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Abstract:

This deliverable discusses Actor-Critic Architectures for reinforcement learning in PACO-PLUS.
Given the recent developments achieved by the consortium, we conclude that Actor-Critic
Architectures should by replaced by aneurally compatible version of SARSA learning.




Strategies for modification of Actor-Critic Loops

Note: Parts of this deliverable have been presented already in the first progress
report. The goal of this deliverble is to assess Actor-Critic architectures in con-
junction with PACO-PLUS.

The idea behind using an Actor-Critic algorithm lies in its biological realism.
For instance there exist many models of the basal-ganglia (see [JNR02] for a
review) which try to implement the Actor-Critic in a biologically realistic way.
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Figure 1: Actor-Critic control system, where a Critic influences action selection
by means of a reinforcement signal.

The algorithm (see Fig 1) originated from the field of Reinforcement Learning
(RL, [SB98]). In RL an agent maximizes the rewards r it will receive when
following a policy traveling along states s. There exist many algorithms where
almost all of them rely on the temporal difference (TD) learning (Eq. 1, [Sut88])
rule similar to the critic in the Actor-Critic algorithm.

V(si) = (1 = a)V(si) + a(r(sit1) + 7V (si+1)), (1)

where V is the value of a state s;, r the reward, v the discount factor and « is
the learning rate.

Additionally the Actor-Critic has a separate memory structure to explicitly
represent the policy which is named actor

p(siya;) — p(si,a;) + Bos,, (2)

where p is the probability for a certain action a; to be taken from state s; and
0 a rate factor. It chooses actions that will lead to states with higher reward
expectations according to the TD-error:



b5, = 1(sit1) +7(V(siv1) = V(si)) (3)
However, in the general case an Actor-Critic converges badly and the conver-
gence as such cannot be guaranteed.

An alternative description that also uses a modified version of the temporal
difference learning rule but lacks biological realism is Q- or SARSA learning (the
difference between both algorithms will be discussed later, b(s;+1) in Eq. 4). For
these algorithms no explicit critic is necessary:

Q(si,a;) — (1 = )Q(si, ai) + a(r(siv1) + YQ(si41,b(si41))). (4)

This gives us the opportunity to handle a much more compact framework for
both: evaluating conducted actions and selecting new actions. Furthermore it is
known that these computations are superior when dealing only with a restricted
and well-defined set of actions which is the case for e.g. the ARMAR robot.

The only difference between Q- and SARSA learning is the dependence of the
update rule on the policy. In SARSA learning [SJLS00] the actually conducted
action is applied on the update rule [on-policy, b(s;+1) = a(s;+1)], Q-learning
[WD92] uses always the optimal action independent of the last choice [off-policy,
b(sit1) = argmaz,(n(si+1))]. Both strategies have advantages and disadvan-
tages but it is important to mention that the Actor-Critic algorithm is only
on-policy however Q- and SARSA learning incorporate both on- and off-policy.
To switch between these both policy learning strategies only one simple module
must be changed. This offers a flexible mechanism for future tasks.

Additionally, a recent publication [MNAT06] showed that SARSA learning
and not an Actor-Critic is used by primates. However, until recently it could
not be ascertained that SARSA learning can be implemented in a biologically
realistic way.

But now it has been finally been shown by us that SARSA learning can
indeed be emulated with biological realistic neurons that use correlation based
learning [PW03, WP04]. The architecture is depicted in Fig. 2 and the results
in Fig. 3.

Additionally the equivalence between RL and Correlation based learning
could be proven [KPWO07].

As RL depends on discrete states and actions, an extension to a continuous
space is required. Within the PACO-PLUS project a function approximation
method was developed for the framework of Q- and SARSA learning [TAK Ted].
The achieved results improve on former approaches and, under general condi-
tions, the algorithm guarantees convergence.

1 Summary Argumentation and Conclusion

Status at the time of writing the TA:

e Reinforcement learning (RL) in the context of PACO-PLUS must be effi-
cient and should be biologically motivated.
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Figure 2: This diagram shows the architecture of the neuronal equivalent of
SARSA Learning. Filled circles depict excitatory connections, empty circles
inhibitory connections and empty arrows the third input r(¢) (see equ 4). The
Q-values are located between the states-layer and the directions-layer. The
lateral excitation within the directions-layer guarantees an excitation of all layer
neurons when an action is conducted. In contrast the lateral inhibition of the
motor-layer ensures an excitation only of the neuron that fires first. The driving
neurons perform a random movement when the weights of the current state are
zero and the causality neurons feed back the information which motor neuron
actually fired. Additionally a reward is provided to the direction-layer.

e Actor-Critic Architetures where the only known RL-Method that sup-
ported these two notions at least to some degree.

e Convergence control for Actor-Critics, however, was known to be prob-
lematic.

e As a consequence better alternatives had to be found and Actor-Critics
were only to be considered if the search for better alternatives failed.

Status now:

e QQ-learning and SARSA are more reliable but not really compatible to
neuronal functions!.

e Q- and SARSA-learning have beneficial convegence properties.

e A neuronal implementation of SARSA has been achieved by us (see also
first PACO-PLUS report). SARSA relies on the TD-rule.

LA detailed argument exists here about the function of the Dopaminergic system, which
supports the biological realism of TD-learning [Sch98] but this does not immediatelly also
hold for Q- and SARSA.
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Figure 3: Results for Neuronal SARSA. Panel A shows an action field of each
state. The arrows point in the direction of the most probable action. In panel B
the time until the reward is found is plotted.

e A proof has been achieved by us that TD-learning can be made fully
equivalent to differential Hebbian learning

e Physiological evidence exists for the use of SARSA in primates [MNAT06]

Conclusion: This offers the option to implement the much more efficient SARSA-
algorithm in a biologically realistic way. Hence, Actor-Critic architectures will
not be pursued any longer in the context of PACO-PLUS.
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