligent Robotics Systems, 1995, pp. 185–192.

[27] Scape Technologies, http://www.scapetechnologies.com/.

[28] M. Salganicoff, L. H. Ungar, R. Bajcsy, Active learning for vision-

based robot grasping, Machine Learning 23 (2-3) (1996) 251–
278.

[29] R. Mario, V. Markus, Grasping of unknown objects from a table

top, in: Workshop on Vision in Action: Efficient strategies for
cognitive agents in complex environments,ViA08, 2008.

[30] M. J. Taylor, A. Blake, Grasping the Apparent Contour, in:
ECCV ’94: Proceedings of the Third European Conference-

Volume II on Computer Vision, Springer-Verlag, London, UK,

1994, pp. 25–34.

[31] G. Bekey, H. Liu, R. Tomović, W. Karplus, Knowledge-Based

Control of Grasping in Robot Hands Using Heuristics from
Human Motor Skills, IEEE Trans. Robotics and Automation

vol. 9, no. 6 (1993) 709–722.

[32] E. Chinellato, R. B. Fisher, A. Morales, A. P. D. Pobil, Ranking
planar grasp configurations for a three-finger hand., in: ICRA,

2003, pp. 1133–1138.

[33] A. Morales, P. J. Sanz, A. P. D. Pobil, A. H. Fagg, Vision-

based three-finger grasp synthesis constrained by hand geometry,

Robotics and Autonomous Systems 54 (6) (2006) 496–512.

[34] D. P. Perrin, C. E. Smith, O. Masoud, N. Papanikolopoulos,
Unknown Object Grasping Using Statistical Pressure Models,

in: Proceedings of the 2000 IEEE International Conference on

Robotics and Automation, ICRA 2000, April 24-28, 2000, San
Francisco, CA, USA, 2000, pp. 1054–1059.

[35] G. Taylor, L. Kleeman, Grasping unknown objects with a
humanoid Robot, Proceedings 2002 Australasian Conference on

Robotics and Automation (2002) 191–196.

[36] F. Ade, M. Rutishauser, M. Trobina, Grasping unknown objects,

in: Proceedings of Dagstuhl Seminar: Environment Modeling
and Motion Planning for Autonomous Robots, World, 1995, pp.

445–459.

[37] B. Wang, L. Jiang, J. LI, H. Cai, Grasping unknown

objects based on 3D model reconstruction, Advanced Intelligent

Mechatronics. Proceedings, 2005 IEEE/ASME International
Conference on (2005) 461 – 466.

[38] J. A. C. Jr., J. H. Piater, R. A. Grupen, Developing haptic and
visual perceptual categories for reaching and grasping with a

humanoid robot, Robotics and Autonomous Systems 37 (2-3)

(2001) 195–218.

[39] J. J. Gibson, The Ecological Approach to Visual Perception,
Lawrence Erlbaum Associates.

[40] G. Fritz, L. Paletta, M. Kumar, G. Dorffner, R. Breithaupt,
E. Rome, Visual Learning of Affordance Based Cues, in:

Simulation of Adaptive Behavior, Vol. 4095, 2006, pp. 52–64.

[41] J. Steffen, R. Haschke, H. Ritter, Experience-based and Tactile-

driven Dynamic Grasp Control, Intelligent Robots and Systems,

2007. IROS 2007. IEEE/RSJ International Conference on (2007)
2938–2943.

[42] J. Tegin, S. Ekvall, D. Kragic, B. Iliev, J. Wikander,

Demonstration based learning and control for automatic

grasping, in: Int. Conf. on Advanced Robotics, Jeju, Korea, 2007.

[43] D. Aarno, J. Sommerfeld, D. Kragić, N. Pugeault, S. Kalkan,
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Abstract

The ability to autonomously acquire new knowledge through interaction with the
environment is one of the major research goals in the field of robotics. The knowledge
can be acquired only if suitable perception-action capabilities are present. In other
words, a robotic system has to be able to detect, attend to and manipulate objects in
the environment. In this paper, we present the results of our longterm work in the area
of vision based sensing and control. The work on finding, attending, recognizing and
manipulating objects in domestic environments is discussed. More precisely, we present
a stereo based vision system framework where aspects of Top-down and Bottom-up
attention and foveated attention are put into focus and demonstrate how the system
can be utilized for object grasping.

1 Introduction

Humans use visual feedback extensively to plan and execute actions. However,
this is not a well-defined one way stream: how we plan and execute actions de-
pends on what we already know about the environment we operate in (context),
what we are about to do (task), and what we think our actions will result in
(goal). In addition, as pointed out in [74], a significant amount of human visual
processing is not accessible to consciousness - we do not experience using opti-
cal flow to control our posture. By not completely understanding the complex
nature of human visual system, what are the ways to model similar capabilities
into robots?

Visual attention plays an important role when we interact with the envi-
ronment, allowing us to deal with the complexity of everyday scenes. The
requirements on artificial ’seeing’ systems are highly dependent on the task and
have historically been developed with this in mind. To deal with the complexity
of the environment, prior task and context information have commonly been
integrated with low level processing structures, the former being denoted as
Top-down and latter Bottom-up approach.

In our service robot project, tasks such as “Robot, bring me my cup” or
“Robot, pick up this” are studied. Depending on the task or context informa-
tion, different strategies may be chosen. The first task is well defined in that
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manner that the robot already has the internal representation of the object - the
identity of the object is known. For the second task, the spoken command is
commonly followed by a pointing gesture - here, the robot does not know the
identity of the object, however it knows its approximate location. A different
set of underlying visual strategies are required for each of these scenarios which
are the most representative examples for robotic fetch-and-carry tasks.

We have been working with different aspects of the above for the past several
years, [60, 79, 4, 19, 18, 42, 20]. The work presented here is in the line with
these previous works, with the slight difference that we keep our focus to the
design and development of a vision system architecture that allows for more
general solutions in the above settings and suitable also for object manipula-
tion. The goal of the designed system is to enable a generic object finding and
manipulating platform. Although the specific robotic platform that we have
implemented this design on is fixed (i.e. attached to the floor), the reasoning
(and the design) is not limited to a static robotic platform. The reasoning can
easily be extended to a service robot scenario, which is the long-term purpose
and goal of our research.

A general overview of the robotic platform is given in the schematic illustra-
tion of Fig. 1. The different parts of this illustration will be described in detail
throughout this paper.

Fig. 1: Illustration of the complete robotic platform that is the system described
in this paper.
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The rest of the paper is organized as follows. In Section 2 system function-
alities, considered tasks, system design and flow of information in the system
are outlined. This corresponds roughly to the diagram in the middle of Fig. 1.
In Section 3, the details about the camera system (the robot-head in the same
illustration) and its calibration are given. Aspects of Bottom-up and Top-down
attention (the Attention-box to the right in the illustration) are presented in
Section 4 and foveated segmentation in Section 5 (the Segmentation-box to the
left in the illustration). Section 6 describes how the visual system can be used
to facilitate manipulation. Selected results of the experimental evaluation are
presented in Section 7, where an evaluation of the attention-system (Section 7.1)
and the recognition-system (Section 7.2) is done separately first, followed by a
find-and-grasp task for the robot in Section 7.3. A discussion and summary
finalizes the paper in Section 8.

2 Vision System Functionalities and Tasks

Similar to the human vision system, but unlike many systems from the computer
vision community, robotic vision systems are embodied. Vision is used as a mean
for the robot to interact with the world. The system perceives to act and acts
to perceive. The vision system is not an isolated entity, but part of a larger
system. Thus the system should be developed and evaluated as such. In fact,
measuring the performance of system components in isolation can be misleading.
The quality of a component depends on its ability to function within the rest of
the system. Computational speed might sometimes be preferable to accuracy
or vice versa. As a designer, one has to take a step backwards and concentrate
on the tasks the robotic system is supposed to perform and the world in which
the system resides. What are the goals of the system? What can be expected
from the world and what can not at all be expected?

Recent works exhibiting this sort of embodiment of vision are the work of
Ude et al. [1], as well as the work of Björkman & Eklundh [6]. In these sys-
tems vision is embodied in a robotic system capable of visual search as well as
simple object manipulation. The goal of the work presented here is to design
a similar robotic system able to interact with the world through recognition
and manipulation of objects. Objects can either be previously known or com-
pletely new to the system. Even if confusions do occur frequently, a human
being is able to immediately divide the perceived world into different physical
objects, seemingly without effort. The task is performed with such ease that
the complexity of the operation is easily underestimated. For a robotic system
to perform the same task, the visual percept has to be grouped into larger en-
tities that have some properties in common, properties such as proximity and
appearance. These perceptual entities might or might not correspond to unique
physical objects in 3D space. It is not until the robot acts upon an entity, that
the existence of a physical object can be verified. Without interaction the entity
has no real meaning to the robot. We call these entities things to differentiate
them from objects that are known to be physical objects, through interaction or
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other means.
For the visual system to be of use to the robotic system, it needs the abilities

to divide the world into things, create representations of observed things for later
association and manipulation, and continuously update these representation as
new data becomes available. A representation can either be short-lived and
survive only during a short sequence of actions, or permanent, if interactions
with the thing turn out to be meaningful. A meaningful action is an action that
results in some change in the representation of the thing, such as a pushing action
resulting in a change in position. From this stage on, the thing is considered an
object.

The amount of perceptual data arriving through a visual system easily be-
comes overwhelming [82, 83, 84]. Since resources will always be limited in one
way or the other, there is a need for a mechanism that highlights the most rele-
vant information and suppresses stimuli that is of no use to the system. Instead
of performing the same operations for all parts of the scene, resources should
be spent where they are needed. We call such a mechanism visual attention.
Unfortunately, relevancy is not a static measure, but depends on the context,
on the scene in which the robot acts and the tasks the robot is performing.
Consequently, there is a need for the attentional system to adapt to context
changes. More on attention in Section 4. A static thing too large for the robot
to manipulate might be irrelevant, while an independently moving thing of the
same size can be relevant indeed, if it affects the robot in its doings. Since sizes
and distances are of such importance to a robotic system, a visual system should
preferably consist of multiple cameras.

2.1 Flow of visual information

The visual system used in our study has a set of basic visual functionalities,
the majority of which uses binocular cues, when such cues are available. The
system is able to attend to and fixate on things in the scene. To facilitate
object manipulation and provide an understanding of the world, there is sup-
port for figure-ground segmentation, recognition and pose estimation. All these
processes work in parallel, but at different time frames, and share information
through asynchronous connections. The flow of visual information through the
system is summarized in Fig. 2. Information computed within the system is
shown in rounded boxes. Squared boxes are visual processes that use this infor-
mation. Grey boxes indicate information that is derived directly from incoming
images. The camera control switches between two modes, fixation and saccades,
as illustrated by the dashed boxes. The vision system generally works within
the visual search loop that consists of a saccade to the current attentional foci,
after which the system tries to fixate on that point, which in turn will yield more
(3D) information for the recognition step. If the attended/fixated region is not
the desired object we are searching for, the visual search loop continues. The
work presented here does not include the motion path, but more information
can instead be found in [5].

The above-mentioned vision system has been implemented on the four-
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Fig. 2: The flow of visual information.

camera stereo head [77] shown in Fig. 3. The head consist of two foveal cameras
for recognition and pose estimation, and two wide field cameras for attention.
It has seven mechanical degrees of freedom; neck roll, pitch and yaw, head tilt
and pan & tilt for each camera in relation to the neck. The attentional system
keeps updating a list of scene regions that might be of interest to the rest of
the system. The oculu-motor system selects regions of interest from the list and
directs the head so that a selected region can be fixated upon in the foveal views.
Redirection is done through rapid gaze shifts (saccades). As a consequence, the
camera system always strives towards fixating on some region in the scene. The
fact that the system is always in fixation is exploited for continuous camera
calibration and figure-ground segmentation.

2.2 Design issues

We have chosen a design methodology that is biologically inspired, without the
ambition to make our systems biologically plausible. Since computational and
biological architectures are so fundamentally different, biologically plausibility
comes at a cost. One critical difference is the relative costs of computation
and communication of computed results. In biological systems, computations
are done in neurons, with results communicated through thousands of synapses
per neuron. This is much unlike computational systems in which the cost of
communicating data, through read and write operations to memory, can be
higher than that of computing the actual data. Unfortunately, computer vision
tend to be particularly memory-heavy, especially operations that cover whole
images. If one considers typical real-time computer vision systems, the cost of
storage easily out-weight the cost of computation. Thus for a system to perform
at real-time speed, biological plausibility easily becomes a hindrance. Even if
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Fig. 3: The Armar-III stereo head.

biological systems inspire the design process, our primary interest is that of
robotic manipulation in domestic environments.

3 Camera System

For a robot to successfully react to sudden changes in the environment the
attentional system ought to cover a significant part of the visual field. Recog-
nition and vision-based navigation, however, place another constraint on the
visual system, i.e. a high resolution. Unfortunately, these two requirements are
hard to satisfy for a system based on a single stereo pair. A biological solu-
tion, exemplified by the human vision system, is a resolution that varies across
the visual field, with the highest resolution near the optical centers. There
are some biologically-inspired artificial systems [69, 43] that uses similar ap-
proaches. However, non-uniform image sampling leads to problems that make
these systems less practical. Binocular cues can be beneficial for a large num-
ber of visual operations, from attention to manipulation, and with non-uniform
sampling stereo matching becomes hard indeed. Furthermore, the reliance on
specialized hardware makes them more expensive and less likely to be success-
fully reproduced. Another possible solution is the use of zoom lenses [85, 59].
While the robot is exploring the environment the lenses are zoomed out in order
to cover as much as possible of the scene. Once an object of interest has been
located, the system zooms in onto the object to identify and possibly manipu-
late it. However, while the system is zoomed in it will be practically blind to
whatever occurs around it.

There is nothing preventing us from using more than just two cameras, which
is the case in solutions based on either zoom-lenses or non-uniform sampling.
Instead one could use two sets of stereo pairs [70], a wide-field set for attention
and a foveal one for recognition and manipulation. The most important dis-
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Righ foveal

Left wide field

Right wide field

Left foveal

Calibration Fixation

Transfer

Transfer

Fig. 4: Two sets of cameras, a wide-field camera set for attention and a foveal one
for recognition and manipulation, with external calibration performed
between pairs.

advantage is that the calibration process becomes more complex. In order to
relate visual contents from one camera to the next, the relative placement and
orientation of cameras have to be known.

Sets of four cameras can be calibrated using the quadrifocal tensor [28], or
the trifocal tensor if sets of three are considered at a time. However, the use
of these tensors assumes that image features can be successfully extracted and
matched between all images considered. Depending on the camera configuration
and observed scene, it may not at all be the case. For example, due to occlusions
the visual fields of the two foveal images might not overlap. Furthermore, since
the visual fields of the foveal cameras are so much narrower than those of the
wide-field ones, only large scale foveal features can be matched to the wide-field
views. The largest number of matchable features is found if only two images are
considered at a time and the corresponding focal lengths are similar in scale.
Thus for the system presented in this paper, we use pair-wise camera calibration
as illustrated by the arrows in Fig. 4.

3.1 Wide-field calibration

Since external calibration is inherently more stable if visual fields are wide, we
use the wide-field cameras as references for the foveal ones. This calibration is an
on-going process, where previous estimates are exploited for feature matching in
the following frames, assuming a limited change in relative camera orientation
from one frame to the next. For feature matching we use Harris’ corner features
[26] and random sampling [22]. The wide-field cameras are related to each others
using an iterative approach based on the optical flow model [46]

(
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0 y
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+
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In an earlier study [3] we have shown this model to more gracefully degrade
in cases of image noise and poor feature distributions, than the more popular
essential matrix model [47].

3.2 Wide-field to foveal transfer

Once an object of interest has been found through the attentional process (ex-
plained in Section 4), the cameras are directed such that the object is placed
in fixation in the foveal views. This is done using affine transfer [21], which is
based on the fact that if the relations between three different views are known,
the position of a point given in two views can determined in the third. In our
case a new fixation point is found in the wide-field views and the problem is to
transfer the same point to each foveal view. To relate a foveal view position xf

to the corresponding wide-field position xw, we use the affine epipolar constraint
x�wFAxf = 0 and the affine essential matrix

FA =

⎛⎝ 0 0 a3

0 0 a4

a1 a2 a5

⎞⎠ . (2)

Here a1, a2, a3 and a4 encode the relative orientation and scale between the
wide-field and foveal views, while a5 is the difference in y-wise position between
the optical centers. With the wide-field views related using Equation (1) and
the foveal views related to their wide-field counterparts using Equation (2), a
new fixation point can be transfered from the wide-field to the foveal views.

3.3 Fixation

Once a transfer has been completed and a saccade (a rapid shift in view point)
executed towards the new attention point, the system tries to fixate onto the
new region in the center of the foveal views. This fixation is kept until another
region of interest has been found through the attentional system. Thus the
camera control can be in either of two modes, saccade or fixation. However,
since a saccade occurs in a fraction of a second, the cameras are almost always
in fixation. This is beneficial to more high-level processes. With regions of
interest in fixation, binocular information can be extracted, information that
can be useful for segmentation, object recognition and manipulation. We will
see examples of this in later sections.

The relative orientations of the left and right foveal views are constantly kept
up-to-date, much like the wide-field external calibration in Section 3.1. Harris’
corner features [27] are extracted from both views and features are matched
using random sampling [22]. The cameras are then related by an affine essential
matrix FA, similar to the one used for wide-field to foveal transfer in Equa-
tion (2). Even if FA is just an approximation of a general essential matrix, it is
applicable to our case, since focal lengths are large and views narrow. Binocular
disparities are measured along the epipolar lines and the vergence angle of the
stereo head is controlled such that the highest density of points are placed at
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zero disparity. For temporal filtering we use Kalman filters, but ignore frames
for which not enough matches are found.

4 Bottom-up and Top-down attention

The best way of viewing attention in the context of our robotic system is as a se-
lection mechanisms serving the higher level tasks such as object recognition and
manipulation. Biological systems provide a good basis for these kinds of stud-
ies. However, due to computational issues mentioned earlier, these studies serve
as a mere inspirational source and should not be restricting the computational
implementation. We know that humans tend to do a subconscious ranking of
the “interestingness” of the different components of a visual scene. This rank-
ing depends on the observers goals as well as the components of the scene; how
the components in the scene relate to their surroundings (Bottom-up) and to
our objectives (Top-down) [34, 45]. In humans, the attended region is then
selected through dynamic modifications of cortical connectivity or through the
establishment of specific temporal patterns of activity, under both Top-down
(task dependent) and Bottom-up (scene dependent) control [58]. In this work
we will define the Top-down information as consisting of two components: 1)
task dependent information which is usually volitional, and 2) contextual scene
dependent information.
We propose a simple, yet effective, Artificial Neural Network approach that
learns the optimal bias of the Top-down saliency map [38], given these sources
of information. The most novel part of the approach is a dynamic combination
of the Bottom-up and Top-down saliency maps. Here an information measure
(based on entropy measures) indicates the importance of each map and thus how
the linear combination should be altered over time. The combination will vary
over time and be governed by a differential equation that can be solved at least
numerically for some special cases. Together with a mechanism for Inhibition-
of-Return, this dynamic system manages to adjust itself to a balanced behavior,
where neither Top-down nor Bottom-up information is ever neglected.

4.1 Biased saliency for visual search tasks

Current models of how the attentional mechanism is incorporated in the human
visual system generally assume a Bottom-up, fast and primitive mechanism that
biases the observer toward selecting stimuli based on their saliency (most likely
encoded in terms of center-surround mechanisms) and a second slower, Top-
down mechanism with variable selection criteria, which directs the ’spotlight of
attention’ under cognitive, volitional control [80]. In computer vision, attentive
processing for scene analysis initially largely dealt with salience based models,
following [80] and the influential model of Koch and Ullman [38]. However,
several computational approaches to selective attentive processing that combine
Top-down and Bottom-up influences have been presented in recent years.

Koike and Saiki [39] propose that a stochastic WTA enables the saliency
based search model to cause the variation of the relative saliency to change
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search efficiency, due to stochastic shifts of attention. Ramström and Chris-
tensen [63] calculate feature and background statistics to be used in a game
theoretic WTA framework for detection of objects. Choi et al. [11] suggest
learning the desired modulations of the saliency map (based on the Itti and
Koch model [36]) for Top-down tuning of attention, with the aid of an ART-
network. Navalpakkam and Itti [55] enhance the Bottom-up salience model to
yield a simple, yet powerful architecture to learn target objects from training
images containing targets in diverse, complex backgrounds. Earlier versions of
their model did not learn object hierarchies and could not generalize, although
the current model could do that by combining object classes into a more general
super class.

Lee et al. [44] showed that an Interactive Spiking Neural Network can be
used to bias the Bottom-up processing towards a task (in their case in face de-
tection). However, their model was limited to the influence of user provided
Top-down cues and could not learn the influence of context. In Frintrop’s
VOCUS-model [23] there are two versions of the saliency map; a Top-down
map and a Bottom-up one. The Bottom-up map is similar to that of Itti and
Koch’s, while the Top-down map is a tuned version of the Bottom-up one. The
total saliency map is a linear combination of the two maps using a fixed user
provided weight. This makes the combination rigid and non flexible, which may
result in loss of important Bottom-up information. Oliva et al. [57] show that
Top-down information from visual context can modulate the saliency of image
regions during the task of object detection. Their model learns the relationship
between context features and the location of the target during past experience
in order to select interesting regions of the image.

One shortcoming of most of these computational models is that they are
usually limited to the study of attention itself, and other than some works on
the use of attention for object recognition, it has never been studied in a broader
visual system perspective such as a service robotic context. One of the few recent
works that does in fact incorporate an computational mechanism for attention
into a humanoid platform is the work of Morén et al. [52] They use a method
called Feature Gating to achieve Top-down modulation of saliencies.

Our framework is based on the notion of saliency maps, SMs [38]. To de-
fine a Top-down SM, SMTD(t), t denoting time, we need a preferably simple
search system based on a learner that is trained to find objects of interest in
cluttered scenes. In parallel, we apply an unbiased version of the same system
to provide a Bottom-up SM, SMBU (t). In the following we will develop a way of
computing these two kinds of maps and show that it is possible to define a dy-
namic active combination where neither one always wins, i.e. the system never
reaches a static equilibrium, although it sometimes reaches dynamic ones. The
model (illustrated in Fig. 5) contains a standard Saliency Map (SMBU ) and a
Saliency Map biased with weights (SMTD). The Top-down bias is achieved by
weight association (the Neural Network). An Inhibition-of-Return mechanism
and stochastic Winner-Take-All network gives the system its dynamic behavior
described in Section 4. Finally the system combines SMBU (t) and SMTD (t)
with a linear combination that evolves over time t. Our model applies to visual
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search and recognition in general, and to cases in which new visual information
is acquired in particular.

Fig. 5: An attentional model that combines Bottom-up and Top-down saliency,
with Inhibition-of-Return and a stochastic Winner-Take-All mechanism,
with context and task dependent Top-down weights.

Several computational models of visual attention have been described in
the literature. One of the best known systems is the Neuromorphic Vision
Toolkit (NVT), a derivative of the Koch-Ullman model [38] that was (and is)
developed by the group around Itti et al. [36, 35, 55]. We will use a slightly
modified version of this system for our computations of saliency maps. Some
limitations of the NVT have been demonstrated, such as the non robustness
under translations, rotations and reflections, shown by Draper and Lionelle [16].
However, our ultimate aim is to develop a system running on a real time active
vision system and we therefore seek to achieve a fast computational model,
trading off time against precision. NVT is suitable in that respect. Similarly to
Itti’s original model, we use color, orientation and intensity features, with the
modification that we have complemented these with a texture cue that reacts
to the underlying texture of regions, not to outer contours [78, 67].

4.2 Weight optimization and contextual learning

As mentioned above we base both Top-down and Bottom-up salience on the
same type of map. However, to obtain the Top-down version we bias this con-
spicuity map. In our approach, which otherwise largely follows Frintrop [23],
the weighting is done differently. This has important consequences, as will be
shown later. The four broadly tuned color channels R, G, B and Y, all cal-
culated according to the NVT-model, are weighted with the individual weights
(ωR, ωG, ωB , ωY ). The orientation maps (O0◦ , O45◦ , O90◦ , O135◦) are computed
by Gabor filters and weighted with similar weights (ω0◦ , ω45◦ , ω90◦ , ω135◦) in
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our model. Following the original version, we then create scale pyramids for all
9 maps (including the intensity map I) and form conventional center-surround-
differences by across-scale-subtraction and apply Itti’s normalization operator.
This leads to the final conspicuity maps for intensity

(
Ī
)
, color

(
C̄
)
, orienta-

tion
(
Ō
)

and texture
(
T̄
)
. As a final set of weight parameters we introduce one

weight for each of these maps, (ωI , ωC , ωO, ωT ). To summarize the calculations:

RG(c, s) = |(ωR ·R(c)− ωG ·G(c))� (ωR ·R(s)− ωG ·G(s))|
BY (c, s) = |(ωB ·B(c)− ωY · Y (c))� (ωB ·B(s)− ωY · Y (s))|

Oθ(c, s) = ωθ · |Oθ(c)�Oθ(s)|
C̄ =

⊕
c

⊕
s N(RG(c, s))−N(BY (c, s))

Ō =
∑

θ N(
⊕

c

⊕
s N(Oθ(c, s)))

Ī =
⊕

c

⊕
s N(|I(c)� I(s)|)

T̄ =
⊕

c

⊕
s N(|T (c)� T (s)|)

SMTD = ωI Ī + ωCC̄ + ωOŌ + ωT T̄

Here � denotes the across-scale-subtraction,
⊕

the across-scale-summation.
The center scales are c ∈ {2, 3, 4} and the surround scales s = c + δ, where
δ ∈ {3, 4} as proposed by Itti and Koch. We call the final modulated saliency
map the Top-down map, SMTD. The Bottom-up map, SMBU can be regarded
as the same map with all weights being 1.

As pointed out by Frintrop, the number of introduced weights in some sense
represents the degrees of freedom when choosing the “task” or the object/region
to train on. A relevant question to pose is: how much ”control” do we have over
the Top-down map by changing the weights? As previously stated, we divide
Top-down information in two categories; i) task and ii) context information. To
tune and optimize the weight parameters of the SM for a certain task, we also
have to examine what kind of context information would be important. For
instance, the optimal weight parameters for the same task typically differ from
one context to the other. These two issues will be considered in the remaining
part of the section.

4.2.1 Optimizing for the ROI

First we need to formalize the optimization problem. For a given Region Of
Interest (ROI) characteristic for a particular object, we define a measure of how
the Top-down map differs from the optimum as:

eROI(ω̄) =
max (SM(ω̄))−max (SM(ω̄)|ROI)

max (SM(ω̄))

where ω̄ = (ωI , ωO, ωC , ωT , ωR, ωG, ωB , ωY , ω0◦ , ω45◦ , ω90◦ , ω135◦) is the weight
vector. The optimization problem will then be given by ω̄opt = arg min eROI(ω̄).
ω̄opt maximizes peaks within the ROI and minimizes peaks outside ROI. With
this set of weights, we significantly increase the probability of the winning point
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being within a desired region. To summarize; given the task to find a certain
(type) of ROI we are able to find a good set of hypotheses by calculating the
Top-down map SMTD(ω̄opt). The method used to do this optimization for a
given ROI, is described in [65, 66].

4.2.2 Learning Context with a Neural Network

The weight optimization above is in principle independent of context. In order
to include the correlation between the optimal weights and the context (envi-
ronmental Top-down information), we have to know both types of Top-down
information (context and task) in order to derive the set of optimal weights as
a function of context and task.

There are a large number of different definitions of context in the computer
vision literature [62, 75, 76]. In our model we will keep the definition simple
enough to serve our purpose of visual search. A simple example is that a large
weight on the red color channel would be favorable when searching for a red ball
on a green lawn. However, the same weighting would not be appropriate when
searching for the same ball in a red room! We therefore represent context by
the total energy of each feature map, in our case a 11-dimensional contextual
vector, here denoted as ᾱ. This will give us a notion of ”how much” of a certain
feature we have in the environment, and thus how discriminative that feature
will be for a visual search task.

When a set of optimized weights are found for a set of contexts (given a
task), we train an artificial neural network [30] to associate between the context
and the optimal weights. Fore more details on how this training is done we refer
to our previous works [65, 66].

4.3 Top-down/Bottom-up integration

So far we have defined a Bottom-up map SMBU (t) representing the unexpected
feature based information flow and a Top-down map SMTD (t) representing the
task dependent contextual information. We obtain a mechanism for visual at-
tention by combining these into a single saliency map that helps us to determine
where to ”look” next.

In order to do this we rank the ”importance” of saliency maps, using a
measure that indicates how much value there is in attending that single map
at any particular moment. We use an energy measure (E-measure) similar to
that of Hu et al, who introduced the Composite Saliency Indicator (CSI) for
similar purposes [31]. In their case, however, they applied the measure on each
individual feature map. We use the same measure, yet we use it on the summed
up saliency maps. The Top-down and Bottom-up energies ETD and EBU are
defined as the density of saliency points divided by the convex hull of all points.
Accordingly, if a particular map has many salient points located in a small area,
that map might have a higher E-value than one with even more salient points,
yet spread over a larger area. This measure favors saliency maps that contain
a small number of very salient regions.
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4.3.1 Combining SMBU and SMTD

We now have all the components needed to combine the two saliency maps. We
may use a regulator analogy to explain how. Assume that the attentional system
contains several (parallel) processes and that a constant amount of processing
power has to be distributed among these. In our case this means that we want
to divide the attentional power between SMBU (t) and SMTD(t). Thus the final
saliency map will be a linear combination

SMfinal = k · SMBU + (1− k) · SMTD.

Here the k -value varies between 0 and 1, depending on the relative importance
of the Top-down and Bottom-up maps, according to the tempo-differential equa-
tion

dk

dt
= −c · k(t) + a · EBU (t)

ETD(t)
, k =

⎧⎨⎩ 1 k > 1
k 0 ≤ k ≤ 1
0 k < 0

.

The two parameters c and a, both greater than 0, can be viewed as the amount
of concentration (devotion to search task) and the alertness (susceptibility for
Bottom-up info) of the system. The above equation is numerically solved be-
tween each attentional shift.

The first term represents an integration of the second one. This means that
a saliency peak needs to be active for a sufficient number of updates to be
selected, making the system less sensitive to spurious peaks. If the two energy
measures are constant, k will finally reach an equilibrium at aEBU/cETD. In the
end, SMBU and SMTD will be weighted by aEBU and max(cETD − aEBU , 0)
respectively. Thus the Top-down saliency map will come into play, as long as
ETD is sufficiently larger than EBU . Since ETD is larger than EBU in almost
all situations when the object of interest is visible in the scene, simply weighting
SMTD by ETD leads to a system dominated by the Top-down map.

The dynamics of the system comes as a result of integrating the combina-
tion of saliencies with Inhibition-of-Return. If a single salient Top-down peak
is attended to, saliencies in the corresponding region will be suppressed, result-
ing in a lowered ETD value and less emphasis on the Top-down flow, making
Bottom-up information more likely to come into play. However, the same energy
measure will hardly be affected, if there are many salient Top-down peaks of
similar strength. Thus the system tends to visit each Top-down candidate before
attending to purely Bottom-up ones. This, however, depends on the strength of
each individual peak. Depending on alertness, strong enough Bottom-up peaks
could just as well be visited first.

4.4 Binocular cues for attention

Since the attentional system described above is generic with respect to the
visual task, it might just as well deliver regions of interest corresponding to
things that are either too large or too far away to be manipulated. It is clear
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Fig. 6: Disparity map (right) of a typical indoor scene (left).

Fig. 7: Saliency peaks with saliency maps computed using top-down tuning for
the orange package (left) and the blue box (right). The crosses reflect
the sizes derived from the attentional process.

that in our robotic manipulator scenario size and distance needs to be taken
into account for successful interaction with the environment. Now, even if the
projective size of a region can be measured, its real-world size is unknown,
since the projective size depends on the distance from the camera set. One of
the benefits of a binocular system, such as the one described in Section 3, is
that sizes and distances can be made explicit. Therefore, we complement the
attentional system with binocular information in order to make the system more
likely to pop-out regions of interest suitable for manipulation.

With wide-field cameras calibrated as described in Section 3.1 disparity
maps, such as the one to the right in Fig. 6, are computed. Disparity maps en-
code distances to 3D points in the scene. A point distance is given by Z = bf/d,
where b is the baseline (the distance between the cameras), f is the focal length
and d the respective binocular disparity. Before a peak is selected from the
saliency map, the saliency map is sliced up in depth into a set of overlapping
layers, using the disparity map. Each layer corresponds to saliencies within a
particular interval in depth. A difference of Gaussian (DoG) filter is then run
on each layer. The sizes of these filters are set to that of the expected projected
sizes of manipulatable things. Thus for saliency layers at the distance the DoGs
are smaller than for layers closer to the camera head. As a result you will get
saliency peaks similar to those in Fig. 7, with crosses indicating the expected
size of things in the scene.



5 Foveated segmentation 18

Fig. 8: Disparity maps (right), prior foreground probabilities (center) and pos-
teriori figure-ground segmentation (left).

5 Foveated segmentation

After an region of interest has been selected by the attentional system (see
Section 4), the camera system is controlled such that the region is placed at
zero disparity in the center of the foveal views. It is now ready to be recognized
and possibly manipulated. However, before this is done it would be beneficial if
it could also be segmented from other objects in the scene. Both recognition and
pose estimation are simplified if the object is properly segmented. In our system
we do this with the help of binocular disparities extracted from the foveal views.

In our system for foveated segmentation, the foreground probability of each
pixel is computed in a probabilistic setting. From area based correlation we
get a measurement for each pixel, measurements that are used to estimate the
prior probability of a pixel belonging to the foreground. Examples of foreground
priors can be seen in the center of Fig. 8.

By modeling the interaction between neighboring patches and computing the
posteriori foreground probabilities using graph-cuts, pixels are finally labeled as
being part of either the foreground or background. Fortunately, since there are
only two possible labels the exact posteriori solution is given in a single graph-
cut operation [25]. The resulting segmentation might look like the two images to
the right in Fig. 8. These segmentations are then passed to either recognition or
pose estimation. For more information on the precise modeling and motivations
see [7].

5.1 From 3D segments to shape attributes

5.1.1 Without Table Plane Assumption.

In order to have segmentation that is appropriate for manipulation image data
needs to be grouped into regions corresponding to possible objects in the 3D
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scene. Disparities can be considered as measurements in 3D space, clustered
around points of likely objects. These clusters are found by applying a kernel-
based density maximization method, known as Mean Shift [15]. Clustering is
done in image and disparity space, using a 3D Gaussian kernel with a size
corresponding to the typical 3D size of objects that can be manipulated. The
maximization scheme is iterative and relies on initial center point estimates. As
such estimates we use the hypotheses from the attentional system. Examples of
segmentation results using this approach can be seen in the second row of Fig.
10.

One major drawback of the mean shift algorithm is the fact that an object
can not be reliably segregated from the surface it is placed on, if there is no
evidence supporting such a segregation. Without any additional assumption on
surface shape or appearance there is no way of telling the surface from the object.
However, in many practical scenarios (including ours) it might be known to the
robotic system that objects of interest can in fact be expected to be located on
flat surfaces, such as table tops.

5.1.2 With Table Plane Assumption.

We therefore complement our approach with a table plane assumption. Using a
well-textured surface, it is possible to find the main plane and cut it with a 3D
version of the Hough transform as in [32]. Following the table assumption the
3D points are mapped onto a 2D grid to easily find segments and basic shape
attributes.

The result of transformation and clipping on the scene given in Fig. 9(a)
can be seen in Fig. 9(b). The segmentation of objects is computed on the
2D grid (Fig. 9(c)) with a simple region growing algorithm grouping pixels
into larger regions by expanding them bottom up. Since the grid is thereby
segmented, simple shape-based attributes of each segment can be determined
and the segments reprojected to 3D points or to the image plane (illustrated in
Fig. 9(d)) 1.

5.2 Associated attributes

The produced segments are just things [32], as the step to an object longs for
semantics. One way to identify the semantics of a thing in order to derive an ob-
ject is to associate attributes to it. The attributes can be of two kinds, intrinsic
and extrinsic. Intrinsic attributes are object-centered and thereby theoretically
viewpoint-independent (e.g. shape, color, mass). Extrinsic attributes describe
the viewpoint-dependent state of an object (e.g. position, orientation), which
mostly is measured in the quantitative domain. In our system, the basic intrinsic

1 Note that dilation has been applied for the reprojected segments for the later application of
point-based object hypotheses verification. The dilation, the grid approach, as also noisy and
incomplete data from stereo cause that reprojections are often little larger or not completely
covering the bodies.
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(a) Stereo images (b) 3D points (c) 2D segmentation (d) Reprojection
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Fig. 9: Segmentation using the table plane assumption. Disparity information
from the stereo images (a) produces 3D points (b). Having defined the
dominant plane, the points can be projected onto this plane, where dis-
tinctive segments are computed (c) and reprojected to the image (d).

(a) (b) (c) (d) (e) (f)

Fig. 10: Sample scenario segmentations (best viewed in color). Original images
are shown in the first row. The second row shows results using the
Mean Shift segmentation, the bottom row those using the table plane
assumption (mentioned in Section 5.1.2). In the latter, (a) and (b)
seem well segmented and in (c) there is just some noise at the table
edge. Problems arise for (d)-(f): (d) two segments for the car, (e) one
segment for two cans, and (f) the unnoticed dog underneath the giraffe.

attributes of covered area, length (along the dominant axis), width (perpendic-
ular to the dominant axis) and height can be qualitatively determined for each
segment. The discretization, i.e. if an object is small or large in size, is adapted
to our table-top manipulation scenario at hand. Additionally, the centroid po-
sition of a segment is calculated. Its 3D point cloud is kept available for the
subsequent operations, e.g. pose estimation (as we will show later 6.2) or shape
approximation and grasping, as we proposed in [33].

6 Object Manipulation

To achieve real cognitive capabilities, robotic systems have to be able to interact
with their environment. Thus, grasping and manipulating objects is one of the
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basic building blocks of such a system. Compared to humans or primates,
the ability of today’s robotic grippers and hands is surprisingly limited and
their dexterity cannot be compared to human hand capabilities. Contemporary
robotic hands can grasp only a few objects in constricted poses with limited
grasping postures and positions.

Grasping, as a core cognitive capability, has also been posed as one of the
key factors of the evolution of the human brain. This is founded in convergent
findings of brain researchers. For example, 85% of axons in visual cortex do
not come from the retina, but other brain areas including what is thought
to be higher brain regions [73]. Similar findings have been reported for the
connectivity of other brain regions [53]. Recent neuroscientific findings state
that predictions are a primary function of these connections, e.g., [64, 49]. The
human brain, as the example of a truly cognitive system, uses predictions to
focus attention and scale an otherwise too wide space of inputs.

Lately, anatomical and physiological investigations in non human primates,
together with brain imaging studies in humans, have identified important corti-
cal pathways involved in controlling visually guided prehension movements. In
addition, experimental investigations of prehension movements have begun to
identify the sensorimotor transformations and representations that underlie goal
directed action. It has been shown that attentional selection of the action re-
lated aspects of the sensory information is of considerable importance for action
control, [68, 10]. When a grasp is being prepared, the visual system provides in-
formation about the egocentric location of the object, its orientation, form, size,
and the relevant environment. Attention is particularly important for creating
a dynamic representation of peripersonal space relevant for the specific tasks.

Regarding implementation on robots, grasp modeling and planning is diffi-
cult due to the large search space resulting from all possible hand configurations,
grasp types, and object properties that occur in regular environments. The dom-
inant approach to this problem has been the model based paradigm, in which all
the components of the problem (object, surfaces, contacts, forces) are modeled
according to physical laws. The research is then focused on grasp analysis, the
study of the physical properties of a given grasp; and grasp synthesis, the com-
putation of grasps that meet certain desirable properties, [71, 2, 56, 14, 61, 8, 54].
More recently, it has been proposed to use vision as a solution to obtain the
lacking information about object shapes or to use contact information to explore
the object [51, 61, 41, 29, 13]. Another trend has focused on the use of machine
learning approaches to determine the relevant features that indicate a successful
grasp [50, 12, 37]. Finally, there have been efforts to use human demonstrations
for learning grasp tasks [17].

One of the unsolved problems in robot grasping is the execution of grasps
for novel objects in unstructured scenarios. For general settings, manipulation
of unknown objects has almost not been pursued in the literature and it is
commonly assumed that objects are easy to segment from the background. In
the reminder of this section, we concentrate on an example of how the visual
system presented so far can be used to provide grasping hypothesis for objects
for which the identity/geometry is not known in advance. We acknowledge that
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Fig. 11: The robotic platform used for embodiment of our system. The KUKA-
arm with the mounted BarrettHand is calibrated so that the coordinate
transform between it and the Armar-III head is known.

this approach is not valid in all situations. Rather, it is one of the possible
avenues regarding object grasping. Our more recent work studies the problem
of integrating human demonstrations and corrective movement control for closed
loop grasping.

6.1 Manipulator: KUKA-arm, Barrett-hand, Tactile sensors

The robotic platform that we use for object manipulation consist of the Armar-
III humanoid head described in Section 2.1, as well a BH8-series BarrettHand
equipped with tactile sensors, mounted on a KR5 sixx R850 6-DOF robot arm
from KUKA. Fig. 11 shows the setting of the whole platform described here.
The Hand-Eye coordination is done by estimating the transformation between
the coordinate system of the head and the arm (i.e. the hand). The principle,
described in [81, 72], is to drive the manipulator (Arm+Hand) to some known
positions in space, while aiming the camera at a specificc static object whose
3D structure and metric are known. In such cases, for each position, the camera
can estimate its position relative to the object. By repeating this process, one
can estimate the space transformation between the manipulator frame and the
camera’s frame.

The integration of the different parts of this robotic platform is achieved
using a modularized software system; containing interacting modules for frame
grabbing, camera calibration, visual front end modules (described in Section
2.1), head control, arm control, hand control and sensory reading. Modules
are implemented as CORBA processes that run concurrently and generally on
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Fig. 12: Left) A left manipulation camera image, Middle) The corresponding
disparity map, Right) Segmentation from mean shift in 3D space.

different machines.

6.2 Model-free manipulation

In general, we will not have a precise geometrical model for all objects the robot
is supposed manipulate. However, one can assume that the relation between
the manipulation cameras and arm is approximately known. The manipulated
objects are further known in terms of their intrinsic attribute lists and their state
is complemented online with measurements of the extrinsic attributes. These
lists (in particular the intrinsic one) are prepared off line and are part of the
object model. For more details regarding these lists see [32].

6.2.1 Finding the orientation

In the current system, an object is commonly grasped along the normal of the
plane on which they are. The reason for this is that the KUKA-arm is placed
on a height of 50 cm (base height) and manipulating objects on a table height is
restricted due to singularities. Even if the presented approach does not require
the identity of the object to be known, it can be useful in order to make sure
that the object is standing upright. Using the knowledge of the identity we can
determine a suitable grasp incorporating the size and the shape of the object.
Before the 3D position of an object, as well as its orientation can be determined,
it has to be segmented from its surrounding, which in our system is done using
a dense disparity map as explained in Section 5, and exemplified by the images
in Fig. 12.

Given the segmentation (with table-plane assumption), and 3D coordinates,
a plane is mapped to the 3D coordinates of all points within the segmented ob-
ject. Since only points oriented toward the cameras are seen, the calculated ori-
entation tends to be somewhat biased toward fronto-parallel solutions. However,
the BarrettHand is able to tolerate some deviations from a perfectly estimated
orientation. With the 3D points denoted by Xi = (Xi, Yi, Zi)�, we iteratively
determine the orientation of a dominating plane using a robust M-estimator.
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The normal of the plane at iteration k is given by the least eigenvector ck of

Ck =
∑

i

ωi,k(Xi − X̄k)(Xi − X̄k)�, (3)

where the weighted mean position is X̄k. Points away from the surface are
suppressed through the weights

ωi,k = t2/(t2 + δ2
i,k), (4)

where δi,k = c�k−1(Xi − X̄) is the distance from the point Xi to the plane of
the previous iteration. Here t is a constant reflecting the acceptable variation
in flatness of the surface and is set to about a centimeter.
More details on the implementation can be found in [41, 40].

7 Experimental Results

7.1 Top-down and Bottom-up attention

As described in Section 4, our attentional model consists of three main modules:

• The optimization of Top-down weights (offline)

• The Neural Network which associates context and weight (online)

• The dynamical combination of SMBU and SMTD

Correspondingly, the experiments presented below are divided to show how these
different modules affect the performance of the model. We present results from
the experiments on the contextual learning, since it is the most crucial part for
our visual search tasks. To the left in Fig. 13, a set of 10 objects used in the
experiments are shown. These are all associated with a set of intrinsic attributes
consisting of 3D size, appearance (SIFT and color based) and possible grasps
given a certain orientation. The graph to the right shows the Top-down (TD)
weights deduced for the four cues from one particular image. The cues with
high weights for most materials are color and texture. Note, also, that some
cues are almost completely suppressed on some objects. Weight optimization
was done for each object. The resulting set of triplets {ROI, ω̄opt, ᾱ} were used
for training the neural networks (NN).

7.1.1 Weight optimization

It is important to understand that, even if one may reach a global minimum in
the weight optimization (given the error function defined earlier), it does not
necessarily mean that our Top-down map is “perfect” (like it is in Fig. 14). In
fact, the Top-down map may not rank the correct ROI the highest, in spite of
eROI(ω̄) being at its global minimum for that specific image and object. What
this means is that for some objects min[eROI(ω̄opt)] �= 0, or simply that our
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Fig. 13: A set of objects used for experiments (left) and the four TD-weights
ω̄I , ω̄O, ω̄C , ω̄T for each object in one particular image (right).

optimization method failed to find a proper set of weights the Top-down map
at the desired location, as in the example Fig. 15.

Another observation worth mentioning is the fact that there may be several
global optima in weight space each resulting in different Top-down maps. For
example, even if there exists many linear independent weight vectors ω̄i for
which eROI(ω̄i) = 0, the Top-down maps SMTD(ω̄i) will in general be different
from one another (with different ECSI -measure).

7.1.2 ANN training

When performing the pattern association (equivalent with context learning) on
the Neural Network it is important that the training data is “pure”. This means
that only training data that gives the best desired result should be included.
Thus only examples {ROI, ω̄opt, ᾱ} where eROI(ω̄opt) = 0 were used. To exam-
ine the importance of our context information we created another set of NNs
trained without any input, i.e. simple pattern learning. For the NN calculations
this simply leads to an averaging network over the training set {ROI, ω̄opt}.
Quantitative results of these experiments are shown in Fig. 16. Results using
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Fig. 14: An example of successful optimization; the ROI is marked in the left
image. Without optimization (unitary weights) the saliency map is
purely Bottom-up (middle). However, an optimization that minimizes
eROI(ω̄) (in this case to 0) the optimal weight vector ω̄opt clearly ranks
the ROI as the best hypothesis of the Top-down map (right).

Fig. 15: An example of poor optimization; although the optimization may reach
a global minimum for eROI(ω̄) (in this case >0) the optimal weight
vector ω̄opt doesn’t rank the ROI as the best hypothesis of the Top-
down map (right).

optimized weights (last row) in some sense represent the best performance pos-
sible, whereas searches using only the Bottom-up map perform the worst. One
can also observe the effect of averaging (learning weights without context) over
a large set; you risk to always perform poor, whereas if the set is smaller you
may at least manage to perform well on the test samples that resemble some
few training samples. Each NN had the same structure, based on 13 hidden
neurons, and was trained using the same number of iterations. Since all weights
(11) can be affected by all context components (9) and since each weight can
be increased, decreased or neither, a minimum number of 12 hidden units is
necessary for good learning.

7.2 Multi-cue object detection and hypothesis validation

For object detection a large number of possible methods exist and they all
have their individual characteristics. Unfortunately, there seem to be no single
method suitable for all objects that might be of interest for a robotic system.
Instead one has to rely on combinations of methods. Without providing a exten-
sive study on all possible methods and combinations, we give an example that
shows the benefit of foveated segmentation and multiple cues object recogntion.
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Fig. 16: The estimated accumulated probability of finding the ROI. The results
were averaged over the entire test set of objects(ROI:s). BU is purely
Bottom-up search, NNi(ᾱ) is Top-down search guided by a Neural Net-
work (trained on i% of the training data available) choosing context
dependent weights, and NNi(.) is the same without any context infor-
mation.

Fig. 17: ROC curves for SIFT based (left), color histogram based (middle) and
combined (right) object detection, with (solid) and without (dashed)
foveated segmentation.

´ For this purpose we have selected two methods that show different strengths
and weaknesses. The first method is based on color histograms [24] and the other
on scale and rotation invariant SIFT features [48]. Histogram based methods
can be successfully used for uniformly colored objects without much texture,
but tend to be sensitive to poor segmentations. Feature based method, on the
other hand, work well even in cluttered environments, but break down when
too few features can be extracted due to limited texture. In that sense the two
methods are complementary.

We selected a larger set of 24 objects, similar to those in Fig. 13, and per-
formed 886 object recognition tasks, using images provided in real-time using
the binocular attention system described in earlier sections. The ROC curves in
Fig. 17 illustrate the recognition performance with and without segmentation
for both methods individually, as well as for a combination. The combination
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is done using a binary operator that is learned using a support vector machine
(SVM). For more details we refer to our previous work [7].

Since we are also interested in the manipulation aspect of the object recog-
nition, we would want to combine the results of appearance and shape recogni-
tion2. In other words we try to bind the object identity to its known intrinsic
attributes. This binding serves two purposes: i) it will boost the recognition
rate by disregarding more false positives, ii) it will allow for substitution of ob-
jects with other ”‘visually similar”’ objects. This opens up for broader Object-
Action-Complex (OAC) categorization of objects and is discussed further in [32]
as well as [9]. Since ”‘Actions”’ in this paper implies possible (stable) grasps,
this binding of identity with intrinsic attributes leads to a scenario where ob-
jects that resemble eachother (in appearance and shape) might be manipulated
similarly.

7.3 Object Grasping - an example

Several experiments were performed on the robotic platform described in Section
6.1. The overall performance of the platform was qualitatively evaluated in a
tabletop scenario. The goal for the robot was to find a desired object (or object
type) and move it to a predefined location.

The specific task for the robot was to find certain objects and move them
onto another table. This high-level task can be broken down into a couple of
sub-tasks. The first sub-task is to find the object of interest. Here the attention
system was tuned by our NN, that selected appropriate weights for the SMTD

based on task (i.e. object) and context (scene). That gave us hypotheses of
where the object of interest might be. Fig. 18 shows two such examples of
SMTD when searching for the ’UncleBen’ object and the ’yellowCup’ object,
respectively. Given any of these hypotheses of location, a saccade was per-
formed to redirect the robot’s focus to that particular point in the environment.
Consequently the binocular system tried to fixate on that point by the fixation
mechanisms described earlier.

Next, a segmentation based on disparities, preferably using the table-plane
assumption mentioned in Section 5.1.2, was made on the ”thing” of interest in
that point. These segmentation results can be viewed as the enclosed regions in
the foveal views of the four examples in Fig. 19. One consequence of real world
conditions such as noise, varying illumination etc., is that these segmentations
are far from perfect. However, following the OAC-concept mentioned earlier, it
is not our goal to gather information about the state of the object solely through
vision. Instead we want to complement this sensory information through inter-
actions (manipulations) on the object. Therefore, this imperfection is of minor
importance, if the grasping yields a successful result.

If the segmented region turned out to contain the sought object in terms
of appearance and other intrinsic attributes, the estimated position and orien-
tation were sent to the manipulator. The system then chose an appropriate

2 The notion of shape is here simplified into 3D size, meaning the approximate width,
breadth and height of the object as listed in the intrinsic attribute list.
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Fig. 18: Example with Top-down tuned saliency maps (UncleBens & yellowCup)

Fig. 19: The visual frontend. The top row shows the widefield view where the
visual search selection is made. The bottom row shows the foveal view in
which the binocular segmentation and recognition as well as validation
is done.

manipulation (grasp) based on these intrinsic (identity) and extrinsic (state)
attributes of the the object. In the final step the automatically chosen grasp
was executed on the robotic platform, i.e. the robot arm drove to a location
above the object so that the gripper was able to grasp the object.

A couple of examples of this complete chain are shown in Fig. 20. The
images show the scene before (top rows) and during grasping (bottom rows).
One interesting detail seen in these images, is that when the gripper enters the
foveal view the fixation-loop adapts to its presence and tries to re-fixate on the
point in the center of the image, now being closer to the eyes.

One important detail about this particular implementation is that we have
here not included the Bottom-up cues (SMBU ) nor the temporal linear com-
bination of the two saliency maps. The reason for this is simply that we were
only interested in the Top-down performance of the system. The more dynamic
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combination of the two saliency maps will be further examined in our future
works, where a more ”‘natural”’ environment with clutter and distractors that
might be of importance, will be encountered.

8 Conclusions

The goal for the future development of intelligent, autonomous systems is to
equip them with the ability to achieve cognitive proficiency by acquiring new
knowledge through interaction with the environment and other agents, both
human and artificial. The base for acquiring new knowledge is the existence of
a strong perception-action components where flexible and robust sensing plays
a major role. Visual sensing has during the past few years proven to be the
sensory modality that offers the richest information about the environment.
Despite this it has typically been used for well defined, specific tasks for the
purpose of coping with the complexity and noise effects.

For the past several years, our work has concentrated on the development of
general systems and their applications in navigation and object manipulation
applications. The work presented here is in line with the development of such a
system, except that we have kept our attention on the design and development
of a vision system architecture that allows for more general solutions in service
robot settings.

Our system uses binocular cues extracted from a system that is based on two
sets of cameras: a wide field for attention and a foveal one for recognition and
manipulation. The calibration of the system is performed online and facilitates
the information transfer between the two sets of cameras. The importance
and role of Bottom-up and Top-down attention is also discussed and shown
how biased saliency for visual search tasks can be defined. Here, intensity,
color, orientation and texture cues facilitate the context learning problem. The
attentional system is then complemented with binocular information to make
the system more likely to pop out regions of interest suitable for manipulation.
In relation to manipulation, we show and discuss how the system can be used for
manipulation of objects for which geometrical model is not known in advance.
Here, the primary interest is to pick up an object and retrieve more information
about it by obtaining several new views. Finally, we present experimental results
of each, and give an example of how the system has been used in one of the
object pick-up scenarios.

In the development of a system like this, there is still a long way to go
especially once the system is used for manipulation and robot control. Our
current research concentrates on the evaluation and further development of the
system in more complex manipulation scenarios.
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(Farin)

(Tiger)

(UncleBen)

Fig. 20: Finding and manipulating three different objects. In each of the three
examples, the top row shows the state of the system before grasping
and the bottom row shows the attempted grasp. (Best viewed in color)
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Abstract— Visual search is a common daily human activity,
which is a prerequisite to the interaction with objects encoun-
tered in the environment. Humanoid robots supposed to take
part in human daily life should possess similar capabilities in
terms of representing, recalling and attending to objects of
interest.

In this paper, we introduce the so-called Feature Ego-Sphere
(FES) as scene memory for a multi-view object representation
in a humanoid robot and define associated processes necessary
for the identification of object locations in the scene. The exper-
imental results have been carried out on an active humanoid
head equipped with both, perspective and foveal stereo camera
systems. The perspective view is used to generate hypotheses
of object locations, which are verified by directing the gaze of
the foveal cameras towards potential regions of interest.

I. INTRODUCTION

The object search process is a common daily human
activity. Almost all actions that humans perform rely on
specific items which support the action e.g. as tools. For
example, drinking requires a cup, eating a fork, and writing
requires a pencil. While such an object search task is natural
to humans it is still hard to implement on a technical system.

In the context of human visual perception, the pop-out
effect is a well known phenomenon which supports the guid-
ance of attention towards a specific object within a cluttered
scene. According to [1] and [2], the pop-out is attributed
to the interplay between dorsal and ventral pathways of the
human visual system and is modelled using a blackboard
architecture, which strongly relies on parallel processing and
distributed representations of objects.

For technical systems, the visual search task has often
been formulated as top-down attention guidance. Different
approaches in the literature modulate the output of a bottom-
up attention system using e.g. the feature-gate technique
[3]. While these approaches follow the line of biological
plausible systems it is hard to achieve good results for
arbitrary objects due to the parallel and distributed nature
of the problem.

In this work, we propose an approach which takes into
account the difference between the ”wetware” used for
processing in human brains and the hardware of technical
systems. Instead of successively filtering the visual stimuli
starting with low-level cues as in traditional attention systems
[4], our approach starts with a search for the object in the
scene with coarse features. Using the resulting matches, we
follow a hypothese and test procedure in order to verify the
matches with local, more descriptive features. With this ap-

Fig. 1. The Karlsruhe Head is equipped with a 3DoF active camera system
and offers one perspective and one foveal camera pair.

proach it is possible to decompose the required search space
and reduce the computational complexity of the problem.

The goal of our work is to equip a humanoid robot with
the ability to identify known objects, which have previously
been acquired by the robot itself. The approach of acquisition
on the system has a multitude of advantages. First, online
acquisition allows the robot to explore its environment in
order to incrementally acquire world knowledge. Second, the
approach produces representations within the sensor space
of the system. This makes them easy to apply in perceptual
processes. While such representations usually combine infor-
mation from different senses (e.g. haptics, auditory system,
vision), we currently only consider visual information, since
it can be acquired on the system [5]. Objects in the system are
represented using a multi-view appearance-based description.
This allows the localization of objects from all viewpoints,
as necessary in natural tasks. In the current state 3D shape
information is not considered, since the acquisition of shape
is mainly achieved using the haptic system and is still hard
to be acquired online.

In order to store the object information from the current
scene as collected during the object search process, a scene
memory is required. In the following we propose a scene
memory which assures the persistence and consistence of
already acquired information about the scene. As will be
shown, the scene memory allows for the integration of



multiple hypotheses based on spatial coherence, which makes
the search task more robust.

The target platform for our experiments is the Karlsruhe
Humanoid Head [6]. As shown in Fig. 1, the head provides
two pairs of active stereo cameras. One pair with wide angle
lenses for perspective views and one pair using a small angle
of view, which allows a more detailed visual inspection
and resembles the fovea of the human visual system. The
proposed system uses both camera systems to actively an-
alyze the current scene. Hypotheses of object locations are
extracted in the perspective view using coarse descriptors
of the object’s appearance. Based on the hypotheses, eye
movements are executed to direct the gaze of the foveal
cameras to the corresponding location and to verify the
hypotheses using more detailed features.

With the availability of the necessary technical systems,
a large number of capable vision systems for humanoid
robots has been presented the last years. The proposed
approach stands in a line with systems that exploit the
use of foveated vision. In [7], the authors present a vision
system which integrates foveal and perspective information
on a humanoid robot. Object detection is performed in the
perspective image. Once a known object is detected, the
gaze of the foveal camera is directed towards the object for
recognition using a PCA-based approach. Once the object is
recognized, the robot points its hand towards the object. The
system proposed in [8] can be considered as state-of-the-art
in this field. The authors make use of the perspective cameras
to calculate hypothetical locations in the scene for a given
object using its 3D size and hue cues. The gaze of the foveal
camera is directed towards the hypotheses in order to perform
recognition using SIFT features. Furthermore, segmentation
on basis of disparity maps is performed. The system works
in real-time and takes into account multiple canonical views
of objects. The authors also perform experiments which
motivate the use of foveal cameras for the recognition task.

The approach proposed in this paper makes also use of
the foveal images in order to gain the ability of a more
detailed analysis of hypotheses locations in a scene, as
describe in the above work. Unlike the systems described
above, our approach constructs a consistent and persistent
scene memory during the visual search task, that is constantly
verified and which can be used for successive visual tasks.

II. ACTIVE MULTI-VIEW OBJECT SEARCH

A. System Overview

Fig. 2 illustrates the memories and processes involved in
the object search task. The input of the system consists of
the foveal and perspective camera image pairs as provided
by the Karlsruhe Humanoid Head and the ID of an object
to search for. The search process generates hypotheses for
locations which correspond to the provided object ID and
updates the scene memory accordingly. The attention process
serializes the verification process by guiding the gaze of the
foveal camera pair to salient locations in the scene. Each
new gaze initiates a new process to verify the hypotheses in
the scene memory using the more detailed images from the
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Module

Scene
Memory

Object
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Perspective
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Fig. 2. Overview of the memories and processes involved in the pro-
posed system. The search process generates hypotheses of object locations.
From these hypotheses, the attention and control processes generate a
gaze sequence for the foveal camera pair which is used for subsequent
verification steps. The object database contains appearance based multi-view
representations of acquired objects. The system iteratively assures consistent
and persistent information in the scene memory.

foveal camera pair. The goal of the procedure is to update
the scene memory with consistent and persistent locations
of the searched object in the scene. The information from
the scene memory can then be used for further visual or
interaction tasks.

In the following, we describe the different parts of the
system depicted in Fig. 2.

B. Object Database

The object database contains all object specific informa-
tion which is required during the object search procedure.
As described in section I object search is performed only
on the basis of multiple views of objects, which facilitates
the acquisition on the humanoid robot and thus in the sensor
space defined by the robotic system.

In the current state of the work, the object views are
generated off-line in the object modelling center [9]. The
object modelling center offers a camera pair mounted on a
robotic arm which controls the zenith of the current view and
a turn table which controls the azimuth. The target positions
for recording object views are calculated by subdividing
an icosahedron in two stages, which results in 66 equally
distributed camera positions around the object. Due to the
limits of the robotic arm, the zenith only covers views
between ±75◦.

The collected views are then stored in an aspect graph
representation ([10],[11]). In our system, the aspect graph
is modelled as bidirectional spherical graph which ts of one
node per stored view, where the edges between nodes are
generated using Delaunay triangulation and thus express the
neighbourship of views. The aspect graph serves as basis
for the feature extraction process. For each view, one global
and one local descriptor is extracted and associated to the
corresponding node.

In the current implementation of the system we make
use of color cooccurrence histograms (CCH) [12] as global
descriptors. CCHs offer a description of the object, which
is invariant to the rotation in the viewing plane and robust



towards scaling. Furthermore, they combine texture infor-
mation (in terms of information about pairs of neighbored
pixels) as well as color information. We currently use his-
tograms which cover the hue channel of the HSV image. As
local descriptors we use the scale invariant feature transform
approach (SIFT)[13]. Each SIFT descriptor is stored together
with a reference vector to the origin of the image.

In order to reduce the size of required memory, features
are clustered into similar groups using the BIRCH [14]
clustering approach for feature quantization. For this work,
we compared the performance of the BIRCH algorithm with
the Growing Neural Gas (GNG) method which we used
in earlier work [15] and its incremental version IGNG.
We observed that the BIRCH algorithm produces similar
clustering results as the IGNG with superior efficiency. Both
algorithms support incremental clustering, which is required
to allow the incremental acquisition of object representations.
In contrast to the GNG and IGNG, where the number of
generated clusters depends on the maximum accumulated
error per cluster (see [15]), the BIRCH algorithm produces a
clustering of the feature space which fits into a given amount
of memory.

After feature quantization all cluster centroids are stored
in a feature pool. Furthermore, for each object, a feature
graph is generated which has identical structure as the aspect
graph. The nodes of the feature graph contain references to
the corresponding clusters in the feature pool. The object
database then consists of one feature graph per object and
one feature pool.

The feature pool itself is implemented as a two-level
hierarchical memory. All features are held on disk, while the
memory only contains a limited amount of features. Features
are cached in memory during instantiation and removed from
memory following the least recently used (LRU) strategy.

C. Scene Memory

A visual scene memory is necessary to provide a consistent
visual model of the observed scene. It has been shown
that human perception accumulates such a scene memory
”across separate glances and over time” [16]. In our work, the
scene memory contains information about matches between
searched objects and the current scene associated with spatial
information. These matches are successively verified by
moving the foveal cameras to salient locations in the scene.
Together with the processes specified in sections II-D, II-E
and II-F, the scene memory provides consistent information
about objects and their locations accumulated over time. The
information is constantly verified and is persistently made
available for visual tasks.

The scene memory proposed in this work is constructed
as an ego-sphere. The application of ego-spheres as sensory
memory is usually called Sensory Ego-Sphere (SES). In [17],
the authors introduce the SES as sphere around the so called
ego-center which is typically located in the base coordinate
frame of the robot. The entries in the SES correspond to
sensory stimuli and are stored with 2 1

2D information using
their spherical polar coordinates azimuth (φ), zenith (θ) and

their distance from the ego-center (r), thus forming an ego-
centric representation of the current scene. The SES has
been used in a number of different applications such as
multi-modal bottom-up attention [18] and image mapping
and visual attention [19].

In contrast to the SES, where usually sensory information
is stored, we introduce the Feature Ego-Sphere (FES) as
scene memory. The FES has the structure of an ego-sphere,
however, instead of sensory stimuli as typically stored in the
SES, information about matches between features from the
object database and the current scene are stored as nodes.
Thus, the FES contains the knowledge gathered so far by
comparing stored object representations with the current
scene. Particularly, the FES does not only contain infor-
mation about positive matches, but also retains information
about the falsification of hypotheses.

Despite its function as scene memory, the FES supports
the proposed hypothese and verify approach in different
ways. First it allows the integration of different hypotheses
on a basis of spatial coherence. Neighboured entries in the
FES which describe the same object can be combined to
a common node and thus increase the certainity of the
corresponding match. Second, the FES can be deployed to
generate the necessary attentional shifts required to verify
the hypotheses (see section II-F).

The FES memory structure offers two different types of
nodes which are motivated by the hypothese and verify
approach for object search:

• hypothesis node: In addition to the position ph =
(φ, θ, r), information about the match between searched
features and the object is stored. The hypotheses node
can contain pointers to verify nodes. Hypotheses nodes
are made persistent in the scene memory in order to
allow the search module to detect changes in the scene.

• verify node: A verify node results from the verification
of a node (either verify or hypothesis node). It contains
the verified position pv and information about the match
between verified features and the scene.

The content of the FES is manipulated by two basic
operations:

• addEntry: Adds a hypothesis node to the FES. The node
is only added if there is no similar hypothesis node
already present in the proximity. If there is a hypothesis
node present which contains different data, change is
detected and the hypothesis node is adapted.

• verifyEntry: This operation is called once a node of
the FES has been verified. If the verified node is a
hypothesis node, a new verify node is created and linked
to the hypothesis node. If the verified node is a verify
node, its position and match is updated. If the adaptation
of the position moves the verify node in proximity of
another verify node, both nodes are combined if they
contain similar data.

Hypothesis nodes are generated by the search process (see
section II-D) using the perspective view of the cameras. The
gaze is directed towards salient hypotheses and the verify
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Fig. 3. The spherical WTA network as used to direct the gaze of the robot head. The network consists of the saliency layer (SAL), integration layer (INT)
and inhibition-of-return layer (IOR). The input saliency is generated from nodes of the FES that correspond to the attended object. Leaky integrate-and-fire
neurons in the INT layer initiate an attentional shift once a threshold of activation is reached.

process invalidates or verifies the corresponding nodes using
the foveal camera views. The verification process succes-
sively generates a verify node, if not already present, with
corrected position and links it to the hypothesis. Multiple
verify nodes are combined to one node if they represent
the same object and similar positions. In the course of the
verification process, verify nodes are moved towards valid
object positions in the scene.

D. Search Process

The search process is responsible for the generation of
possible positions accompanied with the quality of the match
given a specific object. As input, the perspective image pair
from the robots camera system and the object ID to search for
are required. In order to determine hypotheses about object
position, the search process requests all CCH clusters as
stored in the feature graph of the corresponding object. The
search is accomplished using an integral images approach.
Object positions are accepted on base of the histogram inter-
section with the database features. 3D positions are generated
using the disparity map calculated on the perspective image
pair.

The resulting hypotheses comprise the position of the
hypotheses and the result of the histogram intersection as
quality of the match. Using the addEntry operation of the
FES (see section II-C) a new hypothesis node is added to
the scene memory if not already present.

E. Attention Process

The attention process determines the sequence for the
verification of the FES content. Two factors influence the
decision which FES nodes to verified next: the quality of
the corresponding match and the elapsed time since the
last verification. Such problems of selective attention can be
solved using a winner-take-all (WTA) network as introduced
in [4].

In order to provide the necessary input for the WTA
network, the FES content is filtered using the object ID of
the currently attended object. From the content of the FES, a
saliency sphere is generated. The saliency sphere represents
a traditional saliency maps on the ego-sphere. Each leaf node
from the FES, which corresponds to the attended object
ID, generates a stimulus represented as 2D gaussian with
amplitude proportional to the stored match quality on the
saliency sphere. Multiple stimuli are combined using a MAX
operator.

The saliency sphere is then used as input for a spherical
implementation of the WTA network. Fig. 3 shows the three
layers of the network. The saliency sphere is modulated with
the feedback from the inhibition of return (IOR) layer in
the SAL layer. The resulting activations are integrated using
leaky integrate-and-fire neurons in the INT layer. Once the
activation of a node in the INT layer exceeds a threshold,
the neuron fires and generates activation in the IOR layer
with 2D gaussian shape. The inverse ouput of the IOR layer
is used as feedback to the SAL and INT layers.

Each time a neuron in the INT layer fires, a new saccadic
eye movement is initiated in order to direct the gaze of
the foveal camera system towards the corresponding FES
entries. For this purpose, all FES nodes which have similar
spherical polar coordinates (θ, φ) are determined and the
gaze is directed towards the closest node (using the third
component r).

F. Verify Process

The verify process is responsible for the constant verifica-
tion of the FES content. Each time the gaze of the robot is
adapted by the attention process, a new verification cycle is
initiated. As input, the detailed foveal views corresponding
to the current gaze are availabe. The verification process
requests all nodes from the FES, which are visible within
the current gaze. Using the match and object ID from the



(a) Example scene setup used for the object search experiments
viewed from the left perspective camera. Two objects were presented
to the system.

(b) Resulting saliency sphere and
foveal view for the soup can search
task.

(c) Resulting saliency sphere and
foveal view for the salt box search
task.

Fig. 4. Results of the object search experiments for two objects.

hypothesis node, the SIFT features for all associated object
views are determined using the feature graph.

The object’s presence is verified by filtering the SIFT
matches using a 2D Hough space and voting for the center of
the object (see [20]). The corresponding match is thresholded
and used to modulate the quality previously associated with
the node.

In order to adapt the position of the object encoded in the
node, the distance of the object locations and the center of the
foveal image of left and right foveal camera is determined.
Since no stereo calibration is available for the foveal cameras,
the current target position for the inverse kinematics of the
perspective cameras (see II-G) is adapted to move the foveal
cameras closer to the object’s position. Note that using this
approach the FES finally contains positions which point the
gaze of the foveal cameras towards the object.

For each verified node the operation verifyEntry of the
FES is called which updates the content of a verify node or
generates a new one.

G. Head Control Module
The head control module is responsible for the generation

of the posture of the head-eye system. There are essentially
two possible strategies to execute the required movements:
closed-loop control and open-loop control. In closed-loop
control, usually visual feedback is used in order to derive
the position error of the eyes iteratively. In contrast open-
loop control does not depend on visual feedback but uses
the kinematic model of the system to determine the desired
posture. Since the target posture in the context of our work is
defined by the spike of a single neuron in the WTA network,
the necessary visual feedback for closed-loop control cannot
be provided.

In order to control the head using the open-loop strategy,
the kinematic model of the head-eye system has to be
determined. Therefore a kinematic calibration process is
performed. We use the approach introduced in [21], which
yields accurate results since it avoids methodical errors

which are usually introduced with the assumption of two
intersecting rotation axes.

The inverse kinematic problem is solved on the basis of the
calibrated kinematic model. Since only eye movements are
used in the system, the problem can be formulated as non-
redundant mapping from 3d Cartesian space to 3D joint angle
space (for more details see [6]). We use the inverse Jacobian
approach to solve for the joint angles of the perspective
camera system. Furthermore, the stereo calibration of the
perspective camera system is available in order to provide
the disparity map required for the search process.

III. EXPERIMENTAL RESULTS

A. Setup

For the experiments presented in this section, five objects
were stored in the object database. The object view acqui-
sition generated 58 views per object covering equidistant
angles in the range of θ = [−75◦; 75◦] and φ = [0◦; 360◦[.
The resulting 290 CCH descriptors used in the search mod-
ule were quantized to 75 cluster centers. In average, each
object view generated about 1700 SIFT descriptors. For the
quantization of SIFT features, 200000 cluster centers were
extracted for the verification process.

The Karlsruhe Humanoid Head was equipped with a pair
of 4mm lenses for the perspective cameras and 12mm lenses
for the foveal cameras. For the experiments the objects were
positioned in about 1m distance of the head.

B. Experiment I: Object Search Task

The task in the first experiment consisted in a simple
object search. Two objects out of the acquired object set
were presented in front of a non-uniform background. An
example input scene is depicted in Fig. 4(a).

In seperate search tasks each of the two objects from the
input scene was enquired. Fig. 4(b) shows the results of
the search for the soup can. The upper image illustrates the
saliency sphere after 22 verifications. All incorrect hypothe-
ses have been eliminated and the correct hypotheses have



(a) Scene setup used for the complex search task. Two instances of
one object are presented to the system in a cluttered scene.

(b) Resulting saliency sphere and foveal views of the left foveal camera.
In the final state, the system focusses alternatingly on the position of
both object instances.

Fig. 5. Results of the object search task for two instances in a complex scene.

been fused by the FES to form a combined position estimate
on the saliency sphere. The lower picture in Fig. 4(b) shows
the foveal image of the left camera. Similar results could be
achieved for the salt box (see Fig. 4(c)). The search task for
the salt box could be completed within 9 verification steps.

The number of required verification steps depends on
the number of hypotheses generated by the search process.
Considering the input scene in Fig. 4(a), the salt box has an
outstanding color signature and could be brought into focus
on the first saccade. The remaining 8 verifications adapted
the positions of the verify nodes to a single estimate in the
FES. In contrast, the CCH of the soup can was found in
multiple incorrect image parts as e.g. the robot arm and the
teach box. These spurious hypotheses could be invalidated
by performing additional saccadic eye movements and veri-
fication steps.

The same procedure was performed for all objects in the
object database. Similar results could be achieved with a
mean number of required verifications steps of 17 in order
to retrieve a saliency sphere similar to Fig. 4(b) and Fig. 4(c).

C. Experiment II: Complex Search Task

The goal of the second experiment was to perform a more
complex scenario. The cluttered scene shown in Fig. 5(a)
which contains a large amount of distractor objects was pre-
sented to the system. The task of this experiment consisted in
finding both instances of the cereal box among the distractor
objects.

The system performed a saccade containing 28 verification
steps in order to retrieve the results depicted in Fig. 5(b). Two
locations of high intensity are visible on the saliency sphere,
which correspond to the positions of both object instances.
Despite the two peaks, other local intensity maxima are
visible. These result from unverified hypotheses which lie in
the proximity of highly activated areas. If the activation of
such hypotheses is below a threshold they can be dominated
by the strong stimuli nearby. In order to also remove these

local maximas, the IOR size can be reduces which results in
a prolonged verification procedure. After the 28 iterations,
the gaze alternately focussed the two instances of the cereal
box.

The scene memory generated during the search task is
depicted in Fig. 6. From the initially large amount of hy-
potheses nodes only a small amount could be verified and has
been associated to verify nodes. All other hypotheses nodes
are either invalidated or dominated by a stronger stimulus in
the proximity. The system produced one unique verify node
per instance of the object in the scene.

Instance B

Instance A

Fig. 6. Content of the FES after 28 eye movements and verifications. Both
instances of the searched object have one unique verify node (marked by the
black box), which is supported by multiple hypotheses nodes (associations
marked with dotted line). For each hypotheses node the connection to the
ego-center is drawn.

D. Discussion

For the experiments we abstain from giving recognition
rates of the system since the object search performance
directly depends on the object to find in the search task.



Because the approach relies on CCH and SIFT features, it is
limited to objects and object views which exhibit properties
that allow a robust representation with the considered de-
scriptors. The CCH implementation using the hue channel
cannot handle object views that contain black and white
in major parts. This results from the fact that black and
white do not have a unique representation in HSV color
space. Furthermore, lighting is an issue when using color
descriptors. The experiments were carried out using natural
lighting conditions with variations during the day. Reducing
the threshold for CCH matching allowed to account for
small changes in ambient lighting, but increased the number
of invalid hypotheses produced during the search process.
Since the verification process is not that critical concerning
lighting, good results could still be achieved.

To provide good verification performance using SIFT
features, enough texture has to be present on the object
in order to provide the necessary number of corner points.
Whereas logos and picture printed on the objects provide
good features, small written text is usually not covered by
the SIFT descriptor. In our database the short side views of
the objects usually contained text and large white areas and
thus could not be consistently identified. For other views,
e.g. as presented in the previous sections, the results could
be reproduced consistently.

The proposed system currently runs on a single core 3.0
GHz linux PC. Each verification step took about 20 seconds.
We did not use an optimized implementation of the feature
matching process. The approach is intended and already
prepared to run on our vision cluster which comprises 6 IBM
eServer connected via Ethernet. We expect that by means
of optimization and cluster implementation we will reach a
verification run-time of less then 1 second.

IV. CONCLUSIONS

In this work we presented an approach which provides
persistent and consistent information about object locations
resulting from an object search task. The FES datastructure
and associated processes were introduced as scene memory,
the necessary processes and modules required to perform
a visual object search task were presented and discussed.
Experiments comprising the search for one object at a time
and the search for multiple instances of an object in cluttered
scenes were carried out and discussed.

The results show that even for complex tasks the proposed
hypothese and verify approach is able to identify the object
locations by actively analyzing the scene.
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