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Report Summary 
Workpackage 2 focuses on sesnorimotor representations that are implementable on (humanoid) 
robots. This report describes our work on learning approaches that associate a goal of an action with 
the internal movement representation to generate new movements and sequences of movements. 
We experimented both with spline representations [1] and dynamic systems that form the basis for 
dynamic movement primitives (DMPs) [2]. By associating low-level motor control representations 
with the goal of an action, we provide an embodied action representation for object-action 
complexes and also lay the groundwork for sequencing and other higher-level cognitive processes. 
In this deliverable we study dynamic movement primitives as a basic representation for goal-
directed actions. The main advantage of dynamic movement primitives is that they can be easily 
modified on-line to account for unforeseen perturbations using feedback control. This is much more 
difficult to realize when non-autonomous representations such as splines and the related hidden 
Markov models are used. 

Generalization of example movements to new goals with dynamic systems 

In paper [B] we focus on how to generalize movements to account for new configurations of the 
external world. The generalized movements are represented by dynamic systems. The proposed 
approach is based on locally weighted regression that defers learning to the execution time. It 
generates new movements directly from the data by combining several localized example 
movements with the current goal of an action, which is used as a query point. In the execution 
phase, query points should be provided by perception and the associated dynamic movement 
primitive can be generated on-line. Unlike our approach, other techniques, which were proposed in 
the literature to modify DMPs to account for the external perceptual input, require the modification 
of the underlying system of differential equations. This can only be accomplished by an expert. 
Experimental results demonstrate that by using DMPs and locally weighted regression, we can 
approximate various spaces of smooth movements, e.g. minimum jerk reaching movements, with 
high accuracy. While locally weighted regression can be applied to other representations such as B-
splines [1], nonautonomous representations including splines cannot be adapted to unforeseen 
perturbations as easily as DMPs. The proposed approach thus enables the robot to execute optimal 
movements when there are no disturbances, while keeping the ability to easily adapt the movement 
trajectories if necessary. On the other hand, if precision is paramount and any perturbations would 
lead to failure, such as in the case of purely feedforward movements that constitute throwing, 
splines proposed in our earlier work [1] might be preferable because they do not suffer from 
numerical problems associated with the integration of differential equations. 

Learning action sequences that allow object manipulation  

In paper [A] we extended the framework of dynamic movement primitives to action sequences that 
allow object manipulation. We suggested several improvements of the original movement primitive 
framework and added semantic information to movement primitives, such that they can code object-
oriented actions. We demonstrated the feasibility of our approach in an imitation learning setting, 
where a robot learned a water-serving and a pick-and-place task from a human demonstration, and 
could generalize this task to novel situations. 
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We exploited the robustness of dynamic movement primitives against perturbations for obstacle 
avoidance, which was realized by adding a coupling term to the underlying differential equations of 
motion. The ability to avoid obstacles in Cartesian space was demonstrated in experiments that 
included continuous sequences of pick and place operations.  
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Systems. To be submitted, 2009. 

References 

[1] A. Ude, M. Riley, B. Nemec, A. Kos, T. Asfour, and G. Cheng. Synthesizing goal-directed 
actions from a library of example movements, Proc. IEEE-RAS Int. Conf on Humanoid 
Robots, Pitssburgh, Pennsylvania, December 2007. 

[2] S. Schaal, P. Mohajerian, and A. Ijspeert, Dynamics systems vs. optimal control – a unifying 
view, Progress in Brain Research, vol. 165, no. 6, pp. 425-445, 2007. 

 
 



Generalization of Example Movements with Dynamic
Systems
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Abstract

In the past, nonlinear dynamic systems have been proposed as a suitable
representation for motor control. It has been shown that it is possible to learn
desired complex control policies by a nonlinear transformation of an existing
simpler control policy, which is based on a canonical dynamic system. The
resulting control policies were termed dynamic movement primitives. The
main result of this paper is an approach to learning parametrized sets of
dynamic movement primitives based on a library of example movements.
Learning was implemented by applying locally weighted regression where
the goal of an action is used as a query point into the library of example
movements. The proposed approach enables the generation of a wide range
of movements that are adapted to the current configuration of the external
world without requiring an expert to appropriately modify the underlying
differential equations to account for percepetual feedback.

Key words: Sensorimotor learning, movement primitives, motion blending

1. Introduction

Learning of behaviors that can be applied to solve a given task regard-
less of the current configuration of the external world is a difficult problem
because the search space that needs to be explored is potentially huge. The
size of the search space depends both on the number of degrees of freedom
of the robot and on the objects involved in the action or affecting it indi-
rectly. To overcome problems arising from high dimensional and continuous
perception-action spaces, it is necessary to guide the search process, thus
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effectively reducing the search space. The most effective way of reducing the
search space is to design a physical model of the task and learn the appropri-
ate parameters. However, such an approach relies on the knowledge that is
externally provided by an engineer and is therefore unsatisfactory for robots
that need to operate in natural environments and have to solve new problems
every day. A cognitive robotic system needs to be able to learn new skills
without relying on the presence of the experts.

A robot can acquire new action knowledge in various way. Autonomous
exploration is often studied in the field of developmental robotics [1]. Im-
itation, often connected with coaching and practicing, is another approach
which assumes that more initial knowledge is available to the robot, often
in the form of motor primitives [2]. For example, direct imitation has been
applied successfully to learn complex movements on humanoid robots such
as dancing, which would be difficult to program manually [3, 4, 5]. Direct
imitation is, however, not useful in problems that involve the manipulation
of objects because in such tasks the observed movements need to be adapted
to the current state of the 3-D world. For any given situation, it is highly
unlikely that an appropriate movement would be observed in advance and
included in the library of observed movements. A methodology to generalize
the observed movements to new situations was proposed by Miyamoto et
al. [6] who developed a new representation for the desired trajectory, which
they referred to as via-points. By monitoring the performance of the robot,
they were able to adapt the via points so that the robot could play a fairly
difficult Japanese game kendama and execute tennis serves. Riley et. al.
[7] showed how the observed trajectories can be adapted by coaching and
demonstrated the proposed approach on learning how to throw a ball into
a basket. These methods, however, require an extensive learning procedure
to solve the task in each different configuration of the external world and
can thus only be viewed as paradigms to acquire action knowledge for one
particular configuration of the external world.

The work of Miyamoto et al. [6] shows the importance of a proper rep-
resentation for the control policy that can be utilized by the robot to learn
how to solve the task. Other explicit, time-dependent representations include
splines, which were utilized in [8] to generate new actions from a library of
example movements. Hidden Markov models (HMMs) are another popular
methodology to encode and generalize the observed trajectories [9, 10, 11].
While techniques that enable the reproduction of generalized movements
from multiple demonstrations have been proposed within HMM formalism,
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generalization across movements to attain an external goal of the task is
not central to these works. HMMs, however, can be used effectively for mo-
tion and situation recognition [11] and to determine which control variables
should be imitated and how [10].

A fundamentally different approach to movement representation based on
nonlinear dynamic systems as policy primitives was proposed in [12, 13, 14,
15]. The resulting primitive movements were termed as dynamic movement
primitives (DMPs). DMPs are based on systems of second-order differential
equations, which encode the properties of the desired motion. Ijspeert et
al. [12, 13] proposed equations for rhythmic and discrete movements and
demonstrated that they can be used to learn tasks such as tennis strokes
and drumming. One of the most important advantages of DMPs is that they
remove the direct dependency of the control policy on time. As noted in [15],
explicit timing is cumbersome, as it requires to maintain a clocking signal,
e. g., a time counter that increments at very small time steps. By removing
explicit time dependency, DMPs can account for unforeseen perturbations
that occur during movement execution without extensive bookkeeping, which
is necessary if the desired trajectory is time dependent.

The main purpose of this paper is to propose and experimentally eval-
uate a method for generalizing example movements to new situations using
the dynamic movement primitives as basic representation. While DMPs can
be adapted in several ways, generic adaptations cannot account for specific
features of the task. The approach proposed in this paper enables the gen-
eration of DMPs using the library of example movements together with the
associated goals of the task and/or other relevant features, which are utilized
as query points for generalization.

2. Motion trajectories as second order dynamic systems

Dynamic movement primitives have been introduced in. [12, 13] as means
for trajectory generation and trajectory modulation. To encode the trajec-
tory of a single variable y, which can either be one of the internal joint angles
or one of the external task space coordinates, the following system of linear
differential equations with constant coefficients has been proposed as a basis
for approximation [15]

τ ż = αz(βz(g − y)− z), (1)

τ ẏ = z. (2)
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For the sake of completeness we briefly explain why such a system is useful by
examining its general solution. The general solution can be written as a sum
of the particular and homogeneous solution, [z, y]T = [zp, yp]T + [zh, yh]T .
Here [zp, yp]T is any function that solves Eq. (1) – (2), while [zh, yh]T is a
general solution to the system of homogeneous linear equations

[
ż
ẏ

]
=

1

τ

[
αz(−βzy − z)

z

]
= A

[
z
y

]
, A =

1

τ

[
−αz −αzβz

1 0

]
. (3)

It is trivial to check that constant function [zp(t), yp(t)] = [0, g]T solves the
Eq. system (1) – (2). Moreover, it is well known that a general solution to
the homogeneous system (3) is given by [zh(t), yh(t)]T = exp (At) c. Thus a
general solution to (1) – (2) can be written as

[
z(t)
y(t)

]
=

[
0
g

]
+ exp (At) c, (4)

where c ∈ R2 should be calculated from initial conditions. The eigenvalues of

A are given by λ1,2 =
(
−αz ±

√
α2

z − 4αzβz

)
/(2τ). Solution (4) converges

to [0, g]T if the real part of λ1,2 is smaller than 0, which is true for any
αz, βz, τ > 0. The system is critically damped, which means that y converges
to g without oscillating and faster than for any other choice of A, if A has a
double negative eigenvalue. This happens for αz = 4βz.

Differential equations (1) – (2) ensure that y converges to g and can there-
fore be used to realize discrete reaching movements. To increase a rather
simple set of trajectories defined by (4) and thus enable the approximation
of any smooth reaching movement, Eq. (1) needs to be modified. Schaal et
al. [15] proposed to add a linear combination of radial basis functions to (1)1

f(x) =

∑N
i=1 wiΨi(x)

∑N
i=1 Ψi(x)

x, Ψi(x) = exp
(
−hi (x− ci)

2) , hi > 0. (5)

1f defined in [15] is scaled by g − y0, i. e. f(x) =
PN

i=1 wiΨi(x)PN
i=1 Ψi(x)

x(g − y0), y0 = y(0).
Thus when the goal configuration g changes, the encoded movement gets scaled. We omit
this scaling factor because we are not interested in automatic scaling, which is achieved
differently in our approach. If g is kept constant, the scaling factor has no effect because
it gets incorporated in wi.
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Figure 1: Human demonstration of the ball throw and a successful action execution after
coaching

A new variable x is used in (5) instead of time to avoid direct dependency of
f on time. Its dynamics is assumed to be

τ ẋ = −αxx, (6)

with initial value x0 = 1. A solution to (6) is given by exp (−αxt/τ), thus x
tends to 0 as time increases. This results in the following differential equation
system

τ ż = αz(βz(g − y)− z) + f(x) (7)

τ ẏ = z, (8)

which can be used to approximate discrete movements of various shapes.
Since x tends to zero, the influence of the nonlinear term f(x) decreases with
time and system (7) – (8) converges to [0, g]T just like (1) – (2). The other role
of x is to localize the radial basis functions along the trajectory that needs to
be approximated. The trajectory of y as specified by differential equations
(6) – (8) defines what is called a dynamic movement primitive (DMP).

3. Motion generalization with dynamic movement primitives

There exists a number of modifications to this equation system in the
literature; e. g. Pastor et al. [16, 17] proposed to add terms that enable ob-
stacle avoidance and sequencing of DMPs. Approaches like this demonstrate
why DMPs are useful, but such approaches also require a qualified person to
modify the basic equation system in order to adapt the movements to new
situations. The main contribution of this paper is an approach that enables
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the modification of the learned trajectories directly from the data, while still
encoding the desired movements with dynamic systems.

Dynamic movement primitives are most commonly generated from exam-
ple trajectories, which are usually acquired by guiding a robotic arm through
a sequence of poses or by observing human motion and transforming it to
robot motion, possibly adapted by practicing and coaching (see Fig. 1). Let
{yd(tj), ẏd(tj), ÿd(tj)}, tj = j∆t, j = 0, . . . , T, be a set of positions, velocities
and accelerations on the desired trajectory at times tj. Replacing z in Eq.
(7) by y results in the following set of equations that need to be solved to
calculate a DMP that best fits the data

F(tj) = τ 2ÿd(tj) + αzτ ẏd(tj)− αzβz(g − yd(tj)) =

∑N
i=1 wiΨi(xj)∑N

i=1 Ψi(xj)
xj, (9)

where xj = x(tj) = exp(−αxtj/τ).2 In matrix form we have

Xw = f , (10)

where

X =





Ψ1(x1)PN
i=1 Ψi(x1)

x1 . . . ΨN (x1)PN
i=1 Ψi(x1)

x1

. . . . . . . . .
Ψ1(xT )PN
i=1 Ψi(xT )

xT . . . ΨN (xT )PN
i=1 Ψi(xT )

xT



 , f =




F(t1)
. . .

F(tT )



 , w =




w1

. . .
wN



 .

In the equations above αx, αz and βz are constant, g is the desired final
position, and τ is set to the time duration of the example movement. What
needs to be estimated are the parameters wi, ci and hi. Schaal et al. [15]
applied locally weighted projected regression to estimate all these param-
eters, while other approaches just fix the number of radial basis functions
and their extent and estimate parameters wi using regression methods [12].
Locally weighted recursive least squares have proved to be especially useful
for incremental learning of rhythmic movements [13, 18].

2For one-shot learning considered in this paper, we need to assume that example tra-
jectories are good, i. e. they do not contain any perturbations that are not part of the
original movement. In this case we can use the analytical solution of (6). However, in the
execution phase we can still use a modified version of (6) proposed in [12], which enables
the trajectory generation system to deal with unforeseen perturbations.
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3.1. Locally weighted regression

In this paper we are interested in how to generalize DMPs to situa-
tions that were not recorded in the example database. Lets assume that we
have a number of example movements {yk

d(tj), ẏk
d(tj), ÿk

d(tj)}, tj = j∆t, j =
0, . . . , Tk, k = 1, . . . ,M, with the associated query points qk and time con-
stants τk. If we take the example of reaching movements, the query points
can be just the final reaching destination g = (g1, . . . , gn), where n is the
dimension of the parameter space. For other movements, query points can
differ from g. Even in the case of reaching movements, the query points can
be given in Cartesian space, while the DMPs might be encoded in the joint
space. The issue is how to generate a DMP representing a new movement for
every query q, which in general will not be one of the examples qk. A rather
trivial solution would be to look for a qk closest to q, but locally weighted
regression enables us to compute a better solution by minimizing criterion

M∑

k=1

‖Xkw − fk‖2 K(d(q,qk)), (11)

where K is the kernel function for locally weighted regression and d is the
metrics in the space of query points q. Note that even if g of Eq. (7) is
taken to be the query point – as could be done in the case of reaching move-
ments – it is still worthwile to calculate new DMPs by minimizing criterion
(11). In this way we can ensure that the new movement is similar to the
example movements. Although every DMP eventually converges to g, the
course of the trajectory becomes significantly different if the new movement
is generated by a DMP whose other parameters were calculated using an
example with a significantly different g (see Section 4.1). Locally weighted
regression has been thoroughly studied in [19]. It is a form of lazy learning
where the computational cost of training is minimal; it simply consists of
storing examples in the database.

Unlike αx, αz, βz, N, ci and hi, which are kept constant across the
example trajectories3, time constant τ and the goal position g change from
example to example. We propose to calculate these parameters from the data

3N , ci and hi, i = 1, . . . , N, are estimated in a preprocessing step so that every DMP
approximates the associated motion trajectory at least up to the predefined accuracy. It
is possible to use locally weighted projected regression for this purpose.
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as a function of the query point q. Writing

τ = fτ (q) =
Sτ∑

i=1

a′
iB

′
i(q), (12)

g = fg(q) =

Sg∑

i=1

a′′
i B

′′
i (q), (13)

where B′
i and B′′

i are a suitable set of basis functions, parameters a′
i and a′′

i

are estimated by respectively minimizing

M∑

k=1

|fτ (qk)− τk|2 and
M∑

k=1

‖fg(qk)− gk‖2 . (14)

We selected B-splines as basis functions for the approximation of g and τ .
Note that in the training phase, the original τk and gk are used to calculate
Fk(tj) defined by Eq. (9). In the execution phase, new τ and g are estimated
using transformation functions (12) and (13).

The computational complexity of solving the least squares system (11) is
O(N2

∑M
k=1 Tk) and thus increases linearly with the number of data points

and quadratically with the number of radial basis functions (5) used to repre-
sent the DMP. The quadratic dependence on the number of basis functions is
not a problem because this number is generally much lower than the number
of data points. The complexity is further reduced because Xk are sparse due
to the local support of radial basis functions. These facts make computa-
tional complexity low enough to allow us to resolve the least-squares problem
(11) using standard methods from sparse matrix algebra and without resort-
ing to the approximation of w by local models as implemented in [12, 13].
Incremental learning using recursive least squares is also possible.

The proposed approach is appropriate only if example trajectories smoothly
transition as a function of query points. Otherwise nearby data does not pro-
vide information about the movment associated with the query point q. The
above process estimates the parameters w, τ,g, which means that the func-
tion

F(q) = (w, τ,g) (15)

needs to be smooth. In the next section we give a few examples with a
smooth movement transition.
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There are many possibilities to selet the weighting function K [19]. We
chose the tricube kernel

K(d) =

{
(1− |d|3)3 if|d| < 1
0 otherwise

(16)

This kernel has finite extent and a continuous first and second derivative.
Combined with distance d in the space of query points, these two functions
determine how much influence each of the example movements {yk

d(tj), ẏk
d(tj),

ÿk
d(tj)}, tj = j∆t, j = 0, . . . , Tk, has. It is easy to see that the influence of

each example movement diminishes with the distance of the query point q
from the data point qk. In our experiments the query points were given in
Euclidean space and we used weighted Euclidean distance to define d

d(q,qk) = ‖D(q− qk)‖, D = diag(ai), ai > 0. (17)

Other metrics could be applied if query points are given in different spaces
such as for example the special rotation group.

4. Experiments

We conducted two types of experiments to demonstrate the usefulness of
the approach: the learning of reaching movements and ball throwing.

4.1. Reaching

In a simulation study we examined how well we can approximate Carte-
sian minimum jerk trajectories of a robot end-effector by generating DMPs
based on the library of example movements given in the robot joint space and
using locally weighted regression. Minimum jerk trajectories are often used
in robotics because they resemble human reaching trajectories [20]. In sim-
ulation we first generated Cartesian minimum jerk trajectories, which were
converted into joint space trajectories using standard inverse kinematics (see
Fig. 2). In Cartesian space these trajectories correspond to straight lines.
The final end-effector positions on the trajectories were used as query points
qk, k = 1, . . . ,M, whereas the initial position was the same for all trajecto-
ries. The query points were distributed uniformly with spacing of 0.1 meters
in a rectangular area with corners at (0.2,−0.5) and (0.6, 0.3) meters. Joint
velocities and accelerations were computed analytically.

Using B-splines we estimated the mapping (13), which in this case is the
mapping from the last end-effector position to the corresponding joint angles
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Figure 2: 45 example minimum jerk trajectories in Cartesian space (left) and the associated
joint space trajectories (right). In the figure left red circles depict the final reaching
positions that were used as query points for locally weighted regression. The sum of limb
lengths was 1.31 meters.

and is thus a local approximation for the inverse kinematics. Similarly we
estimated the mapping (12) from query points q to the time duration of
the trajectory. In simulation time duration was assumed to depend on the
distance of the end effector’s final position from its initial position on the
trajectory.

The errors in Tab. 1 and 2 were calculated by integrating equation sys-
tem (6) – (8) to obtain joint positions ỹ(tj) and comparing the result with
the ideal minimum jerk trajectory y(tj) expressed in the robot joint space.
These ideal trajectories were calculated using the same formulas as in the
calculation of the training examples. Both average (18) and maximum error
(19) on the trajectory were evaluated

1

N

N∑

j=0

‖ỹ(tj)− y(tj)‖, (18)

N
max
j=0

‖ỹ(tj)− y(tj)‖. (19)

Results in Tab. 1 prove that reaching movements can be approximated by
locally weighted regression and DMPs with high precision. Since it can be
expected that the errors will be larger on the boundary of the training query
points qk, we estimated the error both within the full rectangular area en-
closed by all query points of Fig. 2, and in the reduced area enclosed by query
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Table 1: Errors in reaching movements (in centimeters and degrees, respectively) synthe-
sized by locally weighted regression.

Joint space Cartesian space Grid size
(across trajectory) (final position error) (centimeters)

Training Full Reduced Full Reduced

Average error 0.24 0.19 0.12 0.09 10× 10
Max. error 0.97 0.46 0.47 0.30 10× 10

Table 2: Errors in reaching movements (in centimeters and degrees, respectively) generated
by a single dynamic movement primitive.

Joint space Cartesian space Grid size
(across trajectory) (final position error) (centimeters)

Training Full Reduced Full Reduced

Average error 8.85 5.62 0.43 0.32 10× 10
Max. error 22.47 13.88 0.97 0.77 10× 10

points situated at least one query point away from the boundary points. As
expected, the errors are slightly smaller for the internal points. The result-
ing trajectory accurately reproduced both the spatial course of movement
and its dynamics. In this experiment the Cartesian positions were used as
query points, which were then mapped to the goal configurations using the
estimated spline function (13). This function partially approximates the in-
verse kinematics as relevant for the task. Thus with the proposed approach
we can generalize reaching movements in Cartesian space without knowing
the inverse kinematics of the robot. The accuracy is sufficient to realize
high-precision reaching movements for grasping.

Tab. (2) shows that representation with only one DMP is too rough for
precise movement reproduction. While the final position could be reached
fairly accurately within the given time due to the properties of discrete move-
ment primitives, the trajectory reproduction accuracy (18) is worse by an
order of magnitude compared to the precision of the approach based on lo-
cally weighted regression. In both cases the trajectory did not fully reach the
final destination because time was not allowed to flow beyond τ estimated
by (12). If we allowed the time to flow and continued to integrate the un-
derlying differential equations, the motion would continue and the desired
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Table 3: Errors in the synthesized throws represented by splines (in centimeters)

Joint positions Joint positions Grid size
without velocities and velocities (centimeters)

Training area Full Reduced Full Reduced

Average error 2.41 1.54 2.72 1.75 50× 50
Max. error 13.35 6.17 12.57 7.08 50× 50

Table 4: Errors in the synthesized throws represented by DMPs (in centimeters)

Adams-Bashforth- Euler Grid size
Moulton integration integration (centimeters)

Training area Full Reduced Full Reduced

Average error 2.76 2.16 5.16 4.89 50× 50
Max. error 16.03 14.76 15.61 11.95 50× 50

position would eventually be reached, but with a certain delay.

4.2. Ball throwing

As a second test example we considered a task were the goal is less directly
linked to movements than in the case of reaching. We studied the problem
of throwing a ball into a basket, which is a dynamic task dependent not only
on the positional part of the movement, but also on velocities. It can easily
be shown that the trajectory of the ball after the release is fully specified by
the position and velocity at the release point

x = x0 + v0t cos(α), y = y0 + v0t sin(α)− gt2

2
, (20)

where (x0, y0) is the release point, v0 is the linear velocity of the ball at release
time and α is the initial angle of the throw. We considered the problem where
the target basket is placed in xy-plane. Since a robot can turn towards the
basket, solving this problem allows the robot to throw the ball to any position
in space. The understanding of the physics of the task allows us to compare
the movement generalization results with an ideal system.

The basket positions, i. e. the positions where the ball needs to land,
were used as query points. They were uniformly distributed with spacing of
0.5 meters within a rectangular area with corners at (1.2, 0.1) and (5.2, 2.1)
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meters. Example movements with proper position and velocity at the release
time for the given basket position were generated. Instead of the complete
time duration we used the timing at the release point when estimating func-
tion (12). Function (13) encoded the mapping from the basket position to the
final configuration of the discrete movement trajectory, which was encoded
by a DMP.

As can be seen in Tab. 4, the average accuracy of the throws generated
by DMPs is comparable to the average accuracy of the throws generated
by splines. However, this is the case only if a more advanced integration
technique such as Adams-Bashforth-Moulton method [21] is used to calculate
the positions, velocities, and accelerations on the trajectory encoded by the
Eq. (6) – (8). Average errors are significantly larger when a simpler Euler’s
method is used for integration. On the other hand, maximum error was
larger with both methods, especially in the reduced area. This leads us
to believe that while DMPs approximate the desired trajectories and their
dynamics with an accuracy comparable to splines, care must be taken to
achieve a good enough accuracy for tasks that require high precision such as
ball throwing. The representation with a single DMP is not precise enough
to hit the target, therefore the results obtained with this method are omitted.

5. Summary and Conclusion

The movement generalization approach proposed in this paper is realized
using locally weighted regression that defers learning to the execution time.
Unlike many other approaches that were proposed to modify DMPs with re-
spect to the external perceptual input and that require an expert to modify
the underlying system of differential equations, our approach generates new
movements directly from the data with percepts used as query points. The
computing time necessary to generate a DMP given a particular query point
depends linearly on the number of query points and the number of samples
associated with each example movement. Since the weighting criterion has
finite support, the number of example trajectories involved in the genera-
tion of each DMP remains limited. Therefore the increase in the computing
time required for locally weighted regression compared to the computing
time needed for standard one-shot learning of discrete DMPs is also limited.
An efficient implementation is, however, very important if DMPs are to be
generated on-line using current perceptual input.
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The experimental results show that by using DMPs and locally weighted
regression, we can approximate a space of smooth movements, e. g. mini-
mum jerk reaching movements, with high accuracy. While locally weighted
regression can be applied to other representations such as B-splines [8], it
has been shown that in the execution phase, dynamic systems have many
advantages over nonautonomous representations including splines. This is
due to the ease with which the learned movements can be adapted to unfore-
seen perturbations [13, 15]. The proposed approach thus enables the robot
to execute nearly optimal trajectories when there are no disturbances, while
keeping the ability to easily adapt the trajectories if necessary. On the other
hand, if precision is paramount and any perturbations would lead to failure,
such as in the case of purely feedforward movements that constitute throw-
ing, splines might be preferable because they do not suffer from problems
associated with the integration of differential equations.

As described in Section 3.1, the generalization of movements makes sense
only for problems with example movements that transition smoothly as a
function of query points. This is, however, not always the case. Consider for
example reaching movements that need to avoid an obstacle before arriving
to the final configuration. If there are two sets of example movements, each
avoiding the obstacle from a different side, then example movements that
avoid the obstacle from different sides should not be blended together. In
such cases the approach described in this paper can still be used, but it
should be supplemented by a suitable clustering procedure which must be
guided by higher level cognitive processes.

Acknowledgment: This research was supported in part by the EU Cogni-
tive Systems project PACO-PLUS (FP6-027657).
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Learning and Generalization of Motor Skills
by Learning from Demonstration

Peter Pastor, Heiko Hoffmann, Tamim Asfour, and Stefan Schaal

Abstract— We provide a general approach for learning
robotic motor skills from human demonstration. To represent
an observed movement, a non-linear differential equation is
learned such that it reproduces this movement. Based on this
representation, we build a library of movements by labeling
each recorded movement according to task and context (e.g.,
grasping, placing, and releasing). Our differential equation is
formulated such that generalization can be achieved simply by
adapting a start and a goal parameter in the equation to the
desired position values of a movement. For object manipulation,
we present how our framework extends to the control of gripper
orientation and finger position. The feasibility of our approach
is demonstrated in simulation as well as on a real robot. The
robot learned a pick-and-place operation and a water-serving
task and could generalize these tasks to novel situations.

I. INTRODUCTION

Humanoid robots assisting humans can become
widespread only if the humanoids are easy to program.
Easy programming might be achieved through learning from
demonstration [1], [2]. A human movement is recorded
and later reproduced by a robot. Three challenges need
to be mastered for this imitation: the correspondence
problem, generalization, and robustness against perturbation.
The correspondence problem means that links and joints
between human and robot may not match. Generalization
is required because we cannot demonstrate every single
movement that the robot is supposed to make. Learning by
demonstration is feasible only if a demonstrated movement
can be generalized to other contexts, like different goal
positions. Finally, we need robustness against perturbation.
Replaying exactly an observed movement is unrealistic in
a dynamic environment, in which obstacles may appear
suddenly.

To address these issues, we present a model that is based
on the dynamic movement primitive (DMP) framework (see
[3], [4]). In this framework, any recorded movement can be
represented with a set of differential equations. Representing
a movement with a differential equation has the advantage
that a perturbance can be automatically corrected for by the
dynamics of the system; this behavior addresses the above
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mentioned flexibility. Furthermore, the equations are formu-
lated in a way that adaptation to a new goal is achieved by
simply changing a goal parameter. This characteristic allows
generalization. Here, we will present a new version of the
dynamic equations that overcomes numerical problems with
changing the goal parameter that occurred in the previous
formulation [5].

We will use the dynamic movement primitives to represent
a movement trajectory in end-effector space; thus, we address
the above-mentioned correspondence problem. For object
manipulation – here, grasping and placing – besides the end-
effector position, we also need to control the orientation
of the gripper and the position of the fingers. The DMP
framework allows to combine the end-effector motion with
any further degree-of-freedom (DOF); thus, adding gripper
orientation in quaternion notation and finger position is
straight-forward. In our robot demonstration, we use standard
resolved motion rate inverse kinematics to map end-effector
position and gripper orientation onto the appropriate joint
angles [6].

To deal with complex motion, the above framework can
be used to build a library of movements primitives out of
which complex motion can be composed by sequencing.
For example, the library may contain a grasping, placing,
and releasing motion. Each of these movements, which was
recorded from human demonstration, is represented by a
differential equation, and labeled accordingly. For moving
an object on a table, a grasping-placing-releasing sequence is
required, and the corresponding primitives are recalled from
the library. Due to the generalization ability of each dynamic
movement primitive, an object may be placed between two
arbitrary positions on the table based solely on the three
demonstrated movements.

In the remainder of this article, we explain in Section II the
dynamic movement primitive framework and present the new
modified form. In Section III we emphasize the generation
of a library of movements. In Section IV we present an
application of the framework on a simulated as well as on a
real robot arm. In Section V we conclude this approach and
provide an outlook for future work.

II. DYNAMIC SYSTEMS FOR MOVEMENT
GENERATION

This section briefly describes the dynamic movement
primitive framework and presents a modification to allow
adaptation to a new goal position in a more robust and
human-like way.



A. Dynamic Movement Primitives

Dynamic movement primitives can be used to generate
discrete and rhythmic movements. Here, we focus on discrete
movements. A one dimensional movement is generated by
integrating the following set of differential equations1, which
can be interpreted as a linear spring system perturbed by an
external forcing term:

τ v̇ = K(g − x) −Dv + (g − x0)f (1)

τẋ = v , (2)

wherex and v are position and velocity of the system;x0

andg are the start and goal position;τ is a temporal scaling
factor;K acts like a spring constant; the damping termD
is chosen such that the system is critically damped, andf
is a non-linear function which can be learned to allow the
generation of arbitrarily complex movements. This first set
of equations is referred to as a transformation system. The
non-linear function is defined as

f(θ) =

∑

i
wiψi(θ)θ

∑

i
ψi(θ)

, (3)

whereψi(θ) = exp(−hi(θ − ci)
2) are Gaussian basis func-

tions, with centerci and width hi, andwi are adjustable
weights. The functionf does not directly depend on time;
instead, it depends on a phase variableθ, which monotoni-
cally changes from1 towards0 during a movement and is
obtained by the equation

τ θ̇ = −α θ , (4)

where α is a pre-defined constant. This last differential
equation is referred to as canonical system. These sets of
equations have some favorable characteristics:

• Convergence to the goalg is guaranteed (for bounded
weights) sincef(θ) vanishes at the end of a movement.

• The weightswi can be learned to generate any desired
smooth trajectory.

• The equations are spatial and temporal invariant, i.e.,
movements are self-similar for a change in goal, start
point, and temporal scaling without a need to change the
weightswi.

• The formulation generates movements which are robust
against perturbation due to the inherent attractor dynam-
ics of the equations.

To learn a movement from demonstration, first, a move-
mentx(t) is recorded and its derivativesv(t) and v̇(t) are
computed for each time stept = 0, . . . , T . Second, the
canonical system is integrated, i.e.,θ(t) is computed for
an appropriately adjusted temporal scalingτ . Using these
arrays,ftarget(θ) is computed based on (1) according to

ftarget(θ) =
−K(g − x) +Dv + τ v̇

g − x0
, (5)

wherex0 andg are set tox(0) andx(T ), respectively. Thus,
finding the weightswi in (3) that minimize the error criterion

1We use a different notation as in [3] to highlight the spring-like character
of these equations.

J =
∑

θ

(

ftarget(θ) − f(θ)
)2

is a linear regression problem,
which can be solved efficiently.

A movement plan is generated by reusing the weightswi,
specifying a desired startx0 and goalg, setting θ = 1,
and integrating the canonical system, i.e. evaluatingθ(t).
As illustrated in Fig. 1, the obtained phase variable then
drives the non-linear functionf which in turn perturbs the
linear spring-damper system to compute the desired attractor
landscape.

Fig. 1. Sketch of a one dimensional DMP: the canonical system drives
the nonlinear functionf which perturbs the transformation system.

B. Generalization to New Goals

In this section, we describe how to adapt the movement
to a new goal position by changing the goal parameterg.
The original DMP formulation has three drawbacks: first,
if start and goal position,x0 andg, of a movement are the
same, then the non-linear term in (1) cannot drive the system
away from its initial state; thus, the system will remain at
x0. Second, the scaling off with g − x0 is problematic if
g−x0 is close to zero; here, a small change ing may lead to
huge accelerations, which can break the limits of the robot.
Third, whenever a movement adapts to a new goalgnew such
that (gnew− x0) changes its sign compared to (goriginal − x0)
the resulting generalization is mirrored. As an example from
our experiments, a placing movement on a table has start and
goal positions with about the same height; thus, the original
DMP formulation is not suitable for this kind of movement
adaptation.
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Fig. 2. Comparison of goal-changing results between old (Left) and
new (Right) DMP formulation in operational space(Y1, Y2) with one
transformation system for each dimension. The same original movement
(solid line) and goals are used for both formulations. The dashed lines show
the result of changing the goal before movement onset (Top) and during the
movement (Bottom).



Here, we present a modified form of the DMPs that
cures these problems (see Fig. 2), while keeping the same
favorable properties, as mentioned above. We replace the
transformation system by the following equations [5]:

τ v̇ = K(g − x) −Dv −K(g − x0)θ +Kf(θ) (6)

τẋ = v , (7)

where the non-linear functionf(θ) is defined as before.
We use the same canonical system as in (4). An important
difference from (1) is that the non-linear function is not
multiplied any more by(g−x0). The third termK(g−x0)θ
is required to avoid jumps at the beginning of a movement.
Learning and propagating DMPs is achieved with the same
procedure as before, except that the target functionftarget(θ)
is computed according to

ftarget(θ) =
τ v̇ +Dv

K
− (g − x) + (g − x0) θ . (8)

The trajectories generated by this new formulation for
different g values are shown in Fig. 2. In our simulation
and robot experiments we use this new formulation.

C. Obstacle Avoidance

A major feature of using dynamic systems for movement
representation is robustness against perturbation [3]. Here,
we exploit this property for obstacle avoidance [7] by adding
a coupling termp(x,v) to the differential equations of
motion

τ v̇ = K(g−x)−Dv−K(g−x0)θ+Kf(θ)+p(x,v) . (9)

We describe obstacle avoidance in 3D end-effector space,
therefore the scalarsx, v, v̇ turn into vectorsx,v, v̇ and the
scalarsK,D became positive definite matricesK,D. For
the experiment in this paper we used the coupling term

p(x,v) = γRvϕexp(−cϕ) , (10)

whereR is a rotational matrix with axisr = (x−o)×v and
angle of rotation ofπ/2; the vectoro is the position of the
obstacle,γ and c are constant, andϕ is the angle between
the direction of the end-effector towards the obstacle and the
end-effector’s velocity vectorv relative to the obstacle. The
expression (10) is derived from [8] and empirically matches
human obstacle avoidance. In the robot experiment we used
γ = 1000 andc = 20.

III. BUILDING A LIBRARY OF MOVEMENTS

This section briefly motivates the concept of a library
of movements and their application in object manipulation
tasks.

A. Motion Library Generation

Learning DMPs only requires the user to demonstrate
characteristic movements. These DMPs form a set of basic
units of action [1]. For movement reproduction only a simple
high level command - to choose a primitive (or a sequence
of them) and set its task specific parameters - is required.

Fig. 3. Conceptual sketch of an imitation learning system (adapted from
[1]). The components of perception (yellow) transform visual information
into spatial and object information. The components of action (red) generate
motor output. Interaction between them is achieved using a common motion
library (blue). Learning (green) improves the mapping between perceived
actions and primitives contained in the motion library for movement
recognition and selection of the most appropriate primitive for movement
generation.

Moreover, adaption to new situations is accomplished by ad-
justing the startx0, the goalg, and the movement durationτ .
Thus, a collection of primitives referred to asmotion library
enables a system to generate a wide range of movements.
On the other side, such a motion library can be employed to
facilitate movement recognition in that observed movements
can be compared to the pre-learned ones [3]. If no existing
primitive is a good match for the demonstrated behavior,
a new one is created (learned) and added to the system’s
movement repertoire (see Fig. 3). This makes the presented
formulation suited for imitation learning.

B. Attaching Semantic

As for imitation learning with DMPs a low-level approach,
namely imitation of trajectories [2], was chosen, additional
information is needed by the system to successfully perform
object manipulation tasks. For a pick-and-place operation
for example the system has to select a proper sequence of
movement primitives, that is, first a grasping, then a placing
and finally a releasing primitive. Therefore, it is necessary
to attach additional information to each primitive movement
which facilitates this selection. Moreover, once a library of
movement primitives is acquired, it is desirable to have the
system be able to find sequences of primitive movements that
accomplish further tasks. Traditional artificial intelligence
planning algorithms tackle this problem by formalizing the

Fig. 4. Objects are defined through actions that can be performed on them
(Left), e.g. a cup is represented as a thing which can be used to drink water
from. On the other side, actions are defined through objects (Right), e.g. the
way of grasping an object depends on the object - a can requires a different
grip than a pen.



domain scenario. In particular, they define a set of operators
with pre- and post-conditions and search for a sequence
of them which transfers the world from its initial state
to the goal state. The post-conditions provides information
about the change in the world, whereas the preconditions
ensure that the plan is executable. Thus, such algorithms
are based on discrete symbolic representations of object and
action, rather than the low-level continuous details of action
execution.

A link between the low-level continuous control repre-
sentation (as typical in robotic applications) and high-level
formal description of actions and their impact on objects (as
necessary for planning) has been, for example, formalized
by the concept of Object-Action Complexes [9], [10]. This
concept proposes that objects and actions are inseparably
intertwined (see Fig. 4).

C. Combination of Movement Primitives

The ability to combine movement primitives to generate
more complex movements is a prerequisite for the concept
of a motion library. Here, we show how the presented
framework provides this ability.

It is straight forward to start executing a DMP after the
preceding DMP has been executed completely, since the
boundary conditions of any DMP are zero velocity and
acceleration. However, DMPs can also be sequenced such
that complete stops of the movement system are avoided
(see Fig. 5). This is achieved by starting the execution of the
successive DMP before the preceding DMP has finished. In
this case, the velocities and accelerations of the movement
system between two successive DMPs are not zero. Jumps
in the acceleration signal are avoided by properly initializing
the succeeding DMP with the velocities and positions of its
predecessor (vpred→ vsucc andxpred → xsucc).

Y1

Y
2

(a)

(b)

Fig. 5. Chaining of a single minimum jerk movement primitive generalized
to four goals (black dots) resulting in a square like movement (a). The
movement generated by the DMPs are drawn alternating with blue solid and
red dashed lines to indicate the transition between two successive DMPs.
The movement direction is indicated by the arcs. The remaining movements
(b) result from using different switching times (lighter color indicates earlier
switching time).

IV. EXPERIMENT

The following Section describes how we applied the
presented framework of DMPs on the Sarcos Slave arm to
accomplish object manipulation tasks, such as grasping and
placing. As experimental platform we used a seven DOF
anthropomorphic robot arm (see Fig. 6) equipped with a three
DOF end-effector.

Fig. 6. Sketch of the Sarcos Slave arm, a seven DOF anthropomorphic
robot arm with a three DOF end-effector.

A. Learning DMPs from Demonstration

Learning DMPs from demonstration is achieved by regard-
ing each DOF separately and employing for each of them an
individual transformation system. Thus, each DMP is setup
with a total of ten transformation systems to encode each
kinematic variable. In particular, the involved variables are
the end-effector’s position (x, y, z) in Cartesian space, the
end-effector’s orientation (q0, q1, q2, q3) in quaternion space,
and finger position(θTL, θTV , θFAA) in joint space. Each of
them serve as a separate learning signal, regardless of the
underlying physical interpretation. However, to ensure the
unit length of the quaternionq, a post-normalization step
is incorporated. The setup is illustrated in Fig. 7, note, a
single DMP encodes movements in three different coordinate
frames simultaneously.

To record a set of movements, we used a 10 DOF
exoskeleton robot arm, as shown in Fig. 8. Visual observa-
tion and appropriate processing to obtain the task variables
would be possible, too, but was avoided as this perceptual
component is currently not the focus of our research.

The end-effector position and orientation are recorded at
480 Hz. The corresponding trajectories for the finger move-

Fig. 7. Sketch of the 10 dimensional DMP used to generate movement
plans for the Sarcos Slave arm.



Fig. 8. Sarcos Master arm used to record a human trajectory in end-
effector space. Here, the subject demonstrates a pouring movement which
after learning the DMP enabled a robot to pour water into several cups (see
Fig. 12).

ments are generated afterwards accordingly: for a grasping
movement, for example, a trajectory was composed out of
two minimum jerk movements for opening and closing the
gripper. The corresponding velocities and accelerations for
all DOF were computed numerically by differentiating the
position signal.

These signals served as input into the supervised learning
procedure described in II-A. For each demonstrated move-
ment a separate DMP was learned and added to the motion
library.

B. Movement Generation

To generate a movement plan, a DMP is setup with the task
specific parameters, i.e., the startx0 and the goalg. In our
DMP setup (see Fig. 7), these are the end-effector position,
end-effector orientation, and the finger joint configuration.
The startx0 of a movement is set to the current state of
the robot arm. The goalg is set according to the context of
the movement. For a grasping movement, the goal position
(x, y, z) is set to the position of the grasped object and the
grasping width is set according to the object’s size. How-
ever, finding an appropriate goal orientation is not straight
forward, as the end-effector orientation needs to be adapted
to the characteristic approach curve of the movement. Ap-
proaching the object from the front results in a different
final posture as approaching it from the side. In case of a
grasping movement, we developed a method to automatically
determine the final orientation by propagating the DMP to
generate the Cartesian space trajectory and averaging over
the velocity vectors to compute the approach direction at the
end of the movement. For other movements, like placing and
releasing, we set the end-effector orientation to the orienta-
tion recorded from human demonstration. Finally, we useτ
to determine the duration of each movement. In simulation
we demonstrate the reproduction and generalization of the
demonstrated movements. Our simulated robot arm has the
same kinematic and dynamic properties as the Sarcos Slave
arm.The reproduction of grasping and placing are show in
Fig. 9. The generalization of these movements to new targets
is shown in Fig. 10.

C. Task Space Control

To execute DMPs on the robot we used a velocity based
inverse kinematics controller as described in [11], [6]. Thus,
the task space reference velocitiesẋr are transformed into
the reference joint space velocitiesθ̇r (see Fig. 11). The
reference joint positionθr and acceleration̈θr are obtained

Fig. 9. Snapshots of theSL Simulator showing a simulation of the Sarcos
Slave arm performing a grasping (Top) and a placing movement (Bottom).
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Fig. 10. The desired trajectories (blue lines) from the movements shown
in Fig. 9 adapted to new goals (red lines) indicated by the grid.

by numerical integration and differentiation of the reference
joint velocities ẋr. The desired orientation, given by the
DMP as unit quaternions, is controlled using quaternion
feedback as described in [12], [6].

Fig. 11. DMP control diagram: the desired task space positions and
velocities arexd , ẋd , the reference task space velocity commands areẋr ,
the reference joint positions, joint velocities, and joint accelerations areθr,
θ̇r, and θ̈r .

The reference joint position, velocities and acceleration
are transformed into appropriate torque commandsu using
a feed-forward and a feedback component. The feed-forward
component estimates the corresponding nominal torques to
compensate for all interactions between the joints, while the
feedback component realizes a PD controller.

D. Robot Experiment

We demonstrate the utility of our framework in a robot
demonstration of water-serving (see Fig. 12). First, a human
demonstrator performed a grasping, pouring, retreating bot-
tle, and releasing movement as illustrated in Fig. 8. Second,
the robot learned these movements and added them to the
motion library. Third, a bottle of water and three cups
were placed on the table. Fourth, an appropriate sequence
of movement primitives were chosen manually. Fifth, each
DMP were setup with corresponding goalg. Finally, the
robot executed the sequence of movements and generalized



Fig. 12. Movement reproduction and generalization to new goal with the
Sarcos Slave Arm. The top row shows the reproduction of a demonstrated
pouring movement in Fig. 8, and the bottom row shows the result of
changing the goal variable.

to different cup position simply through changing the goalg
of the pouring movement.

To demonstrate the framework’s ability to adapt online
to new goals as well as avoid obstacles, we extended the
experimental setup with a stereo camera system. We used
a color based vision system to visually extract the goal
position as well as the position of the obstacle. The task was
to grasp a red cup and place it on a green coaster, which
changes its position after movement onset, while avoiding
a blue ball-like obstacle (see Fig. 13). To accomplish this
task a similar procedure was used as before. Except, this
time, the Cartesian goal of the grasping movement was
set to the position of the red cup and the goal of the
placing movement was set to the green coaster. The goal
orientation for the grasping movement were set automatically
as described in Section IV-B, whereas the orientation of
the placing and releasing were adopted from demonstration.
This setup allows us to demonstrate the framework’s ability
to generalize the grasping movement by placing the red
cup on different initial positions. Our robot could adapt
movements to goals which change their position during the
robot’s movement. Additionally, movement trajectories were
automatically adapted to avoid moving obstacles (see Fig. 13
and video supplement).

V. CONCLUSIONS AND FUTURE WORK

This paper extended the framework of dynamic movement
primitives to action sequences that allow object manipu-
lation. We suggested several improvements of the original
movement primitive framework, and added semantic infor-
mation to movement primitives, such that they can code
object oriented action. We demonstrated the feasibility of
our approach in an imitation learning setting, where a robot
learned a water-serving and a pick-and-place task from
human demonstration, and could generalize this task to novel
situations.

The approach is not restricted to the presented experimen-
tal platform. Any type of motion capture system that is capa-
ble of extracting the end-effector’s position and orientation
can substitute the Sarcos Master arm and any manipulator

Fig. 13. Sarcos Slave arm placing a red cup on a green coaster. The
first row shows the placing movement on a fixed goal. The second row
shows the resulting movement as the goal changes (white dashed arc) after
movement onset. The third row shows the resulting movement as a blue
ball-like obstacle interferes with the placing movement.

that is able to track a reference trajectory in task space can
substitute the Sarcos Slave arm.

Future work will significantly extend the movement library
such that a rich movement repertoire can be represented.
Furthermore, work will focus on associating objects with
actions (similar to [10]) to enable planning of action se-
quences. Finally, we will apply this extended framework on
a humanoid robot.
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