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Introduction

Deliverable D3.1.4, Advances of human upper body and human grasp action representation,
is concerned with two aims:

1. to become able to identify human upper body movements and actions which may
include objects. Examples of such movements are humans pointing at objects or
humans grasping objects.

2. to become able to synthesize actions based on those seen before.

These two objectives have been the base line for workpackage WP3 since the start of
the project.

While deliverable D3.2.3 focuses on a representation of grasps and arm actions based
on which recognition can be performed, this deliverable D.3.1.4 investigates a higher
abstraction of arm movements and grasps. In other words, D3.2.3. is concerned with the
signal level of the action and grasp representation while deliverable D3.1.4 is concerned
with the symbolic representation of action.

The use of a symbolic representation of action has several advantages:

1. the symbolic representation becomes in general independent from the embodiment
and we become able to use terms like reach out, grasp object, move object while the
actual definition of what grasp object or reach out means is dealt with on a different
level, e.g., with the techniques described in D3.2.3.

2. It has been pointed out at several occasions (see appended paper) that the symbolic
level improves recognition done on the signal level. The signal level is able to provide
a statistical likelihood of a visual observation being a certain action. Since actions
never appear in isolation but in sequences and even larger contexts the symbolic level
is able to improve and refine the belief coming from the visual input. In statistical
terms, with the symbolic level we become able to exploit the higher order Markov
properties of actions while on the signal level, the possibilities of using higher order
Markov properties are limited (1st order Markov properties are used in most cases)!.

3. the symbolic level allows planning of actions based on the known actions using, e.g.,
a classic STRIPS planner.

One major difficulty in using a higher abstraction for recognition is to tie the signal
level to the symbol level. Given the representation of signals, e.g., a visual representations
of human grasps and arm movements, the problem is how to identify the necessary symbols
that capture the “meaning” of the underlying signal information. The term meaning is
put in quotes because the meaning does not arise per se but is usually provided by a
human supervisor when tying portions of the signals to symbols such as reach out or
grasp (as done, e.g., in [2]).

In this deliverable, we have developed and tested a statistical learning approach that
allows a) to replace a human supervisor through a non-supervised learning approach and
b) to automatically generate a stochastic context free grammar based on which recognition
(parsing) and synthesis can be done.

Lwe omit most references here as all necessary references are found in the appended paper



Based on a set of observed actions, the approach is able to identify correlations between
these movements which then constitute a symbol. The Kullback-Leibler divergence is
used as the criteria to decide when two movements parts constitute the same or different
symbols.

The learning approach has been applied on a scenario that is typical for this project
and that has been used already within the earlier work by Vicente et al. [2] (see also
deliverable D3.2.1). An interesting observation is that based on the statistics of the
observed actions, our approach recovers primitives that show a strong correlation to those
defined by hand in [2].

The appended paper [1] will be submitted to the Int. Journal on Advanced Robotics.

Attached Documents

[1] Sanmohan, V. Krueger, D. Kragic, and H. Krellstroem. Primitive based action repre-
sentation and recognition. Advanced Robotics, 2009. to be submitted.
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[2] I. S. Vicente, V. Kyrki, and D. Kragic. Action recognition and understanding through
motor primitives. Advanced Robotics, 21:1687-1707, 2007.
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Primitive based action representation and
recognition

Sanmohan', Volker Kriiger’, Danica Kragic!, Hedvig Kjellstrom?

Abstract—We investigate modeling and recognition of
arm manipulation actions at different levels of complexity.
Motivated by the good recognition results using manually
segmented primitives we automate the manual process
of action primitive detection and present a sequential
learning algorithm that allows a non-supervised detection
of the action primitives. We also generate an action
grammar based on these primitives. Here, we assume no
prior knowledge on primitives but look for correlating
segments across various sequences. All actions are then
modeled within a single HMMs whose structure is learned
incrementally as new data is observed.

Index Terms—Imitation learning, high level event and
activity understanding, generative and discriminative mod-
els .

I. INTRODUCTION

A standard approach in teaching tasks such as
robot arm movements to a robot, is to store complete
arm movement that are to be executed by the robot.
For complex tasks an entire library of specific arm
movement may be required. Humanoid robots, that
are required to interact with humans need to have
the ability to a) recognize human movements in
order to react to them and/or learn to perform tasks
from human demonstration and b) cope possibly
with complex human environments by way of adapt-
ing their movements [ 1], [2], [3], [4], [5], [6].

One way for humanoid robots to recognize a
human movement is to find in the library the move-
ment model that explains the observed movement
best. However, for large libraries this becomes very
unrobust in terms of recognition rate and very inef-
fective in terms of computation time. Concerning
the ability to adapt the movements, the robot is

tComputer Vision and Machine Intelligence Lab, Copenhagen
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limited to choose a predefined movement from its
library.

An alternative to storing a predefined and com-
plete movement library is to break down the library
movements into their common pieces and to repre-
sent the movements instead in a grammatical man-
ner, with the common movement primitives as the
grammar symbols. In linguistics [7] and computer
vision [&] this has been proven to an effective ap-
proach for recognition, both in terms of recognition
performance and computational efficiency. Similar
results were recently shown in robotics [9] where
the Vicente et al. compared the use of a movement
library with a more grammatical-like representation.

A grammatical representation of actions has the
further advantage of allowing to re-combine the
grammatical symbols through planning strategies
[10] and thus allowing the robot to adapt to new
situations and even develop new movements based
on new re-combinations of the available set of
available movement primitives, an issue that was
also discussed in [9].

A common problem in using a grammatical rep-
resentation is the definition of a proper set of
primitives. All above mentioned works [7], [8], [Y]
rely on hand-selecting the primitives. In this paper,
we present a systematic approach for finding the
primitives for the robotics scenario presented in [9]
automatically.

In Sec. II we give a summary of the work
by Vicente et al [9] which could be considered
as the starting point of our work. In [9], motion
trajectories are segmented in a supervised manner
and the resulting primitives are modeled with an
hidden Markov model (HMM). The observed su-
periority of recognition rates [7], [8], [9] and the
ability to model unknown actions with primitives
motivates the search for an unsupervised method
for trajectory segmentation and modeling. This is in
detail explained in Sec. III. We base our approach



on hidden HMMs, and we use a model merging
technique to build a model and segment trajectories
into primitives. In this way, we arrive at a single
HMM which is similar to the one in the supervised
learning scenario in [9]. We further learn a stochas-
tic context free grammar for the primitives we have
found.

II. PREVIOUS WORK

Our work is an enhancement to the work done in
[9]. Hence we start with a brief overview of [9] so
that we could compare the works easily.

The results of [9] are a study of modeling and
understanding of manipulation actions performed
by humans on a table top scenario. Five actions
are considered: a) pick up an object from a table,
b) rotate an object on a table, c) push an object
forward, d) push an object to the side, and e) move
an object to the side by picking it up.

Each action is performed in 12 different con-
ditions: Objects placed on two different heights
and two different locations on the table, and the
demonstrator stand in three different locations (O,
30, 60 degrees). All the actions are demonstrated
by 10 different people.

Fig. 1: (left): HMM model I with actions as primi-
tives; (right): HMM II with composite actions.

Four sensors are attached to each person and
their positions in 3D coordinates are measured. The
sensors are located on: a) chest, b) back of hand, ¢)
thumb, and d) index finger. The measurements from
chest sensor is used to provide a reference to the
demonstrator position while the sensor at the back
of the hand is used as a reference for the thumb
and index finger. The raw measurements are then
preprocessed and the following 12 measurements
are used for experiments:

« position of the hand relative to the chest
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HMM pf ps r g m

pf 87.50 4.17 0.00 4.17 4.17

ps 8.33 48.33 2.50 3.33 37.5

r 0.83 2.5 95 1.67 0.00

g 5.83 10 9.17 52.5 225

m 1.67 24.17 4.17 2.5 67.5
TABLE I: Approach 1. Actions as primitives.

Results of using HMM model 1. Correct results are
given on the diagonal.

o position of the index finger and the thumb
relative to the hand
« velocity of the hand

Primitives are manually extracted from the data and
two different HMM structures are considered for
modeling the actions which are shown in Fig. 1 and
their results are compared. In the first model the
primitives are grasp(g), rotate(r), push forward(ps),
push side(ps), move side(m), approach and remove.
In the second model, the grasping part of rotate
and move side primitives were considered as
separate primitives. SVMs are used to recognize
the primitives and the outcome of SVMs are then
fed into the HMM used for modeling the actions.
Using the outcome of SVMs as observations, the
HMM parameters are learned through standard
Baum-Welch algorithm.

The results of using Model I is presented in
Tab.l. The entries on the diagonal shows the correct
recognition rates. In this model individual primitives
did not yield good results due to their high overlap.

In HMM model II , the common parts are kept as
a separate primitive as shown in Fig. 1 on the right.
This way of representation will give the primitives
a semantic meaning as well. One new state, remove
with object, was introduced to show that the end
state is different from other cases . Each person is
holding the object at the end only for the grasp
action.

Tab. II presents the recognition results by the
HMM where the numbers on the diagonal give the
correct recognition rate. The results of recognizing
grasp and move have increased significantly.



HMM pf ps r g m
pf 85 7.5 5 0.83 1.67
ps 9.17 47.5 4.17 2.5 36.67

r 0 0 92.5 0 7.5
g 4.17 7.5 10.83 72.5 5
m 1.67 10 6.67 0 81.67

TABLE II: Hmm classification results using Model
II

A. Discussion

We could see the work of [9] as an extensive
study on the modeling of the manipulation actions,
which have the characteristic of being very similar
to each other. The most important findings of their
experiments could be stated as: a) sequences of
simple semantic primitives can be used in describing
actions, and b) actions learned as sequences of prim-
itives from other demonstrators can be combined
with knowledge of personal primitives to recognize
new actions.

III. AUTOMATIC SEGMENTATION OF PRIMITIVES

From the discussions above we can see that an
efficient model could be made if we have the prim-
itives at hand. Thus, it is desired to have a mech-
anism to detect the primitives automatically from
action sequences. We note from the previous section
that we had two types of primitives: primitives
that were unique to an action and primitives that
were common to more than one action. Thus our
hypothesis is that if we segment action sequences
into parts that are common across more than one
action and parts that are unique to each of the
actions, we will arrive at a set of action primitives
that can be used for recognition as discussed in
the previous section. We therefore formalize our
problem of primitive segmentation as follows:

We define two sets of primitives. One set contains
parts that are unique to one fype of action and
another set that contains parts that are common to
more than one fype of action. Two sequences are
of the same fype if they do not differ significantly,
e.g., two different walking paths. Hence we attempt
to segment sequences into parts that are common
across sequences types and parts that are not shared.
Then, each sequence will be a combination of these
segments. We also want to generate rules that gov-
ern the interaction among the primitives. Keeping
this in mind we state our objectives as:

102

1) Let £ = {X;,X5,---,X,,} be a set of
data sequences where each X; is of the form
zixy--- ok and 25 € R™ . Let these ob-
servations be generated from a finite set of
sources (or states) S = {si, 52, --s,.}. Let
S; = sish--- 7, be the state sequence asso-
ciated with X;. Find a partition S’ of the set
of states S where S’ = AU B such that 4 =
{a1,as, -+ ,a;} and B = {by, b, -+ ,b;} are
sets of state subsequences of X;’s and each
of the a;’s appear in more than one state
sequence and each of the b;’s appear in ex-
actly one of the state sequence. The set A
corresponds to common actions and the set B
correspond to unique parts.

2) Generate a grammar with elements of S’ as
symbols which will generate primitive se-
quences that match with the data sequences.

A. Outline of our Approach

We approach the problem by building a model
that will generate the first data sequence that we
encounter and check if the upcoming data sequences
could have been generated from the constructed
model. If not, modify the model to accommodate
the newly observed data sequence. We continue
this until we are able to a create a single model
that is capable of generating all the data sequences.
In our case, we make a single hidden Markov
model that will generate all the data sequences
(explained in Sec. III-B-III-B3). Then by examining
the sequence of states the observation sequences
are going through, the common states are identified.
States(or sequence of states) common to sequences
are separated out to form A and the remaining
contiguous states make the set 3 which were defined
in Sec. III. Creation of the sets A and B is explained
in Sec. III-C.

B. Modeling the Observation Sequences.

1) Modeling the First Sequence: Let X, be the
first sequence with data points z{xj - - - x},. Since
we have just one data sequence to start with, we
generate a few more spurious sequences of the
same type by adding Gaussian noise to it. Then we
choose (p},0}), i =1,2,..k1 so that parts of the
data sequence are from N (), ¥}) in that order. The
value of k1 is such that N'(u},2}), i =1,2,..k1

will cover the whole data. This value is not chosen



before hand and varies with the variation and
length of the data.

The next step is to make an HMM )\, =
(A1, B1,71) with k1 states where k1 is the number
of Gaussians needed to cover X;. We let Al to
be a left-right transition matrix and Bl,(z) =
N (x, p5,37). All the states at this stage get a label 1
to indicate that they are part of sequence type 1. We
require this information to link final primitives with
different types of sequences and also for generating
a grammar for primitives.

2) Modeling the rest of the data: Let n — 1 be
the number of types of data sequences we have
seen so far. Let X. be the next data sequence
to be processed. Calculate P(X.|\y/) where Ay
is the current model at hand. If we get a high
value for P(X.|Ay/) it indicates that \,; models
sequences of type X. well, and so we proceed to
the next data sequence. A low value for P(X.|\y)
indicates that the current model is not good enough
to model the data sequences of type X, and hence
we make a new HMM ). for X, as described in
Sec. III-B1. The newly constructed HMM A\, will
be used to modify \j; so that the updated A\,; will
be able to generate data sequences of type X.. The
modification procedure of \j; using \. is described
in Sec. I[II-B3. We increase the number of types of
data sequences by one at this stage. All the states
in X, will be labeled n.

We might get a high value for P(Xy|\y) for
a new data sequence which has no unique part of
its own but is part of several different types of
data sequences we have seen so far. We resolve
this by making use of the state labeling we have
performed during the modeling. Whenever we get
a high value for P(Ly|\y) we look at the Viterbi
path of the data sequence and examine the labels
of the state sequence. If it is a new type then then
there will be two states whose labels have empty
intersection. In that case we increase the number
of types of data sequences by one and append the
new type number to each of the states it is passing
through.

3) Merging of similar states: This section ex-
plains the most important part of our method:
modifying the existing model to generate a newly
observed type of data. We do this by adding new
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states or by modifying existing states.

Suppose we want to merge A, into \); where
A 18 the current model so that P(Xg|Ay) is high
if P(Xy|\.) . We do this by adding states to Ay,
from A. or by merging states of A\, with states
of A\.. Let C. = {Sc1,8¢2, *,Sa} and Cy =
{sn1, Sm2, -+, san} be the set of states of A, and
Ay respectively. Then the state set of the modified
Ay will be Cyy U Dy where Dy C C.. Each of the
states s.; in A, affects Ay, in one of the following
ways:

1) If d(sei,smj) < 6,for some p € {1,2,---1},

then s.; and s;;; will be merged into a single
state. Here d is a distance measure and 6
is a threshold value. The output probability
distribution associated with s,;; is modified to
be a combination of the existing distribution
and V¥, (x). Thus o™y ;(x) is a mixture of
Gaussians. We append n to the label of the
state sp7;. All transitions to s.; are redirected
to spz; and all transitions from s.; will now
be from sy;.

2) If d(sei, spry) > 6 f.a. j, a new state is added
to Ay i.e. S;; € Dy. Let s,; be the r'* state to
be added from A.. Then, s, will become the
(M1+7)™ state of \;. The output probability
distribution associated with this new state in
Ays will be the same as it was in A.. Hence
onge(x) = Nz, ps,,, Xs,,) - Initial and
transition probabilities of \,; are adjusted to
accommodate this new state. The newly added
state will keep its label n.

We use Kullback-Leibler Divergence to calculate
the distance between states. The K-L divergence
from N (z, p10,20) to N(x,p1,%;) has a closed
form solution given by :

Dk (Q||P) = % <log [ + tr(El_lEo))

|20

1 _

T3 (1 = p0) ™27 (111 — o) — )

ey
Here n is the dimension of the space spanned by
the random variable .

Now we elaborate more on the addition and
merging of states into the combined model. Our
aim is to make the new model compatible with
the newly observed type of data sequences. Since
the states are probability distributions, if we see
that two probability distributions corresponding to



different states are very close we do not need to
keep them apart. Keeping these two states together
will help us to model the observations generated
from two distributions by a single one. We use (1)
to compute the similarity measure of two states.
We can observe that (1) will not handle mixture
of Gaussians. We still use this equation to evaluate
component wise distances in mixtures and check if
any of the components are close to the distribution
we are testing. We justify this criteria since our aim
is to find out if a new state is to be embedded into
another state or not.

C. Finding Primitives

Primitive searching starts when we have
processed all the available data sequences. Now
using Viterbi algorithm on the final merged model
Ay, the hidden states associated with each of
the sequences are generated. Let Py, P, --- P,
be different Viterbi paths at this stage. Since we
want the common states that are contiguous across
state sequences, it is similar to finding the longest
common substring(LCS) problem. We take all
paths with non-empty intersection and find the
largest common substring a; for them. Then, a; is
added to A and is replaced with an empty string in
all the occurrences of a;, in P;, 1 =1,2,---r. We
continue to look for largest common substings until
we get an empty string as the common substring
for any two paths. Thus, we end up with new paths

P}, --- P/ where each P/ consists of one or

T 7
more segments with empty string as the separator'.
These remaining segments in each P/ are unique
to F;. Each of them are also primitives and form
the members of the set B. Our objective was to

find these two sets A and B as was stated in Sec. I11.

We also note that the computational complexity
of calculating the longest common subsequence
between two sequences of length 7; and 7j is
O(T; + T}). Hence primitive finding is solvable in
linear time.

D. Generating the grammar for primitives
Let 8" = {c1,¢2,---¢,} be the set of primitives
available to us. We wish to generate rules of the

'The segmentation is caused by the gaps produced by the removal
of elements of A.
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Fig. 2: Directed graph for finding the grammar

form P(c¢; — ¢;) which will give the likelihood of
occurrence of the primitive ¢; followed by primitive
c;. We do this by constructing a directed graph G
which encodes the relations between the primitives.
Using G we will derive a formal grammar for the
elements in S’.

Let n be the number of types of data that we
have processed. Then, each of the states in our
final HMM \,, will have labels from a subset of
{1,2,--- ,n}, see Fig. 2. By way of definition each
of the states that belong to a primitive ¢; will have
the same label set [“. Let £ = {l1,lo--- ,[,} p>n
be the set of different type of labels received by
the primitives. Let G = (V, F) be a directed graph
where V' = & and e;; = (¢;,¢;) € E if there
is a path P, = ---¢c;j--- for some k. We have
given the directed graph constructed for our test data
described in Sec. III-E2 in Fig. 2.

We proceed to derive an SCFG from the directed
graph G we have constructed. Let N = S’ be the
set of terminals. To each vertex ¢; with an outgoing
edge with label [/, associate a corresponding non-
terminal AL”. Let N = SU{A""”} be the set of all
non-terminals where S is the start symbol. For each
primitive ¢; that occurs at the start of a sequence
and connecting to c¢; define the rule

3

2)
To each of the internal nodes c; with an incoming
edge ¢;; connecting from ¢; and an outgoing edge
e connecting to ¢, define the rule

1€ NI 199 NIk
ALY o AL

Ci

3)



For each leaf node c; with an incoming edge e;;
connecting from ¢; and no outgoing edge define the
rule

1eini®
ch — € . 4)
The symbol € denotes an empty string. We assign
equal probabilities to each of the expansions of a
nonterminal symbol except for the expansion to an
empty string which occurs with probability 1. Thus

1
c”

P(Al” — chlc]f) =

Cq

if [ >0 .(5)

PAY — &) = 1 if |7 =0. ()
where |c§0)| represents the number of outgoing edges
from ¢; and [,,,,, = [~ N{“". Let R be the collection
of all rules given in (2), (3), and (4). For eachr € R
associate a probability P(r) using (5) and (6). Then
(N,8',S,R, P(.)) is the stochastic grammar that
models our primitives.

One might wonder why the HMM \;; is not
enough to describe the grammatical structure of the
observations and why the SCFG is necessary. The
HMM \,; would have been sufficient for a single
observation type. However for several observation
types as in final \,;, regular grammars, as modeled
by HMMs are usually too limited to model the dif-
ferent observation types so that different observation
types can be confused.

E. Experiments

We have run three experiments: In the first ex-
periment we generate a simple data set with very
simple cross-shaped paths. The second experiment
is motivated by the surveillance scenario of Stauffer
and Grimson [ 1] and shows a complex set of paths
as found outside our building. The third experiment
is motivated by the work of Vincente and Kragic
[9] on the recognition of human arm movements.

1) Testing on Simulated Data: We illustrate the
result of testing our method on a set of two se-
quences generated with mouse clicks. The original
data set for testing is shown in Fig. 3. We have
two paths one from A to B and the other from C
to D. These paths intersect in the middle at E. If
we were to remove the points around E we will the
have segments AE, EB, CE and ED. We extracted
these segments with the above mentioned procedure.
The result covering with Gaussians is shown in
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Fig. 4. When the model merging took place, the
overlapping states in the middle were merged into
one. The result is shown in Fig. 5. The primitives
that we get are colored. As one can see in Fig. 5,
primitive b is a common primitive and belongs to
our set A and primitives a, ¢, d and e belong to our
set B.
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Fig. 4: This figure shows the automatically gener-
ated states for the simulated data.

2) 2D-Trajectory Data : The second experiment
was done on a surveillance-type data inspired by
[I1]. The paths represent typical walking paths
outside of our building. In this data there are four
different types of trajectories with heavy overlap,
see Fig. 6. We can also observe that the data is
quite noisy. Fig. 7 shows the result of covering with
Gaussians.
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Fig. 5: The finally detected primitives with different
colors. Primitive b is a common primitive and
belongs to set A, primitives a, ¢, d and e belong
to set B.
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-10 0 10 20 30 40 50 60 70 80 920

Fig. 6: Trajectories from tracking data. Each type
is colored differently. Starting points are A, A, D
and E for red, green, blue and cyan trajectories
respectively. Only a part of the whole data is shown.

The result of primitive segmentation is shown
in Fig. 8 on the right. Different primitives are
colored differently and we have named the prim-
itives with different letters. As one can see, our
approach results in primitives that coincide roughly
with our intuition. Furthermore, our approach is
very robust even with such noisy observations and
lot of overlaps.

It should also be noted at this point that this kind

920

Fig. 7: The results of the covering procedure with
the Gaussian mixtures. The numbers shown are the
state numbers in the final model.

70 T T T T T T T T T

-10
-10 0 10 20 30 40 50 60 70 80 90

Fig. 8: This figure shows the detected primitives.
Each primitive is colored differently and is denoted
by a letter.

of merging will not make the intersection arbitrarily
large. Merging is done only when there is a good
overlap. Also for each new type of sequences, there
cannot be more than one Gaussian that gets merged
into the same state.

3) Hand gesture data: Finally, we have tested
our approach on the dataset described in Sec. II
without annotation. Thus we use only the trajectory
information for the sensors attached to the hand.
The original data is available on line [12]. We
expect to extract a set of primitives so that each of
these sequences can be expressed as a combination
of these primitives. Since each of these sequences
started and ended at the same position, we expect



Fig. 9: The temporal order for primitives of hand
gesture data. Node number corresponds to different
primitives. Multi-colored nodes belong to more than
one action. All actions start with P; and end with
P1.

the primitives that represent the starting and end
positions of actions will be the same across all the
actions.

By applying the techniques described in Sec.
Il to the hand gesture data, we ended up with
9 primitives. The temporal order of primitives for
actions for different actions are shown in Fig. 9.
One can compare this with Fig. 1 and see that they
are very closely related. For an easy comparison
we plot the result of converting a grasp action
sequence into a sequence of extracted primitives
along with ground truth data in Fig. 10. We can
infer from the figures Fig. 9 and Fig. 10 that P; and
P; together constitute approach primitive, Py refers
to grasp primitive and F; corresponds to remove
primitive. Similar comparison could be made with
other actions using the comparison diagram given
in Fig. 11.

Using these primitives, an SCFG was built as
described in Sec. III-D. This grammar is used as
an input to the Natural Language Toolkit (NLTK,
http://nltk.sourceforge.net) which is used to parse
the sequence of primitives.

Results of primitive segmentation for push
sideways, push forward, move, and grasp actions
are shown in the tables III, IV, V and VI
respectively. The numbers given in the tables
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Person Primitives for Push Aside action
Person 1 3 2 9 4 1
Person 2 3 5 8 4 1
Person 3 3 5 8 4 1
Person 4 3 5 8 4 1
Person 5 3 5 8 4 1
Person 6 3 5 8 4 1
Person 7 3 5 8 4 1
Person 8 3 5 8 4 1
Person 9 3 2 9 4 1
Person 10 3 2 9 4 1

TABLE III: Primitive segmentation and recognition
results for Push aside action. Sequences that are
identified incorrectly are marked with yellow color.

represent the primitive numbers shown in Fig. 9
. The sequences that are identified correctly are
marked with Aqua color and the sequences that
are not classified correctly are marked with yellow
color. We can see that all the correctly identified
sequences start and end with the same primitive
as expected. In Tab:VI, Person 1 and Person 4 are
marked with a lighter color to indicate that they
differ in end and start primitive respectively from
the correct primitive sequence. This might be due
to the variation in the starting and end position in
the sequence. We could still see that the primitive
sequence is correct for them.

Grasp

Reach

M M M
60 80 100 120

Fig. 10: Comparing automatic segmentation with
manually segmented primitives for one grasp se-
quence. Using the above diagram with Fig. 9, we
can infer that P; and P, together constitute ap-
proach primitive, Py refers to grasp primitive and
P, corresponds to remove primitive.
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Fig. 11: Comparing primitive segmentation with
ground truth data

Primitives for Push Forward action
7

Person
Person 1
Person 2
Person 3
Person 4
Person 5
Person 6
Person 7
Person 8
Person 9
Person 10

W
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| | | D | | | D i
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N
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TABLE IV: Primitive segmentation and recognition
results for Push Forward action. Sequences that are
identified incorrectly are marked with yellow color.

IV. CONCLUSIONS

We have presented and tested an approach for
automatically computing a set of primitives and the
corresponding stochastic context free grammar from
a set of training observations. Our stochastic regular
grammar is closely related to the usual HMMs. One
important difference between common HMMs and
a stochastic grammar with primitives is that with
usual HMMs, each trajectory (action, arm move-
ment, etc.) has its own, distinct HMM. This means
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Primitives for Move action
2 9 4

Person
Person 1
Person 2
Person 3
Person 4
Person 5
Person 6
Person 7
Person 8
Person 9
Person 10

W W W W W W] W WW| W
DD DN | | | DN
\O|\O| O \O| 0| \O| O \O| 0
LI N S SN N N
e e e el e e R el e

TABLE V: Primitive segmentation and recognition
results for Move Object action. Sequences that are
identified incorrectly are marked with yellow color.

that the set of HMMs for the given trajectories
are not able to reveal any commonalities between
them. In case of our arm movements, this means
that one is not able to deduce that some actions
share the grasp movement part. Using the primitives
and the grammar, this is different. Here, common
primitives are shared across the different actions
which results into a somewhat symbolic represen-
tation of the actions. Indeed, using the primitives,
we are able to do the recognition in the space of the
primitives or symbols, rather than in the signal space
directly, as it would be the case when using distinct
HMMs. Using this symbolic representation would
even allow to use Al techniques for, e.g., planning
or plan recognition. Another important aspect of
our approach is that we can modify our model to
include a new action without requiring the storage
of previous actions for it.

Our work is segmenting an action into smaller
meaningful segments and hence different from [13]
where the authors aim at segmenting actions like
walk and run from each other. Many authors point
at the huge task of learning parameters and the size
of training data for an HMM when the number of
states are increasing. But in our method, transition,
initial and observation probabilities for all states are
assigned during our merging phase and hence the
use of the EM algorithm [14] is not required. Thus
our method is scalable to the number of states. Our
approach of using states have a close connection to
[15] but our method is superior in preserving the
temporal order and hence in recognition.



Person Primitives for Grasp action
Person 1 3 2 6
Person 2
Person 3
Person 4
Person 5
Person 6
Person 7
Person 8
Person 9
Person 10

w

w

B D B D[ B D B | DN
QO O I D
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TABLE VI: Primitive segmentation and recognition
results for Grasp Object action. Sequences that are
identified incorrectly are marked with yellow color.
Peson 1 and Person 4 differ in their starting and end-
ing primitive from the correct primitive sequence.
This could be explained as the variation in the
starting and ending positions for those sequences.

It is interesting to note that stochastic grammars
are closely related to Belief networks [16] where the
hierarchical structure coincides with the production
rules of the grammar. We will further investigate
this relation ship in future work.

In future work, we will also evaluate the perfor-
mance of normal and abnormal path detection using
our primitives and grammars.
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