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Abstract:

The core focus of WP4 is the formalization of Object Action Complexes (OACs). As part of WP4.2 this
deliverable reports on the development of representational systems for Object-Action Complexes that
integrate sensory attributes and action attributes acquired from various types of active behaviors, e.g.,
oculomotor, grasping, moving, and approaching behaviors. This deliverable comprises five papers that
present our work on representational systems for the integration of perception and action. The proposed
methods address the construction of object models that support visual detection, recognition, and
classification of objects in realistic/natural scenes, as well as their robotic manipulation.
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1. Executive Summary

The core focus of WP4 is the formalization of Object Action Complexes (OACs). This deliverable is part of
WP 4.2 and particularly addresses the development of a representational system for Object-Action
Complexes (OACs). The main idea of an OAC is that it integrates various types of sensory and action
attributes acquired from interactive exploration of the environment. At this early stage of the duration period
of this work package (formally started in month 13), various approaches and possible cooperations are
discussed that aim at combining efforts across work package groups in order to obtain a unified
representational system that represents the sensory and action features from a wide range of active behaviors,
e.g., oculomotor, grasping, moving, and approaching behaviors. The representational system that aims at
supporting the efficient interaction of the robot with the environment (1) builds on work on multisensorial
attributes performed in the context of WP 4.1 and (2) communicates with the LDEC system developed in the
context of WP 4.3 for the recognition and planning of goals. So far, several important steps have been made,
which contribute to the development of an integrated representational system that combines sensory and
action information acquired from perceiving and operating on a realistic environment. The operating
behaviors employed in our studies involve mainly oculomotor and grasping behaviors.

This deliverable comprises five papers that present first results of our research on representational systems
designed to link perception and action. The proposed methods address the construction of object models for
visual detection, recognition, and classification of objects in realistic/natural scenes, as well as their robotic
manipulation. Below, we briefly sketch the contribution of each paper to this work package.

[A] (Presented at Robotics, Science, and Systems 2007 in Atlanta, GA, USA). This paper presents an object
representation system that builds hierarchical object models on the basis of primitives localized in Euclidean
space by position and orientation. Models are constructed by detecting stable spatial relations of these
primitives when viewing a scene, and representing these relations in a probabilistic graphical model. The
learned models can be directly used for object detection, recognition and pose estimation; the paper provides
a systematic evaluation of the accuracy of estimated poses. This framework permits the seamless inclusion of
non-visual features such as kinematic parameters, and will later be used to learn associations between visual
and kinematic features for robotic grasping.

[B] (Submitted and partly presented at Humanoids-06 in Genoa, Italy). This paper presents an initial step
toward a visual cognitive system that is inspired by active saccadic human vision to build visual
representations. The system combines a perceptual mechanism with an episodic memory system for the
active exploration of an object by means of saccades. The perceptual mechanism builds visual
representations that are acquired by saccadically fixating different parts of the visual scene. The episodic
memory system (i.e., the representational system) stores the saccadic actions and the resulting sensory input
and uses this episodic knowledge to direct saccades to spatial locations that are relevant for the
classification/recognition of a newly encountered object. As such it adheres to neurophysiological and
psychological insights about the use of bottom-up and top-down driven processes in active human vision.

[C] (Draft paper to be submitted during the next months). This paper presents an intuitive approach towards
grasping unknown objects in whole or by parts. One important aim of the project is founded in providing a
robot actuator system with a set of primitive actions, e.g. pick-up an arbitrary object from a table. For
performing such basic actions, it is most valuable to model the object from 3D sensory input. However, we
have to state the question up to which detail this is necessary. Complex shape approximations are difficult to
process, while simple ones will give worse approximation. We prefer general fast on-line technigues instead
of pre-learned off-line examples, thus the algorithm's efficiency is the more important. Unknown objects are
hardly parametrizable but need real-time application for robot grasping. We adopted those motivations to
develop a novel approach using boxes as a mid-level representation. In our approach, we combine different
incentives on simplicity of boxes, efficiency of hierarchies and fit-and-split algorithms for shape
approximation in terms of grasping.
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[D] (Accepted for the 2007 IEEE International Conference on Intelligent Robots and Systems). In this paper
an approach to represent objects with respect to the similarity of their appearance is presented. The proposed
appearance based approach motivates a multi-modal representation scheme of objects. Once multiple
modalities are combined into one unique percept, the storage requirements for each modality can be
considerably reduced by exploiting similarities of objects and object views. This reduction allows acquiring
and storing larger amounts of object representations while preserving the ability to recognize objects.

[E] (Submitted and partly presented at two workshops at VISAPP 2007 and ICRA 2007). In this paper, a
procedural definition of the detection of ‘objectness’ as well as an algorithm to extract the object shape is
given by the interaction of two OACs. The first OAC is a “grasping reflex’ by which physical control over
unknown objects can be achieved. The second OAC becomes triggered in case that the first OAC is
successful. It extracts object shape by making use of object motion induced by the robot. By these two
modules, the existence of objects in the scene becomes detected (‘Birth of the object’) which is then
information that is relevant for the planning side.

Together the papers present a number of important contributions to the development of an OAC-based
representational system for the support of efficient active behaviors in a realistic environment:

e A probabilistic framework for learning cross-modal object models that associate object appearance
and pose with grasp parameters.

e A visual representational system that is informed by active human vision; it gathers visual input by
means of a sequence of saccades and uses stored representational knowledge to guide the selection
of relevant visual input in a top-down manner.

e A system that approaches intuitive grasp hypotheses generation for the grasping of unknown objects.
Shape approximating sets of oriented bounding boxes are used as a key for efficient grasp
hypotheses generation and refinement as also for including task dependency.

e Generation of compact appearance-based object representations which preserve the similarity among
objects and object view.

e A procedural definition of objects by means of two interacting OACSs that produces information that
can be passed to the high level planning module.

This work package also relies heavily on and informs a number of other work packages, including WP 1, WP
2, WP 6 and WP 7. The development of a representational scheme is influenced by neurophysiological and
cognitive ideas also reflected in the cognitive architecture examined in WP 1. Moreover, the idea of a
representational scheme acquired from and used for the support of active behaviors, directly relates to the
imitation learning, the machine learning and the perception-action themes studied in the context of WP 2,
WP 6 and WP 7, respectively.




Page 5 of 6

IST-FP6-STREP-26979 / HIDENETS Confidential

2. Attached Papers

A.

Hierarchical Integration of Local 3D Features for Probabilistic Pose Recovery

Renaud Detry and Justus Piater

Presented and published in the Proceedings of the Robotics, Science, and Systems Workshop: Robot
Manipulation: Sensing and Adapting to the Real World, 2007.

Abstract: This paper presents a 3D object representation framework. We develop a hierarchical model
based on probabilistic correspondences and probabilistic relations between 3D visual features. Features
at the bottom of the hierarchy are bound to local observations. Pairs of features that present strong
geometric correlation are iteratively grouped into higher-level meta-features that encode probabilistic
relative spatial relationships between their children. The model is instantiated by propagating evidence
up and down the hierarchy using a Belief Propagation algorithm, which infers the pose of high-level
features from local evidence and reinforces local evidence from globally consistent knowledge. We
demonstrate how to use our framework to estimate the pose of a known object in an unknown scene,
and provide a quantitative performance evaluation on synthetic data.

Toward a Visual Cognitive System using Active Top-down Saccadic Control

Joyca Lacroix, Eric Postma, Jaap van den Herik, and Jaap Murre

Submitted (Part of this work was presented and published in the Proceedings of the Humanoids-06
Workshop: Toward Cognitive Humanoid Robots, 2006).

Abstract: The saccadic selection of relevant visual input for preferential processing allows for the
efficient use of computational resources. Based on saccadic active human vision, we aim to develop a
plausible saccade-based visual cognitive system for a humanoid robot. This paper presents two initial
steps toward our objective by extending the saccade-based memory model called NIM to a plausible
model of natural visual classification. As a first step, we adapt NIM to a straightforward saccade-based
model for the classification of natural visual input called NIM-CLASS and evaluate the model in a
face-classification experiment. As a second step we aim to approach the interactive nature of human
vision by extending NIM-CLASS to NIM-CLASS'™ by adding active top-down saccadic control. We
then assess to what extent top-down control enhances the performance on the classification task. The
results show that the incorporation of top-down saccadic control benefits classification performance
compared to the purely bottom-up control, reducing the amount of visual input required for correct
classification. Our results lead us to the conclusion that NIM-CLASS'™ may provide a fruitful basis for
an active visual cognitive system for a humanoid robot that allows for the efficient use of the robot’s
processing resources.

Minimum Volume Bounding Box Decomposition for Robot Grasping
Kai Huebner, Johan Sommerfeld, Steffen Ruthotto and Danica Kragic.
Draft paper to be submitted during the next months.

Abstract: Thinking about intelligent robots involves consideration of how such systems can be
enabled to perceive, interpret and act in arbitrary and dynamic environments. While sensor perception
and model interpretation focus on the robot's internal representation of the world rather passively,
robot grasping capabilities are needed to actively execute tasks, modify scenarios and thereby reach
versatile goals. These capabilities should also include the generation of stable grasps to safely handle
even objects unknown to the robot. We believe that the key to this ability is not to select a good grasp
depending on the identification of an object (e.g. as a cup), but on its shape (e.g. as a composition of
shape primitives). In this paper, we envelop given 3D data points into primitive box shapes by a fit-
and-split algorithm that is based on an efficient Minimum Volume Bounding Box implementation.
Though box shapes are not able to approximate arbitrary data in a precise manner, they give efficient
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clues for planning grasps on arbitrary objects. We present the algorithm and experiments using the 3D
grasping simulator Grasplt!

D. Exploiting Similarities for Robot Perception
Kai Welke, Erhan Oztop, Gordon Cheng, and Ridiger Dillmann.
Accepted for the 2007 IEEE International Conference on Intelligent Robots and System.

Abstract: A cognitive robot system has to acquire and efficiently store vast knowledge about the
world it operates in. To cope with every day tasks, the robot needs to learn, classify and recognize a
manifold of different objects. Our work focuses on an object representation scheme that allows storing
perceived objects in a compact way. This will enable the system to store extensive information about
the world and will ease complex recognition tasks. The human visual system deploys several
mechanisms to reduce the amount of information. Our goal is to develop an artificial system that
mimics these mechanisms to create representations that can be used in cognitive tasks. In particular, in
this paper we will present our approach that exploits similarities among different views of objects. The
proposed representation scheme allows for reduction of storage required for the representation of
objects and preserves the information about the similarity among objects. This is achieved by selecting
‘important views’ of objects, depending on their stability. Furthermore, by extending the same
approach to multiple objects, we are able to exploit similarities between objects to find a common
representation and to further reduce the storage requirements.

E. Birth of the Object: Detection of Objectness and Extraction of Object Shape through OACs
Dirk Kraft, Emre Baseski, Mila Popovic, Norbert Kruger, Nicolas Pugeault, Danica Kragic, Sinan
Kalkan, and Florentin Worgotter

Submitted.

Abstract: We describe a process in which the segmentation of objects as well as the extraction of the
object shape becomes realized through active exploration of a robot vision system. In the exploration
process, two behavioural modules that link robot actions to the visual and haptic perception of objects
interact. First, by making use of an object independent grasping mechanism, physical control over
potential objects can be gained. Having evaluated the initial grasping mechanism as being successful, a
second behaviour extracts the object shape by making use of prediction based on the motion induced
by the robot. This also leads to the concept of an 'object’ as a set of features that change predictably
over different frames. The system is equipped with a certain degree of generic prior knowledge about
the world in terms of a sophisticated visual feature extraction process in an early cognitive vision
system, knowledge about its own embodiment as well as knowledge about geometric relationships
such as rigid body motion. This prior knowledge allows for the extraction of representations that are
semantically richer compared to other approaches.




Hierarchical Integration of Local 3D Features
for Probabilistic Pose Recovery

Renaud Detry
Montefiore Institute, University of Liege, Belgium
Email: Renaud.Detry @ULg.ac.be

Abstract— This paper presents a 3D object representation
framework. We develop a hierarchical model based on probabilis-
tic correspondences and probabilistic relations between 3D visual
features. Features at the bottom of the hierarchy are bound to
local observations. Pairs of features that present strong geometric
correlation are iteratively grouped into higher-level meta-features
that encode probabilistic relative spatial relationships between
their children. The model is instantiated by propagating evidence
up and down the hierarchy using a Belief Propagation algorithm,
which infers the pose of high-level features from local evidence
and reinforces local evidence from globally consistent knowledge.
We demonstrate how to use our framework to estimate the pose of
a known object in an unknown scene, and provide a quantitative
performance evaluation on synthetic data.

I. INTRODUCTION

Objects can be characterized by configurations of parts. This
insight is reflected in computer vision by the increasing pop-
ularity of representations that combine local appearance with
spatial relationships [1, 2, 12]. Such methods are richer and
more easily constructed than purely geometric models, more
expressive than methods purely based on local appearance
such as bag-of-features methods [10, 3] and more robust and
more easily handled in the presence of clutter and occlusions
than methods based on global appearance. Moreover, they not
only allow bottom-up inference of object parameters based on
features detected in images, but also top-down inference of
image-space appearance based on object parameters.

We have recently presented a framework for unsupervised
learning of hierarchical representations that combine local
appearance and probabilistic spatial relationships [13, 14]. By
analyzing a set of training images, our method creates a code-
book of features and observes recurring spatial relationships
between them. Pairs of features that are often observed in
particular mutual configurations are combined into a meta-
feature. This procedure is iterated, leading to a hierarchical
representation in the form of a graphical model with primitive,
local features at the bottom, and increasingly expressive meta-
features at higher levels. Depending on the training data, this
leads to rich representations useful for tasks such as object
detection and recognition from 2D images.

We are currently developing an extension of this method
to 3D, multi-modal features. We intend to integrate multiple
perceptual aspects of an object in one coherent model, by
combining visual descriptors with haptic and proprioceptive
information. This will be directly applicable to robotic tasks

Justus Piater
Montefiore Institute, University of Liege, Belgium
Email: Justus.Piater@ULg.ac.be

such as grasping and object manipulation. Correlated percepts
of different natures will induce cross-modal associations; a
grasp strategy may be linked directly to visual features that
predict its applicability.

In this paper, we focus on hierarchical models for visual
object representation. Here, an observation is an oriented
patch in 3-space, annotated by various visual appearance
characteristics. To infer the presence of an object in a scene,
evidence from local features is integrated through bottom-
up inference within the hierarchical model. Intuitively, each
feature probabilistically votes for all possible object configu-
rations consistent with its pose. During inference, a consensus
emerges among the available evidence, leading to one or more
consistent scene interpretations. The system never commits to
specific feature correspondences, and is robust to substantial
clutter and occlusions.

We illustrate our method on the application of object pose
estimation. Object models are learned within a given world
reference frame, within which the object is placed in a
reference pose. Comparing an instance of the model in an
unknown scene with an instance in the learned scene allows
us to deduce the object pose parameters in the unknown scene.

II. HIERARCHICAL MODEL

Our object model consists of a set of generic features orga-
nized in a hierarchy. Features that form the bottom level of the
hierarchy, referred to as primitive features, are bound to visual
observations. The rest of the features are meta-features which
embody spatial configurations of more elementary features,
either meta or primitive. Thus, a meta-feature incarnates the
relative configuration of two features from a lower level of the
hierarchy.

A feature can intuitively be associated to a “part” of an
object, i.e. a generic component instantiated once or several
times during a “mental reconstruction” of the object. At
the bottom of the hierarchy, primitive features correspond
to local parts that each may have many instances in the
object. Climbing up the hierarchy, meta-features correspond to
increasingly complex parts defined in terms of constellations
of lower parts. Eventually, parts become complex enough to
satisfactorily represent the whole object. Figure 1 shows a
didactic example of a hierarchy for a bike. The bike is the
composition of frame and wheel features. A wheel is composed
of pieces of tire and spokes. The generic piece of tire at the
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Fig. 1. A didactic example of a hierarchical model of a bike.
Fig. 2. Instances of the generic piece-of-tire primitive feature in the bike

scene.

bottom of the hierarchy is a primitive feature; the pieces of
tire squared in green in the scene (Figure 2) are instances of
that primitive feature.

At the bottom of the hierarchy, primitive features are tagged
with an appearance descriptor called a codebook vector. The
set of all codebook vectors forms a codebook that binds
the object model to the feature observations, by associating
observations to primitive features.

In summary, information about an object is stored within
the model in the three following forms:

i. the topology of the hierarchy,

ii. the relationships between related features,

iii. the codebook vectors annotating bottom-level features.

A. Parametrization

Formally, the hierarchy is implemented using a Pairwise
Markov Random Field (see Figure 3). Features are associated
to hidden nodes (white in Figure 3), and the structure of the
hierarchy is reflected by the edge pattern between them. Each
meta-feature is thus linked to its two child features. Observed
variables y; of the random field stand for observations.

When a model is associated to a particular scene (during
construction or instantiation), features are associated to corre-
sponding instances in that scene. The correspondence between
a feature ¢ and its instances is represented by a probability
density over the pose space SE(3) = R3 x SO(3) represented
by a random variable x;.

As noted above, a meta-feature encodes the relationship
between its two children. However, the graph records this
information in a slightly different but equivalent way: instead
of recording the relationship between the two child features,

Fig. 3. A Pairwise Markov Random Field representing a feature hierarchy.
Features correspond to hidden variables (white). Observed variables (black)
correspond to observations, bound to bottom-level primitive features.

the graph records the two relationships between the meta-
feature and each of its children. The relationship between
a meta-feature ¢ and one of its children j is parametrized
by a compatibility potential function ;j(x;,x;) associated
to the edge e;;. A compatibility potential specifies, for any
given pair of poses of the features it links, the probability of
finding that particular configuration for these two features. We
only consider rigid-body relationships. Moreover, relationships
are relative spatial configurations. Compatibility potentials can
thus be represented by a probability density over the feature—
to—feature transformation space SE(3).

Compatibility potentials allow relationship distributions to
have multiple modes. In the bike model, let us consider the
meta-feature that represents a generic wheel. There are two
wheels in the picture; two instances of the wheel feature will
be used in a mental reconstruction of the bike. Hence, the
compatibility potential between the wheel feature and the bike
feature will be dense around two modes, one corresponding
to the transformation between the bike and the front wheel
(“the front wheel is on the right side of the bike”), the other
between the bike and the rear wheel (“the rear wheel is on the
left side of the bike”).

Finally, the statistical dependency between a hidden variable
x; and its observed variable y; is parametrized by an observa-
tion potential ¢;(x;), also referred to as evidence for x;, which
corresponds to the spatial distribution of x;’s observations.

The term primitive feature instance formally refers to a
random draw from a primitive feature distribution. While a
primitive feature instance often corresponds to an observation,
observations enter into the graphical model merely as prior
knowledge. Primitive feature instances result from inference;
they depend on observations and on all features of the hier-
archy. Owing to inference mechanisms presented in the next
paragraph, if an observation is discarded (e.g. occluded), a
primitive feature instance may nevertheless appear at its place.

B. Model Instantiation

Model instantiation is the process of detecting instances
of an object model in a scene. It provides pose densities
for all features of the model, indicating where the learned
object is likely to be present. Instantiating a model in a



scene amounts to inferring posterior marginal densities for
all features of the hierarchy. Thus, once priors (observation
potentials, evidence) have been defined, instantiation can be
achieved by any applicable inference algorithms. We currently
use a Belief Propagation algorithm described in Section III-A.

For primitive features, evidence is estimated from feature
observations. Observations are classified according to the
primitive feature codebook; for each primitive feature i, its
observation potential ¢;(z;) is estimated from observations
that are associated to the i*” codebook vector. For meta-
features, evidence is uniform.

C. Model Construction

The construction procedure starts by clustering feature ob-
servations in the appearance space to build a codebook of
observations. The number of classes is a parameter of the
system. These classes are then used to initialize the first level
of the graph:

1) A primitive feature is created for each class;
2) Each primitive feature is tagged with the codebook
vector (cluster center) of its corresponding class.

The spatial probabilistic density of each primitive feature
is then computed from the spatial distribution of correspond-
ing observations. We use nonparametric representations (see
section III-B); the set of observations bound to each primitive
feature can thus be directly used as a density representation.

After primitive features have been computed, the graph is
built incrementally, in an iterative manner. The construction
algorithm works by extracting feature co-occurrence statistics.
Features that tend to occur at non-accidental relative positions
are repeatedly grouped into a higher-level meta-feature. At
each step, the top level of the graph is searched for strongly
correlated pairs of features. The k£ most strongly correlated
pairs are selected to form the k meta-features of the next
level. The number of meta-features created at each step is a
parameter, which we usually keep equal to the initial number
of classes. The search for strong feature combinations is the
operation responsible for the topology of the graph.

The k& new meta-features are then provided with a spatial
probability distribution, generated from a combination of the
children’s densities. The meta-feature is placed in the middle
of its children, location- and orientation-wise (thus, the meta-
feature distribution will be dense between dense regions of
the children’s distributions). Finally, spatial relations between
each meta-feature and its children are extracted, which defines
the compatibility potentials. This is achieved by repeatedly
taking a pair of samples, one from the parent distribution
and one from a child’s distribution. The spatial relationships
between a large number of these pairs form the relationship
distribution between the parent and that child. While the search
for strong combinations was responsible for the topology of
the graph, the extraction of spatial relations is responsible
for the parametrization of the graph through the definition
of compatibility potentials associated with edges between ad-
jacent features. This parametrization constitutes the principal

outcome of the learning algorithm. Relationship extraction is
the last operation of a level-construction iteration.

Incremental construction of the graph can, in principle,
continue indefinitely, growing an ever-richer representation of
the observed scene. The number of levels is a parameter that
is chosen to reach a desired level of abstraction; its effect will
be discussed in Section V.

III. IMPLEMENTATION
A. Inference

Graphical models are a convenient substrate of sophisticated
inference algorithms, i.e. algorithms for efficient computation
of statistical quantities. An efficient inference algorithm is es-
sential to the hierarchical model, for it provides the mechanism
that will let features communicate and propagate information.

Our inference algorithm of choice is currently the Belief
Propagation algorithm (BP) [11, 16, 6]. Belief Propagation
is based on incremental updates of marginal probability esti-
mates, referred to as beliefs. The belief at feature ¢ is denoted

b(z;) = P(zi|y) = /.../P(ml,...,xmy)
dIl...dl'i_leCi_;,_l...dfﬂN

where y stands for the set of observations. During the ex-
ecution of the algorithm, messages are exchanged between
neighboring features (hidden nodes). A message that feature 7
sends to feature j is denoted m;;(z;), and contains feature ¢’s
belief about the state of feature j. In other words, m;;(x;) is
a real positive function proportional to feature ¢’s belief about
the plausibility of finding feature j in pose x;. Messages are
exchanged until all beliefs converge, i.e. until all messages
that a node receives predict a similar state.

At any time during the execution of the algorithm, the
current pose belief (or marginal probability estimate) for
feature ¢ is the normalized product of the local evidence and
all incoming messages, as

bz(sz) = %%(Jﬁz) H

Jj Eneighbors(z)

mji(xi)~ (D

where Z is a normalizing constant. To prepare a message
for feature j, feature ¢ starts by computing a local “pose
belief estimation”, as the product of the local evidence and
all incoming messages but the one that comes from j. This
product is then multiplied with the compatibility potential of
7 and j, and marginalized over x;. The complete message
expression is

mij(2;) :/Ufij(xivmj)@(ffi)
11

keneighbors(2)\ j

As we see, the computation of a message doesn’t directly
involve the complete local belief (1). In general, the explicit
belief for each node is computed only once, after all desirable
messages have been exchanged.



When BP is finished, collected evidence has been prop-
agated from primitive features to the top of the hierarchy,
permitting inference of marginal pose densities at top-level
features. Furthermore, regardless of the propagation scheme
(message update order), the iterative aspect of the message
passing algorithm ensures that global belief about the object
pose — concentrated at the top nodes — has at some point
been propagated back down the hierarchy, reinforcing globally
consistent evidence and permitting the inference of occluded
features. While there is no theoretical proof of BP convergence
for loopy graphs, empirical success has been demonstrated in
many situations.

B. Nonparametric Representation

We opted for a nonparametric approach to probability
density representation. A density is simply represented by
a set of particles; the local density of these particles in
space is proportional to the actual probabilistic density in that
region. Compared to usual parametric approaches that involve
a limited number of parametrized kernels, problems like fitting
of mixtures or the choice of a number of components can
be avoided. Also, no assumption concerning the shape of the
density has to be made.

Particles live in the Special Euclidean Space SE(3). The
location/translation component is parametrized by a 3—vector.
For the orientation/rotation component it was decided to prefer
quaternions over rotation matrices, for they provide a well-
suited formalism for the manipulation of rotations such as
composition or metric definition [9, 7].

For inference, we use a variant of BP, Nonparametric Belief
Propagation, which essentially develops an algorithm for BP
message update (2) in the particular case of continuous,
non-Gaussian potentials [15]. The underlying method is an
extension of particle filtering; the representational approach is
thus nonparametric and fits our model very well.

IV. OBJECT POSE ESTIMATION

Since features at the top of an object model represent
the whole object, they will present relatively concentrated
densities that are unimodal if exactly one instance of this
object is present in the scene. These densities can be used
to estimate the object pose. Let us consider a model for a
given object, and a pair of scenes where the object appears. In
the first scene, the object is in a reference pose. In the second
scene, the pose of the object is unknown. The application our
method to estimate the pose of the object in the second scene
goes as follows:

1) Instantiate the object model in the reference scene.

For every top-level feature ¢ of the instantiated graph,
compute a reference aggregate feature pose i from its
unimodal density.
Instantiating the model in a reference scene is necessary
because even though the top-level features all represent
the whole object, they come from different recursive
combinations of features of various poses.

2) Instantiate the object model in the unknown scene. For
every top feature of that graph, compute an aggregate
feature pose .

3) For all top level features ¢, the transformations from 7r§
to 75 should be very similar; let us denote the mean
transformation ¢. This transformation corresponds to the
rigid body motion between the pose of the object in the
first scene and its pose in the second scene. Since the
first scene is a reference pose, t is the pose of the object
in the second scene.

A prominent aspect of this procedure is its ability to recover
an object pose without explicit point-to-point correspondences.
The estimated pose emerges from a negotiation involving all
available data.

V. EXPERIMENTS

We ran pose estimation experiments on a series of artificial
“objects” presented in Figure 4. In these experiments, we
bypass the clustering step and directly generate evidence
for primitive features. Since we use nonparametric density
representations, we generate observations that directly become
evidence for primitive features. Primitive features may have
distributions in the shape of blobs, lines, and curves (see
Figure 4). For a blob, location components of observations
are drawn from a Gaussian distribution around a random 3D
point; orientation components are drawn from a Von Mises-
Fisher distribution [5, 4] centered at a random 3D orientation.
For a line, locations are drawn from a Gaussian distribution
around a line segment; orientations are drawn from a Von
Mises-Fisher distribution centered at a 3D orientation such that
its main direction is along the line and its second direction is
in a fixed plane. Figure 5 illustrates orientations.

In the next paragraphs, we go through the procedure of a
pose estimation experiment. First, a model is learned from
one set of observations of an object of interest (the reference
scene). A hierarchy is built up to n levels, we instantiate
the model in the reference scene, and compute a reference
aggregate feature pose 7 for every top feature i of the model.

We are then ready to estimate the pose of our object in
a novel, noisy scene. We initialize primitive-feature evidence
of the model on a fresh draw of observations of the object
of interest in a random pose plus observations of a foreign
object (see Figures 4(b), 4(d), 4(f)). Evidence is propagated
through the hierarchy, and we can eventually estimate the top-
feature poses. Since the object of interest is present only once
in the noisy scene, top level features should, after instantiation,
present unimodal densities; we can safely compute a mean
pose 75 for each of them.

Finally, we compute the transformation ¢; between 7} and
74 for every top feature i. As noted in Section IV, all ¢; are
very similar. Let us denote the mean transformation ¢, which
corresponds to the estimated rigid body motion between the
pose of the object in the reference scene, and its pose in the
noisy scene. Let us also denote dt¢ the standard deviation of
individual ¢;’s around t.



(a) blobs (object) (b) blobs (noisy

scene)

(c) triangle (object) (d) triangle
scene)

Fig. 4. Synthetic object observations in Figures (a), (c), (e); noisy scene for each object in Figures (b), (d), (f). Each figure shows
primitive-feature densities; color indicates the different primitive feature classes. For instance, Figure (a) shows a simple object
consisting of three blobs. The bottom level of the hierarchy corresponding to this object will be composed of three primitive

(noisy (e) square (object)  (f) square (noisy

scene)

Fig. 5. Aurtificially gen-
erated observations and
their poses.

features. For each blob, all observations are associated to one and the same primitive feature.
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Error of the translation (relative to object size) and rotation estimates (in degrees) as a function of the number of levels. The cyan line indicates

the error when the pose is estimated on a background-noise—free scene, i.e. for an experiment similar to that described in the text, except that we do not

add observations from a foreign object before pose estimation. This error is al

ready low at level 0, since the mean of each primitive feature observations for

model instantiation is very similar to that used for model learning. The black line indicates the mean error for noisy scenes — i.e. scenes including foreign

objects. The green and blue lines indicate the variance across runs and across

To evaluate the quality of our estimation, we compare ¢ to
the ground truth rigid body motion T of the object of interest
between the reference scene and the noisy scene. Comparison
relies on the distances between translations and distances
between rotations. The distance between two rotations 6 and
0’ is defined as the angle (in degrees) of the 3D rotation that
moves from 6 to #. It can be computed using the quaternion
representations of 6 and 6" as [9]:

d(q,q') = 2arccos(lg - ¢'))-

For each object, this experiment is repeated with different
hierarchy heights, from 0 to 20, and for different random
seeds. Results are presented in Figure 6. Let us denote
(A7,07) and (A5, 65.) the translational and rotational parts of
transformations ¢ and 7' for a random seed s. Figures 6(a),
6(b) and 6(c) show the mean error of translation estimates
as a function of the number of levels. They present on a
logarithmic scale the mean distance between A{ and A%, for all
s divided by the global size of the object. The global size of the
object is defined as the standard deviation of its observations
from its center of gravity. Figures 6(d), 6(e) and 6(f) show,
on a logarithmic scale, the mean error in degrees of rotation
estimates as a function of the number of levels.

The mean error is always large for shallow hierarchies,
but decreases rapidly for taller hierarchies until it eventually
reaches a stable value. For objects of increasing complexity,
this happens at increasingly higher levels. In particular, the
noisy scene for the square contains the square itself, plus a
second shape that corresponds to a square with one displaced
edge. It is only after level 4 that the wrong shape is discarded,

top-level nodes. See the text for details.

and a correct pose of the square is successfully estimated. The
triangle has to be detected in a very noisy scene. This leads to
a larger translational error that does not get smaller than 0.1
— about 5% of the edge length of the triangle.

In Figure 6, green lines give an idea of the variance between
runs under different random seeds. They show the mean error
plus three standard deviations. This variance is relatively large
since the random variations affect both the synthetic scenes
and the models constructed. Lines in blue show the mean
error plus three times the mean (over individual runs) of
inter-feature standard deviations d¢; they give an idea of the
variance between top-level features of the same graph during
a given run. This variance is large for shallow hierarchies, but
converges to 0 for higher levels, which means that top-level
features of a model tend to agree more and more as we use
taller hierarchies.

The accuracy of pose estimation is further illustrated in
Figure 7 that shows the noisy triangle scene (green) and the
estimated triangle pose (red).

In the above experiments, feature observations are generated
synthetically. Thereby, we avoid the problem of extracting
3D features from sets of images. By manually associating
observations to primitive features, we have control over the
clustering step. Since the features are synthesized in 3D,
there are no viewpoint issues. Despite their simplicity, these
experiments demonstrate the feasibility of our sophisticated
method.

One way to obtain 3D feature observations from real objects
is the early-cognitive-vision system MolInS [8], which extracts
3D primitives from stereo views of a scene (see Figure 8).



(a) Left (b) Right

Fig. 7. Accuracy of pose estimation. The noisy
triangle scene is green, and the red triangle in-
dicates where the system estimates its position.

Fig. 8.

a different viewpoint.

Figures 8(d) and 8(e) show preliminary results with MolInS
features. A model for the basket is learned from one stereo pair
(see Figure 8(c)). The model is then instantiated in a scene shot
lcm closer to the basket (Figure 8(d)) and in another scene
shot 5cm closer to the basket (Figure 8(e)). The 5cm result
happens to look better because it is rendered from a viewpoint
similar to the stereo camera, and — as is typical for stereo
reconstruction — MolnS 3D primitives are localized much more
accurately in a direction perpendicular to the optical axis of
the camera than in depth.

As noted above, this experiment is preliminary. For techni-
cal reasons, we were limited to translational motions along
the optical axis. We plan to work on sequences involving
rotations and multiple objects in the near future. The system
already proved some robustness against clutter in the artificial
experiments, and viewpoint-related issues will be eased by the
MolnS system.

VI. CONCLUSION

We presented a probabilistic framework for hierarchical
object representation. Hierarchies are implemented with Pair-
wise Markov Random Fields in which hidden nodes rep-
resent generic features, and edges model the abstraction of
highly correlated features into a higher-level meta-feature.
Once PMRF evidence is extracted from observations, posterior
marginal pose densities for all features of the graph are
inferred by the Belief Propagation algorithm.

Posterior pose densities can be used to compute a pose for
a known object in an unknown scene, which we demonstrated
through a series of experiments to estimate rigid body motion.
We are thus able to achieve pose recovery without prior object
models, and without explicit point correspondences.

Our framework is not specific to visual features and allows
the natural integration of non-visual features such as haptic
and proprioceptive parameters. This will potentially lead to
cross-modal representations useful for robotic grasping and
exploratory learning of object manipulation, which we will
explore in future work.
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Abstract

The saccadic selection of relevant visual input for preferential processing al-
lows for the efficient use of computational resources. Based on saccadic active
human vision, we aim to develop a plausible saccade-based visual cognitive sys-
tem for a humanoid robot. This paper presents two initial steps toward our ob-
jective by extending the saccade-based memory model called NIM to a plausible
model of natural visual classification. As a first step, we adapt NIM to a straight-
forward saccade-based model for the classification of natural visual input called
NIM-CLASS and evaluate the model in a face-classification experiment. As a sec-
ond step we aim to approach the interactive nature of human vision by extending
NIM-CLASS to NIM-CLASSTP by adding active top-down saccadic control. We
then assess to what extent top-down control enhances the performance on the clas-
sification task. The results show that the incorporation of top-down saccadic con-
trol benefits classification performance compared to the purely bottom-up control,
reducing the amount of visual input required for correct classification. Our results
lead us to the conclusion that NIM-CLASST? may provide a fruitful basis for an
active visual cognitive system for a humanoid robot that allows for the efficient use
of the robot’s processing resources.

1 Introduction

Since the early days of computer vision, the human visual system has been an important
source of inspiration for building veridical visual representations suitable for cognitive



processing.[1, 2, 3, 4, 5, 6] While the computer vision methods are often based on the
neurocognitive and psychophysical characteristics of the human visual processing and
representational system, the saccadic nature of human vision has received much less
attention. The selection of relevant visual input by means of saccades may allow for a
minimization of the resources required to construct suitable representations for further
cognitive processing (e.g., image recognition). Psychological studies showed that in
the dynamic process of actively scanning the visual scene, saccades are guided by both
bottom-up processes[7] and top-down processes. [8, 9, 10, 11, 12] Several cognitive
processes combine the currently available visual input with stored knowledge and the
goals and plans of the viewer to select the most relevant visual input.[10, 13]

The psychological and biological insights of saccade-based human vision provide
useful guidelines for building a plausible visual cognitive system that is able to per-
ceive and interact with the environment in an efficient and natural way. PACO-PLUS
(http://www.paco-plus.org/) is an ongoing project that aims at the design of a cogni-
tive system within a humanoid robot that is able to perceive and interact with a natural
environment. One of the key objectives of the project is the development of percep-
tual classes of natural input. Within the context of PACO-PLUS, we aim to develop a
pscyhologically and biologically plausible saccade-based visual cognitive system for a
humanoid robot. As a starting point we take the recently developed Natural Input Mem-
ory model (N1M) which is a saccade-based visual memory model for the recognition
of natural images.[14] NIM encompasses a biologically informed perceptual front-end
that selects local samples (i.e., eye fixations) from natural images by means of saccades
and translates these into feature-vector representations. These representations are used
to make memory-based decisions by a computational memory back-end that is based
on the mathematical psychology tradition. Although NIM’s saccadic selection is based
on visual saliency, we will extend the model with an original approach to top-down
saccadic control that relies on cognitive systems.

This paper presents two initial steps toward the realization of a visual cognitive
system for a humanoid robot capable to classify natural visual input on the basis of
saccadically selected samples. As a first step, we present a saccade-based classifier
of natural images called NIM-CLASS that is based on NIM. Subsequently, we aim
to approach the interactive nature of natural vision by extending NIM-CLASS with
an active top-down saccadic control mechanism. The extended model is called NIM-
CLASSTP. We then assess to what extent the use of top-down saccadic control as
employed by NIM-CLASS”? improves the performance on a face-classification task
compared to the purely bottom-up saccadic control as employed by NIM-CLASS.

The outline of the remainder of this paper is as follows. In section 2, we present
NIM-CLASS, a saccade-based model for the classification of natural visual input that is
based on NIM. This is followed in section 3 by a description of the classification exper-
iment that was used for our classification studies involving the classification of faces.
In section 4, the classification performance of NIM-CLASS is evaluated on the face-
classification task. Subsequently, section 5 extends NIM-CLASS to NIM-CLASS”?
by introducing top-down saccadic control to direct saccades toward relevant spatial
locations in an image. After that, section 6 assesses the classification performance of
NIM-CLASSTP. In section 7, we discuss bottom-up and top-down gaze control models,
examine the scalability of the NIM-CLASS variants, and provide a comparison with ex-



isting models that have been tested for classification using the same data set of stimuli.
Finally, in section 8, we summarize the results and draw conclusions on the feasibility
of NIM-CLASS”? as a plausible visual cognitive system for a humanoid robot.

2 NIM-CLASS

NIM-CLASS is a model for the classification of natural images. It is based on NIM
that realizes a saccade-based memory model for the recognition of natural images.[14]
NIM encompasses the following two stages.

1. A saccade-based perceptual preprocessing stage that selects local image samples
and translates these into feature vectors.

2. A memory stage comprising two processes:

(a) astorage process that stores feature vectors in a straightforward manner;

(b) a recognition process that compares feature vectors of a newly presented
image with previously stored feature vectors.

Fig. 1 presents a schematic overview of NIM. The left and right side of the figure
correspond to the perceptual preprocessing stage (left) and the memory stage (right),
respectively. Inspired by saccades in human vision, the perceptual preprocessing stage
saccadically selects image samples (i.e., fixations) in a saliency-based manner (along
the contours in the image). For each fixation, visual input is translated into a feature
vector that resides in a similarity space. The translation is realized using a biologi-
cally informed method that involves a multi-scale wavelet decomposition (we use the
steerable pyramid[15]) followed by a principal component analysis. This method from
the domain of visual object recognition models the first stages of processing of infor-
mation in the human visual system (i.e., retina, LGN, V1/V2, V4/LOC).[16] NIM
applies the method in a saccade-based manner to build representations of fixated im-
age parts that together constitute the feature-vector representation of an image. The
memory stage stores the feature-vector representation (the storage process) and makes
memory-based decisions (e.g., recognition) by matching an incoming feature-vector
representation with previously stored representations. For a more detailed description
we refer to [14]. While NIM is a model for recognition of natural images, here we
show that it can readily be adapted into a model for classification of natural images
which we call NIM-CLASS. The feasibility of adapting NIM for classification has been
shown recently by [17] who combined NIM’s preprocessing stage to transform fixated
image parts into feature vectors with a Bayesian version of the memory stage in their
NIMBLE model and successfully applied it to face classification. NIM-CLASS uses a
slightly different approach that also adopts NIM’s preprocessing stage, but introduces
a different memory stage based on a nearest neighbor classifier that has been demon-
strated to be highly suitable for object classification.[18] Below, we discuss the two
processes of the NIM-CLASS memory stage: the storage process (2.1) and the classifi-
cation process (2.2). The storage and classification processes correspond to the training
and the testing stages that are commonly distinguished in supervised learning.[19]



2.1 The storage process

The NIM-CLASS storage process retains (i.e., stores) saccadically selected prepro-
cessed samples of natural images (i.e., fixations) that belong to a certain class. For
NIM-CLASS, each image represents an instance of a class. Therefore, in contrast to the
original NIM that stores unlabeled feature vectors, NIM-CLASS stores class labels with
each feature vector corresponding to the class associated with the image (i.e., ‘1’ for
class 1, ‘2’ for for class 2, and so forth).

The NIM model

1. Perceptual preprocessing stage:
-Saccadic local sample (i.e., fixation) selection
-Feature vector extraction

2. Memory stage:

(a) Storage: retain feature
vectors in memory

(b) Recognition: match
incoming feature vectors
with stored feature vectors

Scale

45° 90°
Filter orientation

Similarity space

Figure 1: The Natural Input Memory model (NIM). Reproduced from Lacroix et al.
(2006)



2.2 The classification process

The NIM-CLASS classification process employs a naive Bayesian method that is based
on an incremental estimate of the class-dependent probabilities.[19] In the classifica-
tion process, each fixation of the test image (i.e., each test feature vector) contributes to
an n-bin histogram, the bins of which represent the ‘beliefs’ in the n different classes.
For each test feature vector, the bin that corresponds to the label of its nearest neigh-
boring stored labeled feature vector (acquired in the storage process) is incremented
(e.g., if the stored labeled feature vector that is closest to the test feature vector has
label ‘1°, bin 1 is incremented). Finally, upon the last fixation, the class with the largest
bin (i.e., belief) determines the classification decision. This heuristic classification pro-
cess could readily be extended into a Bayesian approach in which each fixation updates
class-conditional probabilities according to the Bayes update rule.

3 Classification experiment

In our experiments, we evaluate the ability of NIM-CLASS to classify natural images
of faces. Below, we discuss the classification task (3.1), the data set (3.2), and the
experimental procedure (3.3).

3.1 The classification task

The classification task entails the identification of a natural image of a frontal face
with variations in facial expression, illumination (location of the light source), and
occlusion (sun glasses and scarf). For each individual, there are 13 views in total (see
Fig. 2). Humans are generally able to identify a face after a single encounter only,
despite variations in appearance.[20] Inspired by this fact, NIM-CLASS is evaluated on
a task in which the training set (i.e., the study list) consists of a single image for each
class and the test set (i.e., the test list) of the twelve remaining images. In this respect,
our evaluation differs from most evaluations in machine learning, where the training
set consists of a much larger fraction of the data set (see also section 7.3).

3.2 The data set

For the face-classification task, we chose to use the AR data set that contains over 4,000
images corresponding to the faces of 126 individuals.[21] For each individual, the AR
data set includes a sequence of 13 images of frontal view faces with different facial
expressions, illumination conditions, and occlusions. For the experiment, we selected
the sequence of 13 images (i.e., views) of the first 10 male individuals of the AR data
set as our data set. All face images were downscaled to 165 x 165 pixels. Fig. 2 shows
an example of the sequence of 13 views of one individual. The first (standard) view of
each individual was selected for the study list, the remaining 12 views were assigned
to the test list.



Figure 2: Example of the 13 views of one individual from the AR data set.

3.3 The experimental procedure

The face-classification experiment entailed a study and a test phase. During the study
phase, we presented NIM-CLASS with the images from the study list containing the first
view of each of the n = 10 individuals (i.e., the study faces). For each study face, NIM-
CLASS extracted and stored s labeled feature vectors. Then during the test phase, the
model was given the images from the test list (i.e, the 12 test faces) of each of the n = 10
studied individuals. For each of the test faces, the model extracted ¢ test feature vectors
to classify the face as one of the n = 10 individuals that it had previously encountered.
To assess how the NIM-CLASS classification performance varied as a function of the
number of storage fixations s and the number of test fixations ¢, the experiment was
repeated for values of s and ¢ in the range from 10 to 100, i.e., 5,7 € {10,20,...100}.

4 Classification by NIM-CLASS

Below, we present the NIM-CLASS results for the face-classification task (4.1). Subse-
quently, we evaluate the realism of NIM-CLASS as a plausible model of natural visual
classification by comparing viewing time and fixation selection by NIM-CLASS with
that by humans (4.2).

4.1 Classification results

Table 1 presents the percentages of correctly classified test faces for a range of values
of the number of storage fixations s and the number of test fixations #. The NIM-CLASS
classification performances range from just above chance level (16%) for s =t = 10 to
a good performance of 89.0% for s =t = 100. Evidently, NIM-CLASS is capable of
exhibiting a good performance provided that a sufficient number of fixations is made.

The results show, not surprisingly, that the performance increases both with the
number of storage fixations and the number of test fixations. Increasing the number
of stored fixations s, improves the performances more than increasing the number of
test fixations 7. For small s values, the performance hardly increases with 7. Evidently,
increasing the number of test fixations is only useful when a sufficient number of fea-
ture vectors was stored previously. From a statistical perspective this makes sense. A
proper approximation of the true distribution of feature vectors in a similarity space
associated with a single face requires a sufficient number of samples (fixations) of that
face.



Table 1: Percentages of correctly classified faces for a range of values of the number
of storage fixations s and the number of test fixations ?.

t 10 20 30 40 50 60 70 80 90 100

10 16.0 182 206 221 23.6 237 244 253 255 1262
20 213 263 295 321 355 383 393 41.1 427 435
30 26.5 328 381 425 463 49.0 520 533 555 573
40 30,0 395 457 51.1 551 58.6 608 631 645 66.8
50 340 452 517 570 618 649 680 700 715 737
60 36.7 492 570 627 669 707 737 753 773 785
70 39.8 529 618 677 712 753 778 79.6 80.9 825
80 427 570 659 709 754 779 80.7 829 843 854
90 457 60.1 683 738 783 &l.1 833 848 859 &4

100 476 63.1 713 77.0 806 832 847 87.1 878 89.0

Overall, the NIM-CLASS classification results demonstrate that natural images of
frontal faces under a variety of potentially disturbing conditions can be classified cor-
rectly using a classification process that compares (a sufficient number of) stored local
image samples (i.e., fixations) acquired during one encounter (i.e., one stored view) to
incoming local samples.

4.2 Comparison with humans

Considering our aim to build a visual cognitive system based on human vision, we
compare the NIM-CLASS performance with that of human face identification in a nat-
ural setting. Below, we compare viewing time (4.2.1) and saccadic control (4.2.2) by
NiM-CLASS with that by humans.

4.2.1 Viewing time by NIM-CLASS and by humans

The number of storage and test fixations extracted by NIM-CLASS can be interpreted
as the amount of viewing time of the image during the study and test phase, respec-
tively. Dividing the number of fixations by five provides a rough estimate of the num-
ber of seconds the image is inspected, since humans make about five fixations per
second.[10, 22] As the results show, the NIM-CLASS performance relies heavily on the
amount of viewing time during the study phase. This accords with results from several
psychological studies indicating that memory for visual information increases with the
amount of viewing time during the study phase.[23, 24, 25] Moreover, it is interesting
that a considerable percentage of faces (say ~ 75%) is classified correctly after a short
viewing time of about 8 seconds (40 fixations) during the test phase, provided that
there was a sufficiently long viewing time of about 20 seconds (100 fixations) during
the study phase.



Figure 3: Percentages of correctly classified faces for a fixed number of test fixations,
t =5, as a function of the number of storage fixations s for the test views without
occlusions (dark-grey line), with occlusions (light-grey line), and with and without
occlusions (black line).

We performed additional simulations to assess in more detail to what extent NIM-
CLASS is able to classify the test faces correctly on the basis of a brief viewing time
during the test phase. In these simulations, the experiment was repeated for values
of s that range from 10 to 1000, i.e., s € {10,20,...1000} which corresponds to about
2 seconds to 200 seconds of viewing time during the study phase, and the number
of test fixations was set to t = 5, which corresponds to approximately one second of
viewing time during the test phase. Fig. 3 presents the NIM-CLASS performance for
a fixed number of test fixations, ¢t = 5, as a function of the number of storage fixa-
tions s. To illustrate the differences between the performances for the faces without
and with occlusions, Fig. 3 shows the average performances across the six test views
without occlusions (dark-gray line), the average performances across the six test views
with occlusions (light-gray line), and the average performances across all the twelve
test views (black line), separately. For the faces with occlusions, a degraded perfor-
mance is observed compared to the performance for faces without occlusions. This
is so, because the probability that a sufficient amount of relevant visual information
is gathered for correct classification diminishes rapidly when one or more of the lim-
ited number of only five test fixations happen to be selected from occluded regions of
the face. Still, it can be said that NIM-CLASS is able to reach a considerable average
classification performance on the basis of a brief viewing time during the test phase,
provided NIM-CLASS has studied the face for a sufficiently long time. The same holds
for human vision, for which it is known that a brief viewing time will allow for correct
identification, provided the face is sufficiently familiar to the observer.[26, 20]

4.2.2 Saccadic control by NIM-CLASS and by humans

N1M-CLASS saccadically selects image samples (i.e., fixations) on the basis of their vi-
sual saliency (along the contours). Several behavioral studies showed that in human vi-
sion bottom-up processes draw the eyes toward salient visual features such as high edge



density and local contrast.[27, 7] Based on these findings, many models of gaze control
employed a bottom-up approach.[28, 29, 30] Often, a so-called ‘saliency map’ is con-
structed that marks those image regions that are visually distinct from their surround in
one or more visual features.[31] Then the gaze is directed to locations that are marked
as highly salient on the saliency map. In fact, our contour-based saccadic control for
the selection of fixations can be regarded as a realization of the bottom-up approach
in which contours are the salient features. Evidently, the saccadic fixation selection
of NIM-CLASS, can hardly be considered to agree with the active context-dependent
scanning of a visual scene that humans perform.[32] In addition to the available visual
input, human saccadic control draws on several cognitive systems.[9, 10, 11]

While bottom-up processes (based on visual saliency) have often been used to con-
trol the gaze in artificial systems, the use of top-down processes has not been examined
as often. Top-down processes employ stored knowledge and the goals of the viewer
to select the most relevant gaze location.[10, 13] Several studies showed that human
gaze control relies more on top-down processes than on bottom-up processes when
performing an active visual task with meaningful stimuli.[11] The top-down processes
are driven by several cognitive systems, including: (i) short-term episodic memory for
previously attended visual input,[33, 10] (ii) stored long-term knowledge about visual,
spatial, and semantic characteristics of classes of items or scenes acquired through
experience,[10] and (iii) the goals and plans of the viewer.[8, 34, 10] To adhere to the
use of top-down processes for saccadic control in human vision, sections 5 and 6 ex-
plore the use of top-down saccadic control and investigate to what extent this may aid
performance on the classification task.

5 Top-down Saccadic Control: Extending NIM-CLASS
to NIM-CLASS’P

Inspired by fixation selection in human vision, this section extends NIM-CLASS to
NIM-CLASST? by extending it with top-down saccadic control. NIM-CLASS? em-
ploys the top-down saccadic control during the classification of the test faces (i.e.,
in the classification process) and adopts the bottom-up (i.e., contour-based) saccadic
control of NIM-CLASS when it stores a face during the first encounter (i.e., in the
storage process). Top-down saccadic control during classification is based on two
main insights from psychological and neurocognitive studies about human gaze con-
trol demonstrating that: (i) saccadic local input selection is preceded and informed by
a preselective holistic image processing based on global image features,[35, 26, 36, 37]
and (ii) episodic knowledge about previously attended item parts provides detailed
item-specific information that may contribute to the recognition or classification of
the item.[33, 10, 24]

Inspired by the first insight that the human visual system computes a global sum-
mary of the entire image in a preselective initial glance used for saccadic selection,[38]
NIM-CLASSTP builds a global image representation by extracting global features from
the entire image. The role of the global representation in the model is to create a so-
called gist of the scene that is used to inform the subsequent saccadic selection of local



image samples.[11, 37]

Inspired by the second insight that humans rely on stored information about previ-
ously attended visual parts for saccadic control, NIM-CLASS”? implements an entropy-
based mechanism[39] that uses stored episodic knowledge about attended image parts
(i.e., the labeled feature vectors that were acquired during the storage process) to di-
rect saccades to locations that are likely to contain relevant visual input to solve the
classification task.

Below, we discuss the two processes of the memory stage of NIM-CLASST?: (i)
the storage process (5.1), and (ii) the classification process (5.2).

5.1 The storage process

The storage process of NIM-CLASS? stores labeled feature-vectors in a similar way
as the original NIM-CLASS, except that for each fixation NIM-CLASS? stores the co-
ordinates of the fixation location. In addition to the stored labeled feature vectors, a (la-
beled) global image representation is stored that is used to inform the saccadic control
mechanism. Several researchers have shown that a reliable global representation can
be constructed by pooling together the features that are used for local receptive-field
based representations (such as those implemented by the steerable pyramid transform
that we use for local feature extraction) over a large image region.[40, 37] In line with
this idea, NIM-CLASS? first downscales the image to a low-resolution version of 8 x 8
pixels and then filters the image using the same directional derivative wavelets that are
also used to transform saccadically selected locals samples.[37] The filter responses
are put together in a vector which is reduced to 50 dimensions using PCA.

The coordinate labels and the global image representation are used for top-down
saccadic fixation selection in the classification process.

5.2 The classification process

The classification process of NIM-CLASS”? involves a top-down saccadic control mech-
anism that selects fixations on the basis of: (i) the gist of a scene, and (ii) short-term
episodic knowledge. In NIM-CLASS, the gist of a scene corresponds is based on the
stored global representation and the short-term episodic knowledge corresponds to the
labeled feature vectors that were acquired during the storage process directly preceding
the current classification process.

For the implementation of the top-down fixation-selection mechanism, we rely on
the notion of Shannon’s entropy.[39] Shannon introduced entropy as a measure of un-
certainty. In order to decide in the most efficient way to which class a new item be-
longs, a system should select new input that minimizes the entropy, i.e., the uncertainty
about the class membership. In NIM-CLASS, uncertainty is represented by the his-
togram in which the heights of the bins represent the beliefs in the different classes.
Considering the uncertainty, the top-down saccadic control mechanism selects those
fixation locations that contain the most relevant information to decide upon the class
of the face under consideration (i.e., that minimize the entropy or uncertainty about the
class). In order to do so, the fixation-selection mechanism of the classification pro-
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cess in NIM-CLASS”P uses the short-term episodic knowledge about attended parts of
recently encountered faces (i.e., the stored labeled feature vectors).

To select the fixation locations that minimize the entropy (i.e., the locations that
contain the most relevant information for classification) the mechanism proceeds as
follows. First, the global representation of the test image is compared with the stored
labeled global representations. The two bins that correspond to the labels of the two
nearest neighboring stored global representations (acquired in the storage process) are
incremented (corresponding to the preselective construction of the gist of the scene.[37]
For each subsequent saccade, it first chooses the two most likely classes, P and Q, by
selecting the two highest bins in the histogram. Subsequently, it selects the fixation
location that best discriminates between the two classes P and Q (i.e., contains the
most relevant visual input with respect to P and Q). The selection relies on:

(1) the distances between the feature vectors of the two classes; and
(i) the distances between the spatial fixation locations from which they originated.

The idea behind the selection is that spatially adjacent fixations within one class
give rise to similar feature vectors. Hence, the fixation mechanism searches for a pair
of feature vectors p and g coming from classes P and Q, respectively, that originate
from relatively close spatial locations and at the same time are relatively distant from
each other in the representation space.

We implemented this idea heuristically. Below, we provide the steps followed by
the fixation-selection mechanism:

(1) Define the two classes that have the largest belief as the target classes, P and Q.

(i1) For each possible pair of feature vectors p and g coming from target classes P
and Q, respectively, calculate the ratio d(p,q)/d((x,y)p,(x,y)q), where d(p,q) is the
Euclidean distance between feature vectors p and ¢ in the representation space and
d((x,y)p,(x,y)g) is the Euclidean distance between the spatial coordinates (x,y) of p
and q.

(iii) Select the two feature vectors p and g for which the ratio is the highest.

(iv) Define the target location as the contour location that is closest to the midpoint of
the line connecting the spatial coordinates of p and q.

(v) Select the contour in the test image that is closest to the target location as the lo-
cation to be fixated next. If this location has been fixated before, go back to step 3
and take the next highest ratio in line. Moreover, in the highly unlikely event that all
locations that are selected on the basis of the ratios have been visited, select a random
fixation location.

6 Classification by NIM-CLASS™?

Below, we present the results for the face-classification task performed by NIM-CLASST?
(6.1) and compare the classification performance of NIM-CLASS and NIM-CLASS”?
(6.2).
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Table 2: The NIM-CLASS? classification performance for a range of values of the
number of storage fixations s and the number of test fixations ¢.

t 10 20 30 40 50 60 70 80 90 100

10 48.4 474 46.1 45.0 444 435 414 40.6 400 393
20 58.0 61.0 628 636 64.6 640 652 645 641 647
30 60.1 66.1 686 70.8 720 73.0 742 746 754 759
40 63.1 685 718 741 76.6 777 793 80.1 809 819
50 64.6 71.1 746 776 795 805 821 83.6 84.1 84.8
60 66.5 72.6 767 792 822 826 850 858 864 872
70 68.0 750 793 813 835 854 862 876 831 89.1
80 69.1 768 802 830 851 867 879 88.6 893 89.8
90 70.0 77.1 814 847 86.1 8777 888 899 90.1 91.0

100 714 78.6 826 855 874 89.1 900 905 914 922

6.1 Classification results

Table 2 presents the percentages of correctly classified test faces as a function of the
number of storage (s) and test (¢) fixations for NIM-CLASS”?. The NIM-CLASS?
classification performance reaches a performance of 92.2% for s =t = 100. As for
the original NIM-CLASS, the overall results of NIM-CLASS”? show that performance
increases with the number of storage fixations s and the number of test fixations ¢ and
the performance increases more with s than with . As was demonstrated for NIM-
CLASS, the results of NIM-CLASST? show that increasing the number of test fixations
t becomes useful when a sufficient number of feature vectors was stored previously. In
the case of a very limited number of s = 10 stored fixations, an increase in the number
of test fixations seems to even harm the classification performance suggesting that the
system has stored too few fixations to support the intelligent selection of fixations.

6.2 Discussion and comparison of classification results

Below we review and discuss the classification performances of NIM-CLASS and NIM-
CrLass™P.

The results show that extending NIM-CLASS with top-down saccadic control to
select relevant locations during classification, improves the performance on the clas-
sification task. To allow for easy comparison, Fig. 4 displays the performances of
NIM-CLASS and of NIM-CLASS”? in a surface plot. Evidently, NIM-CLASS”? di-
rects saccades to locations that are more relevant to perform the classification task than
those selected by the original NIM-CLASS. In NIM-CLASS”P, the saccadic control
mechanism actively constructs a fixation sequence based on: (i) a preselective gist of
the scene, (ii) the task to be solved (i.e., classification), and (iii) the stored episodic
knowledge about previous encounters with particular faces (i.e., the stored labeled fea-
ture vectors). Thereby it acknowledges the important role that these processes are

12



Figure 4: A comparison of the NIM-CLASS (lowest surface) and NIM-CLASs”? (top
surface) classification performances as a function of the number of storage fixations s
and the number of test fixations ¢.

known to play in human gaze control.[41, 34, 10, 37] The active strategy employed
by NiM-CLASS”P during classification ensures that the locations are fixated that are
known to discriminate well among the two most likely classes. Therefore, the model
is better able to form the correct classification decision. This is particularly so, when
a limited number of fixations are made. When a large number of fixations are made,
a sufficient amount of relevant visual information is gathered for correct classification
even when fixations are taken randomly along the contours. Using fewer fixations, the
probability that a sufficient amount of relevant visual information is gathered for cor-
rect classification decreases. Therefore, performance differences between the original
NIM-CLASS and the NIM-CLASS”? models are most pronounced for small ¢ values.

7 General discussion

Below, we discuss bottom-up and top-down gaze-control models (7.1). Subsequently,
we discuss the scalability of the two NIM-CLASS models (7.2). Finally, we compare the
NIM-CLASS and the NIM-CLASS”? classification performances to the performances
of existing classification models in the domain of artificial intelligence that have been
tested with the AR data set that was used for our studies (7.3).

7.1 Bottom-up and top-down gaze-control models

Two types of models of saccadic control (also called gaze-control models) can be dis-
tinguished: (i) bottom-up models, and (ii) top-down models. Below, we first discuss
bottom-up gaze-control models. Then, we compare top-down gaze control in NIM-
CLASSTP with other gaze-control models that use a top-down approach.
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7.1.1 Bottom-up gaze-control models

Until now, the bottom-up or stimulus-driven approach has been the dominant approach
to model gaze control. Bottom-up gaze-control models generally assume that fixation
locations are selected in a bottom-up manner based on the image properties.[31, 29, 30]
These models create a saliency map that marks the saliency of each image location.
Saliency is defined by the distinctiveness of a region from its surround on certain vi-
sual dimensions. Since locations with a high visual saliency are assumed to be highly
informative, the gaze is directed toward highly salient locations. Often, the visual di-
mensions that are used to generate a saliency map are similar to the visual dimensions
that are known to be processed by the human visual system such as color, intensity,
contrast, orientation, edge junctions, and motion.[42, 31, 43] Also, in order to discover
certain important visual dimensions for generating a saliency map, a few studies ana-
lyzed which visual dimensions best distinguish fixated image regions from non-fixated
image regions.[27, 7, 13]

Several studies showed that, under some conditions, fixation patterns predicted by
bottom-up gaze-control models correlate well with those observed in human subjects.[43]
In a study that recorded human scan paths when viewing a series of complex natural
and artificial scenes, it was found that human scan paths could be predicted quite ac-
curately by stimulus saliency which was based on color, intensity, and orientation.[43]
While the bottom-up approach may be successful in predicting human fixation patterns
for some tasks, it is inaccurate in predicting fixation patterns for an active task that
uses meaningful stimuli.[11, 44, 13] For example, [44] showed that a saliency model
performed as accurately as a random model in predicting the scan paths of human
subjects during a real-world activity. In contrast, they found that a model that used
only top-down (i.e., knowledge-driven) gaze control outperformed the random model.
Obviously, visual saliency alone cannot account for the human fixation patterns when
performing certain tasks. Similar results were found in another study where eye move-
ments of subjects were analyzed that viewed images of real-world scenes during an
active search task.[13] It was found that a visual saliency model did not predict fixation
patterns any better than a random model did. Therefore, it was concluded that visual
saliency does not account for eye movements during active search and that top-down
(i.e., knowledge-driven) processes play the dominant role.

7.1.2 Top-down gaze-control models

Whereas bottom-up gaze-control models use visual scene characteristics, top-down
gaze-control models rely on stored knowledge and task demands to select the most rel-
evant fixation locations.[10] This paper addresses one type of top-down saccadic con-
trol relying on short-term episodic knowledge about previously attended image parts
(and also on the task demands) to actively select the relevant fixation locations. This
type of top-down saccadic control relates to the approach employed by probabilistic ac-
tive vision models for classification.[45] Both select visual input to reduce uncertainty
about the class of a test item. The main difference between top-down gaze control in
the active probabilistic models and the top-down gaze control by NIM-CLASS”? con-
cerns the nature and amount of knowledge that the mechanism uses to select relevant
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fixations. Active probabilistic models either consider all possible fixation selections
at each time step[46, 47], consider all possible fixation selections on forehand[48],
or use a fixation selection policy that is acquired on the basis of an extensive train-
ing (e.g., reinforcement learning[49]) or on the basis of an evolutionary algorithm.[50]
In contrast, top-down saccadic control by NIM-CLASS”? relies solely on the feature
vectors that were stored during one encounter with the class instance (in the storage
process). A few other models have used a top-down approach to select relevant image
parts for classification on the basis of limited short-term episodic knowledge.[51] The
main difference with these models concerns the explicit representation of movement
sequences. The models often employ a separate ‘where’ (motor memory) system that
uses fixed eye-movement programs acquired from previously viewing the image.[51]
In contrast, NIM-CLASS”? actively constructs fixation patterns during classification
based on the short-term episodic knowledge about previous encounters with the faces
(i.e., the stored labeled feature vectors), rather than relying on the eye-movement se-
quence that was performed during the first encounter.

7.2 Scalability of the models

In our studies we have not examined how the NIM-CLASS and the NiM-CLASS”?
classification performances scale up with the number of classes. Below we offer some
perspective on the aspects that relate to the scalability of the models.

In our classification task, NIM-CLASS and NIM-CLASS”? deal with 130 objects
(i.e., faces) coming from 10 different classes. Obviously, this limited number of ob-
jects can hardly be considered to be representative for the large number of objects that
natural systems encounter in the real world. Ideally, a plausible classification or recog-
nition model should be able to distinguish among large numbers of objects. However,
since the different NIM-CLASS models store the complete encountered visual input,
classification time is linear in the number of encountered objects.[52] In order to ad-
dress this problem, mechanisms can be incorporated that use the representation space in
an efficient way and that ensure the maintenance of an efficient representation space. In
NIM-CLASST? we introduced a mechanism that operates on the representation space in
an efficient way by actively using the most relevant information in the representation
space. Therefore, we may assume that NIM-CLASS’? is more suitable than NIM-
CLASS for upscaling to a larger number of classes because it uses the representation
space in an efficient manner.

Further extension may address the maintenance of an efficient representation space.
For example, the storage process can be adapted in such a way that only relevant in-
formation is stored and retained. In human vision the brain continuously makes pre-
dictions about the expected visual input at the new fixation location.[53] In a similar
way a new NIM-CLASS variant may make predictions on the basis of long-term knowl-
edge and then store only the new input that deviates significantly from the expectations
(i.e., the relevant or informative input). In addition, the sparseness of the representation
space may be improved by forgetting stored information that is not addressed for a suf-
ficiently long period of time. Several neurally inspired representation techniques can
be used to realize a sparse and efficient representation space even for large numbers of
objects, including self-organizing maps (possibly growing upon novelty), radial basis
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function networks, and spiking neural networks.

7.3 Comparison with existing classification models

Several other models have been applied for the classification of the faces of the AR
data set. However, the existing models: (i) generally leave out the faces with occlu-
sions that appear to be the most difficult ones for many models or (ii) are trained on
more class instances than the one view that we used for training.[54, 55, 56] An ex-
ample of (ii) is a study that compared the performances of a nearest-neighbor classifier
operating on a representation space based on a Principal Component Analysis (PCA)
and on a Linear Discriminant Analysis (LDA) of the pixel values of the entire AR
images.[54] Their classification task differed from ours in the number of classes and
the number of training views. While their model was presented with 50 individuals
(classes) rather than the 10 individuals that we selected, training was based on a larger
set of two or even 13 views! rather than the one view that we used. Despite their larger
set of training instances per class, performances were lower than the performances that
we obtained with the different NIM-CLASS models. For the experiments with two
training views, the maximum average classification performances of around 60% were
obtained using PCA with 80 dimensions. For the experiments with 13 training views,
the maximum average classification performances of around 87% were obtained us-
ing LDA. A more recent study examined to what extent data-dependent kernels in a
nearest-neighbor classifier can enhance performance on a face-classification task.[56]
Their data-dependent kernel methods were tested for classification on various data sets
including the AR data set. Although their classification task used all of the 126 individ-
uals of the AR data set (compared to our 10 face classes), it was simplified in two ways
compared to our classification task. First, the face views with occlusions were left out,
leading to 7 face views without occlussions per class. Second, rather than training the
model on the one view per class that we did, they selected five faces for training and
the remaining two views were used for testing. The performances obtained with three
different data-dependent kernel methods ranged from 83.1 to 94.6. For a comparison,
our NIM-CLASS and NIM-CLASS”? models showed an average performance for the
faces without occlusions of 96.8% and 97.4%, respectively, when we used s =t = 100
storage and test fixations. 2

Although most models that were tested for classification on the AR data set were
trained on more than one view per class or left out the unfavorable views for testing, a
few studies used the same training and testing set as we did (i.e., one view for training
and the remaining 12 views for testing).[57] For example, [57] used one view of each
class for training and the remaining twelve for testing, when they compared the per-
formances of different classification algorithms on the AR data set. In their study, they
introduced the use of a Non-negative Matrix Factorization (NMF[58]) in the context of
classification and compared the performance of NMF with those of the widely applied

Tn addition to the series of 13 views of each individual, there was a second series of 13 views showing
the same view but taken at another point in time; when [54] used 13 training views, the 13 views of the
second series were used for testing.

2Since Tables 1 and 2 show average performances across all test views, these values are not found in the
tables.
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PcA, and two influential techniques from computer vision, a feature-based technique
based on Local Feature Analysis (LFA; [59]), and a Bayesian template-based technique
[60]. The techniques showed average performances for the faces without occlusions
(i.e., views 2 up to 7), of about 65.0% for the template-based technique, 74.0% for the
PcA technique (using 150 dimensions), 85.0% for the NMF technique and 90.0% for
the LFA-based technique (as mentioned in the previous paragraph our NIM-CLASS and
NIM-CLASST? models exceed these performance reaching performances of 96.8% and
97.4% using s =t = 100 storage and test fixations). However, average performances of
each of the techniques dropped substantially for the faces with occlusions, in particular
for the faces with sunglasses for which the average performance was about 8.0% for
the LFA-based technique, 22.0% for the PCA technique, 27.3% for the NMF technique
and 32.3% for the template-based technique. For a comparison, our NIM-CLASS and
NIM-CLASSTP models showed average performances for the faces occluded with sun-
glasses of 85.5% and 89.4%, respectively, when we used s = ¢ = 100 storage and test
fixations. The considerable drop in the classification performance of the techniques
tested by [57] for faces with sunglasses, demonstrates that the occluded parts contain
important visual information for classification with these techniques. Occlusions are
known to be problematic for techniques that construct global representations, such as
PcCA, rather than part-based representations.[58, 61] Although, the NMF technique and
also the LFA technique are more part-based than the PCA and the template-based tech-
niques, they still rely on global image characteristics to some degree. The performances
of the NIM-CLASS variants that rely on discrete local samples across the images, ap-
pear to be less disrupted by an occlussion of the eyes even when testing under different
lighting conditions. Therefore, it can be said that, despite occlusions, the NIM-CLASS
models can make the correct classification decision on the basis of the local samples
from image regions other than the occluded regions.

8 Conclusions

This paper presented two initial steps toward the realization of a plausible model of
natural visual classification based on saccadic natural vision. As a first step, we pre-
sented a saccade-based classification model of natural visual input called NIM-CLASS
that is based on NIM. NIM-CLASS was tested on a face-classification task involving the
identification of frontal view faces with different facial expressions, illumination con-
ditions, and occlusions. The NIM-CLASS classification results demonstrate that natural
images of frontal faces with unfavorable variations in appearance can be classified cor-
rectly using a classification process that compares (a sufficient number of) stored local
image samples (i.e., saccadic eye fixations) acquired during one encounter (i.e., one
stored view) to incoming local samples. As a second step we attempted to approach
the active saccadic nature of human vision by extending NIM-CLASS with top-down
saccadic control. The extended model, called NIM-CLASSTP, implemented an original
approach to saccadic control relying on cognitive systems to direct saccades to loca-
tions that are likely to contain the relevant visual input to solve the task at hand. The
results demonstrate that the intelligent top-down saccadic selection of relevant visual
input enhanced classification performance compared to the purely bottom-up control
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and reduced the amount of visual input required for correct classification. Therefore,
we conclude that NIM-CLASS”? may provide a fruitful basis to extend into a visual
cognitive system for a humanoid robot that allows for the efficient use of the robot’s
visual processing resources.
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Abstract— Thinking about intelligent robots involves consider-
ation of how such systems can be enabled to perceive, interpret
and act in arbitrary and dynamic environments. While sensor
perception and model interpretation focus on the robot’s internal
representation of the world rather passively, robot grasping
capabilites are needed to actively execute tasks, modify scenarios
and thereby reach versatile goals. These capabilities should also
include the generation of stable grasps to safely handle even
objects unknown to the robot. We believe that the key to this
ability is not to select a good grasp depending on the identification
of an object (e.g. as a cup), but on its shape (e.g. as a composition
of shape primitives). In this paper, we envelop given 3D data
points into primitive box shapes by a fit-and-split algorithm
that is based on an efficient Minimum Volume Bounding Box
implementation. Though box shapes are not able to approximate
arbitrary data in a precise manner, they give efficient clues for
planning grasps on arbitrary objects. We present the algorithm
and experiments using the 3D grasping simulator Grasplt! [1].

I. INTRODUCTION

In the service robot domain, researchers and programmers
provide each robot with manifold tasks to fulfill in order to
aid and support, e.g. clearing a table or fill a dishwasher after
lunch. The knowledge about such aims might be either hard-
coded or techiques applied that allow learning in a more intel-
ligent manner, e.g. a person teaching the robot how to clear a
table. Such scenarios are known as Learning- or Programming-
by-Demonstration applications. However, whether in an office,
in health care or in a domestic scenario, a robot has to
finally operate independently to satisfy various claims, thus
the handling of objects is a central issue of many service robot
systems. Robot grasping capabilites are therefore essential to
actively execute tasks, modify scenarios and thereby reach
versatile goals in an autonomous manner.

For grasping, numerous approaches and concepts have been
developed over the last decades. Designing grasping systems
and planning grasps is difficult due to the large search space
resulting from all possible hand configurations, grasp types,
and object properties that occur in regular environments. Early
work on contact-level grasp synthesis focused mainly on find-
ing a fixed number of contact locations without regarding hand
geometry [2]. Considering specifically object manipulation
tasks, the work on automatic grasp synthesis and planning is
of significant relevance [3], [4], [5]. The main issue here is the
automatic generation of stable grasps assuming that the model
of the hand is known and that certain assumptions about the
object (e.g. shape, pose) can be made. Taking into account both
the hand kinematics as well as some a-priori knowledge about

the feasible grasps has been acknowledged as a more flexible
and natural approach towards automatic grasp planning [4]. It
is obvious that knowledge about the object shape, as also the
task on hand, is quite meaningful for grasp planning [6].
This is important for our work, as we aim at providing a
robot actuator system with a set of primitive actions, like pick-
up, push or erect an arbitrary object on a table. For performing
such basic actions, an object has to be modeled from 3D
sensory input, e.g. from range or dense stereo data - but up
to which detail? After giving references to related work in the
following section, we motivate our approach on approximating
object shapes by Minimum Volume Bounding Box (MVBB)
sets in Section III. We present the algorithm in Section IV
and demonstrate experiments in Section V. Section VI shows
experiments on using the approach for a simulated grasping
evaluation, before we conclude our work in Section VII.

II. RELATED WORK

Modeling range data is a crucial, but also difficult task for
robot grasping. The source data offered by range sensors or
dense stereo camera systems is a more or less distorted and
scattered cloud of 3D points of the scenario. A higher-level
representation of these points as a set of shape primitives
(e.g. planes, spheres or cylinders) thus gives more valuable
clues for object recognition and grasping by compressing
information to their core. Most approaches that consider this
problem are likewise bottom-up, starting from point-clouds
and synthesizing object shapes by using superquadrics (SQs).
Superquadrics are parametrizable models that offer a large
variety of different shapes. In the problem of 3D volume
approximation stated here, only superellipsoids are used out
of the group of SQs, as these are the only ones representing
closed shapes. There is a multitude of state-of-the-art ap-
proaches based on parametrized superellipsoids for modeling
3D range data with shape primitives [7], [8], [9], [10], [11].

If we assume that an arbitrary point cloud has to be
approximated, one SQ is obviously not enough for most
objects, e.g. a screw or an office chair (see Fig. 1). The
more complex the shape is, the more SQs have to be used to
conveniently represent its different parts. Just for such cases,
good generality is not possible using SQs with few parame-
ters [8]. Besides the advantages of immense parametrization
capabilities with at least 11 parameters, intensive research on
SQs has also yielded disadvantages in two common strategies
for SQ approximation. The first strategy is region-growing,



starting with a set of hypotheses, the seeds, and let these adapt
to the point set. However, this approach has not proved to be
effective [9] and suffers from refinement problem of the seeds
[11]. The second strategy uses a split-and-merge technique
splitting up an overall shape and merging parts again, which
is more adapted to unorganized and irregular data [9].

Independent of the strategy used, the models and seeds,
respectively, have to be fitted to the 3D data. This is usually
done by least square minimization of an inside-outside fitting
function, as there is no analytical method to compute the
distance between a point and a superquadric [10]. Thus, SQs
are though a good trade-off between flexibility and computa-
tional simplicity, but sensitive to noise and outliers that will
cause imperfect approximations. This is an important issue,
as our work is based on dense stereo data, which results in
more distorted and incomplete data in contrast to data points
provided by range scanners which are mainly applied in related
work.

III. MOTIVATION

We observed that modeling 3D data by shape primitives
is a valuable step for object representation. Sets of such
primitives can be used to describe instances of the same object
classes, e.g. cups or tables. However, it is not our aim to
focus on such high-level classifications or identification of
objects, but on grasping. We moreover approach a deeper
understanding of objects by interaction instead of observation
for that purpose, e.g., if there is an object that can be picked
up, pushed and filled, it can be used as a cup. Processing an
enormous number of data points takes time, both in approaches
that use raw points for grasp hypotheses or those that try to
approximate them as good as possible by shape primitives.
Thus the question remains how rudimentary a model of a
thing can be in order to be handled successfully and efficiently.
While comparable work uses pairs of primitive feature points,
e.g. [12], or a-priori known models for each object [13], we
are interested in looking into which primitive shape represen-
tations might be sufficient for the task of grasping arbitrary,
unseen objects.

We believe that a mid-level solution is a promising trade-off
between good approximation and efficiency for this purpose.
Complex shapes are difficult to process, while simple ones will
give worse approximation. However, we can access valuable
methods to handle approximation inaccuracies for grasping

Fig. 1. Examples of range data approximated by sets of superquadrics [9].

like haptic feedback, visual servoing and advanced grasp
controllers for online correction of grasps. We prefer general
fast online techniques instead of pre-learned offline examples,
thus the algorithm’s efficiency is the more important. Unknown
objects are hardly parametrizable but need real-time applica-
tion for robot grasping. A computation in terms of minutes for
a superquadric approximation is therefore not feasible.

We adopt these motivations to propose an algorithm based
on boxes as a mid-level representation. In our approach, we
combine different incentives on simplicity of boxes, efficiency
of hierarchies and fit-and-split algorithms:

1) We aim for simplicity stating the question if humans ap-
proach an apple for grasping with their hand in another
way as they approach a cup, or a pen in another way as a
fork? While there are surely differences in fine grasping
and task dependencies, differences in approaching these
objects seem quite marginal.

2) The computational efficiency of hierarchies has been
pointed out in several other approaches that compose
models with use of superquadric primitives [8], [10],
[14].

3) While seed growing as a bottom-up strategy has several
drawbacks, and a split-and-merge strategy both needs
top-down (split) and bottom-up (merge), fit-and-split
algorithms is purely top-down and thereby iteratively
implementable in a one-way hierarchical manner.

IV. ALGORITHM

Following the first incentive, we chose a box representation,
as boxes are very simple and roughly approximating. We
base our algorithm on the minimum volume bounding box
computation proposed by Barequet and Har-Peled [15]. Given
a set of n 3D points, the implementation of the algorithm
computes their Minimum Volume Bounding Box (MVBB) in
O(nlogn+n/e?) time, where ¢ is a factor of approximation.
The algorithm is quite efficient and parametrizable by sample
and grid optimizations [15]. Performing the computation on an
arbitrary point cloud, we get one tight-fitting, oriented MVBB
enclosing the data points (see the example in Fig. 2).

Our aim is now to iteratively split the box and the data
points, respectively, such that the new point sets yield a better
box approximation of the shape.

Fig. 2. The Stanford bunny model and the root MVBB of its vertices.



A. MVBB splitting

Iterative splitting of a root box corresponds to the build-
up of a hierarchy of boxes. Gottschalk et al. [16] present
the OBBTree (Oriented Bounding Box Tree) for this purpose.
The goal is to efficiently detect collisions between polygonal
objects by the OBBTree representation. The realization of the
splitting step is quite straightforward: each box is cut at the
mean point of the vertices, perpendicular to the longest axis.
This is done iteratively, until a box is not dividable any more.

In our case, these strategies are quite suboptimal. We want
to conveniently approximate a shape with as few boxes as
possible, thus a splitting into as many small boxes as possible
is against our overall aim, if we refrain from merging them
again. Additionally, though the MVBB algorithm is efficient, a
fitting step after each splitting consumes valuable computation
time. On the other hand, splitting at the mean point is then
not optimal. A heuristic to find a “good” split is needed.

Therefore, we will have to define what a “good” split is. See
the bunny cuts in Fig. 3. Fig. 3(a) shows a mean cut, similar
to the ones used by Gottschalk’s algorithm. It is obvious that
this one is not optimal for oour task, as it does not improve
the approximation by the boxes of both new halfs. In addition,
this split is not intuitive, meaning that it does not divide the
bunny in semantic parts, e.g. head and body, as is shown in
Fig. 3(b). However, such a semantic division is hard to find.
Due to efficiency, we yet restricted to plane cuts instead of
using non-linear cutting in the example. But even with planes,
finding the best intuitive cut would correspond to an extensive
search and comparison of a lot of planes, differing in position
and orientation. Therefore, we decide to test only those planes
parallel to the parent MVBB.

As a measure of a good split, we consult the relation of the
box volume before and after performing the split. A split of the
parent box is the better, the less volume the two child MVBBs
include. Intuitively, this is clear, as shape approximation is
better with highly tight-fitting boxes. We propose the following
efficient algorithm to find the best split:

B. Best Split Computation

As discussed, we just test planes parallel to the box surfaces
for the best splitting plane. Each MVBB has six sides, whereof
opposing pairs are parallel and symmetric. Inbetween each of
these pairs, we can shift a cutting plane. Fig. 3(d) depicts this
restriction on a splitting parallel to A, shifted by a distance
a, and B by b and C by c, respectively. A computation of
new MVBBs for each value of the split parameters a, b and
¢ would take a lot of computational effort. Therefore, we
estimate the best cut by first projecting the data on 2D grids
which correspond to the surfaces A, B and C. The bunny
sample data projection onto the three surface grids of the root
MVBB (Fig. 2) are shown in Fig. 4. By this projection, the
problem of splitting a 3D box by a surface-parallel plane has
been reduced to splitting a 2D box by an edge-parallel line.
For the sake of efficiency, it is thereby abstracted from the

real 3D volume of the shape. The figure shows that there are

six valid split directions left, two for each of the surfaces A,
Band C.

As mentioned above, we define the best split as the one that
minimizes the summed volume of the two partitions. Thus, we
now test each discretized grid split along the six axes, using
the split parameters. We define a split measure 6( P, p, i) with
P ¢ {A, B,C} being the projection plane to split,  being
one of the two axes that span P, and 4 as the grid value on
this axis that defines the current split. Consequently, we have
six possible split measures

91(27 E,il), il € N<Cmax, 92(2, B, ’ig), ig S N<bmax,
03(C,a,i3), i3 € N<Umax 0,(C,b,iy), iy € N<bmax,

65(§7 a, Z‘5)7 if) € N<amax7 96(§7 C, iﬁ)a iﬁ € N<crnax (1)

to compare. Their minimum gives reason to the best split.

The minimization of a (P, p, 1) is implemented as follows.
For each i that cuts P perpendicular to p in two rectangular
shapes, we compute the two resulting minimal volumes by
lower and upper bounds. The ¢ that yields the minimum value
is the best cut of O(P,p,1).

We define 0(P,p, i) as the fraction between the whole pro-
jection rectangular and the sum of the two best cut rectangles.
Though this is a very approximative method, it is quite fast,

(a) (®)

©

b

Fig. 3. Exemplary cuts of the bunny: (a) a mean cut, (b) an intuitively best
cut and (c) a good cut parallel to one of the root MVBB planes. (d) Restriction
to surface-parallel cutting planes in our approach.

< alle a
a
B

(A c
Fig. 4. The bunny sample projections onto the three surfaces of the root

MVBB (Fig. 2). Note the correspondences to the surface-parallel cutting
scheme in Fig. 3(d).



as rectangle volume and bound computation are simple to
perform. Fig. 5 shows the best cuts for which rectangular
volume and the corresponding values 6 ¢ are minimal.

C. Fit-and-Split Hierarchy Building

According to the best split 8*, which would be 6; or 05 in
our exemplary case, the original point cloud can be divided
into two subsets of the data points. These can be used as
inputs to the MVBB algorithm again and are produce two
child MVBBs of the root MVBB. In this way, the complete
technique of fit-and-split can iteratively be performed. It is
important to notice that by MVBB computation, the MVBBs
will greatly differ from box cuts as depicted in Fig. 5 in
orientation and scale.

Additionally, the previous step of cutting along one of the
six directions is just equal to computing an approximative gain
value, for the purpose of efficiency. As an iteration breaking
criterion, we now subsequently test the real MVBB volume
gain ©* of the resulting best split measure 6*. Therefore, we
compute the gain in volume defining

0" — V(Cy) +V(Ca) + V(A\P)
N V(P)+ V(A\P) ’

where A is the overall set of boxes in the current hierarchy,
P is the current (parent) box, C, Cy are the two child boxes
that might be produced by the split, and V being a volume
function. We decide further process on two constraints. First,
if gain is too low, a split is not valuable. For this purpose,
we include a threshold value ¢ that can also be used as a
parameter. The precision of the whole approximation can be
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Fig. 5. The six best cuts along the six main box directions. The cut positions

4 are marked by the triangles. Below each cut, the corresponding volume value
0(P,p,1) is presented.

parametrized by simply preventing a split if ©* exceeds t.
A threshold between ¢ = 0.90 and ¢t = 0.95 has given good
results in most of our experiments.

Second, we do not preserve boxes into the hierarchy that
include a very low number of points. By this process, noise
in the point data can be handled. It might also be important
in this context that in Fig. 5 (f3) it would intuitively be a
probably valuable next cut below the bunny’s ear in the right
box. However, the best split computation presented (Section
IV-B) will not find this cut. Finding this cut is not that simple,
especially when distorted, sparse and insecure data is provided.
An add-on for the solution of this problem would therefore be
more complex and time-consuming. The bunny is a very ideal
model, as it is artificial, complete, and data points are very
dense. As it is our aim to evaluate our algorithm also on real
sensory data, we can not assume such ideal conditions. Due to
these problems, we do not handle such situations, but present
ideas to solve them by a different approach in the conclusions.

V. BOX SPLITTING EXPERIMENTS

We now present some experiments for the proposed fit-
and-split algorithm. For all experiments, we fix the two
original MVBB approximation parameters (see [15]). The
grid parameter defines orientations that induce bounding box
approximation in an exhaustive way, so we keep it small at
3. We decide to sample sets of 200 points, so even very large
point clouds are reduced and efficiently handled. We found
that these settings provide a good trade-off between quality
and efficiency of each split for our application. As mentioned,
we additionally disregard boxes that include too few points.
For the experiments on models and sparse scans, we set this
threshold to 5 points. As those point clouds are not very
noisy, we can afford such a small value. Concluding, the main
paramater that we are going to change in each experiments is
the gain threshold ¢.

As we are also interested in the robustness of the algorithm
with regard to different degrees of noise and data density, we
evaluate the behaviour of the algorithm on several types of in-
put data. In our 1% group, we have ideal point clouds emerging
from complete and unnoisy simulative vertice models. The
2" group consists of real laser scan excerpts. These single
object data has been segmented manually from scanned scenes.
The data of each object is therefore incomplete and noisy,
but at least regular due to the scan sampling. The 3™ group
is the most challenging of all. The data points are produced
from a stereo vision system that offers three-dimensional range
data by disparity. Matching of image features and disparity
calculation are erroneous. Therefore, the resulting data is quite
incomplete, noisy and irregular. To cover these irregularities,
we increase the point threshold to at least 20 points in an
MVBB and the sampling rate to sets of 300 points.

Fig. 6 shows four sample models for the 1% group, each di-
vided with gain thresholds ¢ € {0.90, 0.94,0.98}. An overview
on point sets, computation time and number of boxes for the
1t group is given in Tab. I. Some samples for the 2™ group



(a) Mug: Produced MVBBs after an iterative
split with ¢=0.90.

(d) Duck: Produced MVBBs after an iterative
split with ¢=0.90.

(g) Homer: Produced MVBBs after an itera-
tive split with ¢=0.90.

(j) Bunny: Produced MVBBs after an itera-
tive split with ¢=0.90.

Fig. 6. Four complete, dense and unnoisy models: Mug, Duck, Homer and Bunny. Each is fit-and-splitted according to the proposed algorithm with three

(b) Mug: Produced MVBBs after an iterative
split with ¢=0.94.

(e) Duck: Produced MVBBs after an iterative
split with ¢=0.94.

(h) Homer: Produced MVBBs after an itera-
tive split with ¢=0.94.

(k) Bunny: Produced MVBBs after an itera-
tive split with ¢=0.94.

different gain thresholds ¢ (0.90, 0.94, 0.98) to show the influence of ¢ on the algorithm.

(c) Mug: Produced MVBBs after an iterative
split with ¢=0.98.

(f) Duck: Produced MVBBs after an iterative
split with ¢=0.98.

(i) Homer: Produced MVBBs after an itera-
tive split with ¢=0.98.

(1) Bunny: Produced MVBBs after an itera-
tive split with ¢=0.98

Model | # points time [sec] | # boxes time [sec] # boxes time [sec] # boxes
(t=0.90) | ¢=0.90) || t=094) | (t=0.94) || (t=0.98) | (t=0.98)
Mug 1725 4 2 6 3 8 5
Duck 1824 6 3 9 5 12 8
Homer 5103 10 4 12 5 16 8
Bunny 35947 5 2 11 4 30 11
TABLE 1

CORRESPONDING TABLE FOR THE EXPERIMENTS PRESENTED IN FIG. 6.



(a) Stapler: The point cloud is produced
by a range scanner on this object.

(d) Puncher: The point cloud is produced
by a range scanner on this object.

(g) Can: The point cloud is produced by
a range scanner on this object.

(j) Phone: The point cloud is produced
by a range scanner on this object.

(m) Notebook: The point cloud is pro-
duced by a range scanner on this object.

Fig. 7. Five incomplete, dense and less noisy, manually pre-segmented range scans: Stapler, Puncher, Can, Phone and Notebook. Each is fit-and-splitted

(b) Stapler: Produced MVBBs after an itera-
tive split with ¢=0.90.

(e) Puncher: Produced MVBBs after an iter-
ative split with ¢=0.90.

(h) Can: Produced MVBBs after an iterative
split with ¢=0.90.

(k) Phone: Produced MVBBs after an itera-
tive split with ¢=0.90.

(n) Notebook: Produced MVBBs after an
iterative split with ¢=0.90.

(c) Stapler: Produced MVBBs after an itera-
tive split with ¢=0.96 (same as 0.90).

(f) Puncher: Produced MVBBs after an iter-
ative split with t=0.96 (same as 0.90).

(i) Can: Produced MVBBs after an iterative
split with ¢=0.96.

(1) Phone: Produced MVBBs after an iterative
split with ¢=0.96.

(0) Notebook: Produced MVBBs after an
iterative split with ¢=0.96.

according to the proposed algorithm with two different gain thresholds ¢ (0.90, 0.96) to show the influence of ¢ on the algorithm.



(a) Can2: The point cloud is produced by stereo camera disparity.

(b) Can2: Produced MVBBs after an iterative split with ¢=0.90.

(c) Can2: Produced MVBBEs after an iterative split with t=0.96.

Fig. 8.  An incomplete, sparse and noisy, automatically pre-segmented
disparity point cloud: Can2. It is fit-and-splitted according to the proposed
algorithm with two different gain thresholds ¢ (0.90, 0.96) to show the
influence of ¢ on the algorithm.

are presented in Fig. 7, two of the 3™ group in Fig. 8. Statistics
of these are depicted in Tab. IIL.

VI. BOX GRASPING ALGORITHM
A. Using Grasplt!

The best way to find a good grasp is said to be grasp
candidate simulation [4], [10]. Miller et al. have simulated
pre-models and shape primitives using their public grasp sim-
ulation environment Grasplt! [4]. We also base our evaluation
on model-based grasping on Grasplt!.

For the evaluation, we create lots of worlds, each of which
contains a model of the Barrett hand [17] mounted on a freely
movable “Euler” robot, as the hand is not able to move itself

Model # pts. time [sec] | # boxes time [sec] | # boxes
(t=0.90) (t=0.90) (t=0.96) (t=0.96)

Stapler 313 2 2 2 2

Puncher 449 3 3 3 3

Can 1266 4 2 10 6

Phone 1461 5 3 8 5

Notebook | 4199 6 3 8 4

[ Can2 [ 9039 ] 10 3 24 71
TABLE II

CORRESPONDING TO THE EXPERIMENTS SHOWN IN FIG. 7 AND FIG. 8.

Fig. 9. Each singular box can be grasped in twelve different simple ways:
it has six faces, each defined by two perpendicular directions. The picture
shows one of these pairs during the grasp approach (shadow) and during the
final grasp.

in free space. Aditionally, an object that is to be grasped is
included into the world, which is the only difference between
the world files (one for each object).

After an experiment is initialized, the first iteration of the
MVBB algorithm is performed as proposed in Section IV-C.
All levels of generated boxes are subsequently inserted into a
binary tree structure. The first iteration yields the root node.
Though it is not a problem to keep track of parent information
throughout the binary tree, we only display the leaves in the
simulator (as has been shown in Fig. 6). The first iteration
will produce a root box with six faces. Each face is used
for two grasp hypotheses parallel to the edges spanning it.
See Fig. 9 for such a grasping pair. There are two types of
approach techniques that we will apply for our experiments:
a backup-grasp and a pinch-grasp. For the backup-grasp, each
initial position is set to a constant distance from the face’s
center aligned to its normal. We let the hand approach the
object along the normal until an arbitrary contact is detected.
Afterwards, the hand retreats a small distance (the backup)
to call the autograsping function. The autograsp is a built-
in basic grasp of Grasplt! to uniformly close fingers and is
therefore available for all hand models. Using the pinch grasp,
we approximate the distance to the box center of the current
face in order to force a grasp on the center of mass. This
technique is assumed better for small part grasping, as the
backup-grasp will usually retreat due to contact with another
object first (e.g. a table under a pen). From the approximated
distance, the autograsp is called. Note that the autograsp is
the only final grasping technique that we use and that just one
initial posture for each hand is applied. Furtheron, the boxes
theirselves are not only transparent in the simulator, but also
physically invisible for each object in the scene. Thus, the
hand will grasp through the box representation and perform
each grasp with contact on the real model. When all fingers
are in contact, Grasplt! provides computation of two different
grasp quality measures EPS;; and VOL, ;.

After the grasps on the root box have been performed,
we continue the proposed fit-and-split algorithm until it is
finished. We collect all faces of boxes from the final approxi-
mation and remove some types of occluded, ungraspable faces



. . . Box set Grasp #valid #overall| EPSy; VOL
from the s_et‘. Finally, the same grasping process is made for frces | faces
each remaining face as described above. Duck Root Backup | 12 B
Duck Root Pinch 12 12 0.00496 0.00879
B. Experiments Duck 0.90 Backup 14 36
Duck 0.90 Pinch 14 36 0.03166 0.00274
For each of the models from the complete model data set Duck 0.94 Backup | 17 60
(see Fig. 6), we go through this grasping evaluation for the root | Duck 0.94 Pinch 17 60
b . . Duck 0.98 Backup 33 108 0.00185 0.00977
ox and the boxes produced with gain parameters 0.90, 0.94 Duck 0.98 Pinch 3 108 0.00161 T 0.00312
and 0.9§. The boxes are computed agcordlng to the MVBB fit- Mug Root Backup | 12 7 503 T 000121
and-split algorithm proposed in Section IV-C and then grasped Mug Root Pinch 12 12 0.01261 | 0.00144
with backup-grasp and pinch-grasp, respectively, which have Mug 0.90 Backup | 12 24 0.00909 | 0.00043
been described in the last subsection. For each try, we take a m:gg 3'992 g‘;cc]?up :i gg g'géégg g'ggéﬁ
look at the final grasp qualities and the on grasp that is best g 0.94 Pnch 2 36 - :
rated according to these quality measures. The results can be Mug 0.98 Backup | 19 48 0.00682 | 0.00033
seen in Tab. IIL. Mug 0.98 Pinch 19 48 0.00420 0.00047
For each model, the overall faces describe the whole set | Bunny Root | Backup | 12 12 0.015%0 | 0.00670
. . Bunny Root Pinch 12 12 -
of faces available from thelcurrer?t box set. It is clear that Bunny 0.90 Backup | 20 34 001601 1 0.00420
the number of overall faces is 12 times the number of boxes. Bunny 0.90 Pinch 20 24 0.00786 | 0.00200
Geometrical detection of blocked faces reduces the number Bunny 0.94 Backup | 20 36 0.00767 | 0.00420
of graspable faces drastically, as also the consideration of Bunny 0.94 Pinch 20 36 0.01356 | 0.00200
graspable Y, _ Bunny 0.98 | Backup | 51 120 0.05652 | 0.00749
y p
maximum width that the hand can grasp between its fingers. Bunny 0.98 Pinch 16 120 0.01438 1 0.00336
For example, there are no valid grasps for the Homer root box, Homer Root | Backup | 12 2 — —
as this is a large model (see best grasps in Fig. 10. The best Homer Root | Pinch 12 12
way to grasp Homer is a pinch grasp on the highest splitting | Homer 090 | Backup | 19 48 0.00721 | 0.00016
Homer 0.90 Pinch 15 48 0.00774 0.00011
level (0.98), the same holds for the Bunny. In contrast, the Mug Fomer 0.94 | Backup | 20 5 000721 T 0.00016
and Duck models are quite compact and best grasp qualities Homer 0.94 Pinch 16 60 0.00774 | 0.00013
are found on a low splitting level (0.90). Additionally, the Homer 0.98 | Backup | 34 108 0.00931 | 0.00046
Duck proves very hard to handle, as it is a very small model. Homer 0.98 Pinch 2 108 0.00931 | 0.00012
Half of the experiments for the Duck did not produce any TABLE III
fOrCC ClOSure grasp. TABLE OF THE EXPERIMENTAL GRASPING RESULTS.

VII. DISCUSSION AND CONCLUSION

In our approach, we combine several motivations known
from the shape approximation and grasping literature. We
prune the search space of possible approximations by rating
and decomposing basic shapes. While Goldfeder et al. [10]
use superquadrics as these basic shapes, their work confirms
the expectation that planning on finer components is likely to
find better grasps than returning the first stable grasp. This
intuitively corresponds to the “grasping-by-parts” strategy.
This strategy also underlies the presented approach of MVBB
decomposition. However, Goldfeder et al. use superquadrics
and the split-and-merge decomposition by Chevalier et al. [9],
while we propose MVBBs and an efficient and valuable box
decomposition. The fit-and-split strategy is motivated by work
from Zha et al. [14] on superquadric shape splitting.

The trade-off of our approach lies in higher efficiency
and simplicity for the price of precise shape approximation.
However, we claim that exact approximation may not be
necessary for grasping tasks. An evaluation of this claim is
one of our next steps. Here, we take advantage of the basic
box representation by using a very efficient splitting criterion
(along 3 faces x 2 directions per MVBB). Additionally, boxes
allow efficient further analysis, as there exist fast compu- Fig. 10.  Best grasps for the experimental grasping results in Tab. IIL
tational techniques on this representation (e.g. in terms of
collision detection, neighborhood, etc.).



This analysis will become important for another next step
towards grasping objects based on the box representation.
Managing valid grasps will not only be dependent on the box
faces (which will be to prefer for a grasp), but also on the
whole constellation of boxes. For example, not each face will
be graspable in an arbitrary set of boxes due to occlusion.

Another issue is task dependency. There are different task
types on which a grasp might depend. Just to pick up a cup and
place it somewhere else might yield a different grasping action
as picking up the cup to show it or hand it over. These grasp
semantics might be mapped to boxes in the set, e.g.“grasp
the largest box for a good force grasp to securely move the

object”, “grasp the smallest box for a good pinch grasp to show

a most unoccluded object to a viewer/camera” or “grasp a very
outlying box so that another human/robot hand can overtake
the object easily”. The latter semantics are quite valuable for
applications that are based upon interacting with objects before
the exploration and recognition stage (such as [18]).

As the presented approach is hierarchical, it is also possible
to use dependencies between boxes and granularities of dif-
ferent hierarchical levels for shape approximation. Thus, the
processing of shape approximation can be controlled and run
parallel to the execution of a grasp.
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Abstract— A cognitive robot system has to acquire and
efficiently store vast knowledge about the world it operates in.
To cope with every day tasks, a robot needs to learn, classify and
recognize a manifold of different objects. Our work focuses on
an object representation scheme that allows storing perceived
objects in a compact way. This will enable the system to store
extensive information about the world and will ease complex
recognition tasks. The human visual system deploys several
mechanisms to reduce the amount of information. Our goal is
to develop an artificial system that mimics these mechanisms
to create representations that can be used in cognitive tasks.
In particular, in this paper we will present an approach that
exploits similarities among different views of objects. The
proposed representation scheme allows for reduction of storage
required for the representation of objects and preserves the
information about the similarity among objects. This is achieved
by selecting ‘important views’ of objects, depending on their
stability. Furthermore, by extending the same approach to
multiple objects, we are able to exploit similarities between
objects to find a common representation and to further reduce
the storage requirements.

I. INTRODUCTION

The main focus of our work is to develop an object
representation and learning scheme, that is suitable for learn-
ing in humanoid robots, e.g. via action-perception coupling,
much the same way as humans learn about objects in their
environment. To achieve the ability of recognizing objects
from all viewing directions, we introduced a learning and
representation scheme that allows generalizing to specific
views of objects [1]. We have shown that, given locations of
important views, the objects can be represented in a depth
rotational invariant manner, with a reduced amount of views
stored as representations. However, in the former work the
important views were selected manually.

In this paper, we introduce a solution on how to select spe-
cific important views of objects automatically. Our approach
is driven by the observation that there are specific views of
an object, that allow recognizing a wide range of rotational
variations of the object. Such views are often referred to as
stable views [2]. With these stable views of an object, its
appearance can be described using a minimal set of views.

The robot perceives the world in different modalities,
depending on the sensors and feature extraction methods
used. In real world scenarios, the robot will face objects,
which are similar in at least one modality and are only

separable by combining different modalities. Furthermore,
learning of objects from all possible viewing directions will
reveal even more similarities between views of different
objects. In our approach, we identify views that are shared
between objects. Similar views can be subsumed and stored
only once. In such cases we do not want to recognize objects
in the modality, in which the similarities exist, but rather
aim at a representation that preserves the information, which
objects are candidates for the specific view and modality. The
ability to discriminate such objects has to be achieved by
combining multiple modalities. The shared view of objects
in one modality can then be used to restrict the possibilities
in other modalities to only a few objects.

Our approach follows a global appearance-based repre-
sentation scheme of objects. In appearance-based vision sys-
tems, objects are represented with multiple retinal projections
of object views. In contrast, model-based representations
need more structural information, like full 3D models, which
are hard to aquire during online learning [3]. Furthermore, we
use global object descriptors to identify important views of
the object. The majority of recent work on object recognition
uses local features, which describe important locations in the
object’s appearance, considering measures for texturedness
or cornerness. These systems perform well in real envi-
ronments, are able to handle occlusion, and usually offer
invariances to at least shift and rotation in the camera plane
[4] [5]. Recognition of all rotations of an object with local
features is possible, but impractical in terms of efficiency
due to the amount of stored local feature representations.

The selection of important views of an object has strong
correspondence to the notion of canonical views used in
psychology [6]. In the past, different criterias that define
canonical views have been introduced. Blanz et al. give
a good overview of different criteria [7]. As our aim is
to implement an object recognition system based on our
representation and learning scheme, we are mainly interested
in the goodness for recognition criteria. More precisely, we
identify views of the objects, that are stable for at least small
transformations.

While the work on canonical views copes largely with
one outstanding view of the object, a representation scheme
which is used for recognition has to rely on multiple im-
portant views of the object, which together should cover the
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complete appearance.

Hall et al. presented an approach to extract multiple
important views of an object by identifying the most unique
views of the object [8]. The identification of unique views is
suitable, if the objects are to be visualized or if the resulting
views are used only to discriminate objects. The approach did
not take into account the similarity of views. Moreover, the
resulting views did not capture similarities among different
objects.

Yamauchi et al. introduced an approach for the identi-
fication of important views which combines the saliency
of views and the stability criterion [2]. They proposed an
approach based on spherical graphs which reflect all available
viewing directions of the object. Important views were iden-
tified using Zernike Moments [9] to measure the similarity
between neighbored views in the spherical graph. In their
work, Yamauchi et al. did not take into account similarities
among different objects. Each object had its own set of
keyframes regardless of the appearance of other objects.
Furthermore the number of extracted views per object had
to be predefined.

In the following, we present an approach that can be
applied to the output of different feature extraction meth-
ods. Our method will identify stable views for the objects
considering the Euclidian distance of the output from the
used extraction method. In the following we will referr to
these stable views as keyframes . Furthermore, our method
exploits similarities among different objects. The number of
keyframes per object does not have to be predefined. Rather,
the accuracy can be defined with an overall maximum error,
thus the system generates a different number of keyframes
per object, depending on the object’s appearance.

II. SYSTEM DESCRIPTION
A. Overview

Figure 1 gives a schematic overview of the system struc-
ture used throughout this paper. The system can be divided
into a training part and a recognition part. In the appli-
cation on a robot system, both parts have to be executed
simultanously to allow the acquisition of new objects during
interaction with the environment. The following sections will
primarily focus on the training part, since the recognition part
needs to rely on more than one modality as explained later
(subsection II-E).

As mentioned earlier, the presented approach does not
depend on a certain feature extraction method. The extraction

method used should fulfill the following requirements:

o The extraction method has to capture the global appear-
ance of an object.

o The extraction method should represent each view in-
variant to rotations in the viewing plane.

o The extracted feature vectors should be of reasonable
size to allow fast extraction of keyframes.

For the experiments in this paper, we use color cooccurrence
histograms (CCHs) to extract descriptors of the global ap-
pearance of views. The extraction of CCHs will be explained
in subsection II-B.

During keyframe selection, significant views of the objects
are identified by clustering the feature space into classes
containing similar views. Each class is identified with its
centroid, which is referred to as a keyframe.

Objects are assigned to keyframes in the labeling step.
Each keyframe will be associated with all objects that have
views in the corresponding class. Furthermore, we define the
activation of a keyframe as the number of views an object
participates with in the corresponding class. The keyframes
are stored in the object database, together with the labels and
activations determined in the labeling phase.

During recognition, the extracted features are classified
using the stored keyframes from the object database. The
classification will output all objects that have views similar
to the current percept and the corrsponding activations.

The following subsections will explain the different ele-
ments of the system structure in detail.

B. Feature Extraction

Throughout this paper, we will use color cooccurrence
histograms (CCHs) for the description of object appearances.
CCHs were chosen because they offer some properties which
allow the application in real world recognition tasks. For
instance CCHs offer a description of the object, which is
invariant to the rotation in the viewing plane, when the
parameters are chosen accordingly. Furthermore, CCHs offer
some robustness towards scaling. Finally, CCHs combine
texture information (in terms of information about pairs of
neighbored pixels) as well as color information.

Based on work performed by Haralick et al. [10], CCHs
were first introduced by Chang et al. [11]. In their work they
define an entry in the color coocurrence histogram by the
cooccurring colors and their distances in an observed image:

CH(c1,co, Az, Ay), (1)

where ¢; and ¢ describe two colors in RGB space and Ax
and Ay describe their distances in terms of pixels in the
observed image. To achieve a rotation invariant description,
only the absolute distance of the two colors is used in their
approach:

d=/(B2) + (By)? @

The cooccurrence histogram is derived by counting all oc-
currences of entries CH in the observed images.

In our implementation only cooccurences with a distance
d < 1.5 are observed. This restricts the cooccurences to



Fig. 2. Resulting growing neural gas network after 2000 iterations.
10 objects with 72 views each were used as input. The features and node
positions were projected into 2D eigenspace.

neighboring pixels. Furthermore, the red and green color
channels (I, I,) and the gradient magnitude of both color
channels (VI,, V1) are used as histogram dimensions. The
choice of these image descriptors is motivated by the previ-
ous works of Ekvall et al. [12]. They showed that with the
combination of intensity and gradient descriptor calculated
on the basis of the red and green channels good recognition
results could be achieved. The cooccurrences in each channel
are considered separately. Each channel is quantized to 80
clusters in a preprocessing step. This results in a feature
vector of 320 dimensions, which is still of reasonable size.

C. Keyframe Selection

The identification of similar views in the set of CCH
features can be achieved by clustering the feature space into
similar classes. Since the keyframe selection process will run
autonomously, an unsupervised clustering method is required
for our approach. Furthermore, the applied method should
select the number of generated clusters dependent on the
distribution of the input data rather than on a prespecified
number of keyframes. One algorithm that fulfills these re-
quirements is the Growing Neural Gas algorithm (GNG)
which was first introduced by Fritzke [13]. The GNG is a
self organizing map, which grows in the process of training
according to the distribution of the input data. Thus the GNG
algorithm creates a topological map which represents the
distribution of the training data.

The GNG algorithm combines the Competitive Hebbian
Learning and the Neural Gas method proposed by Martinez
et al. [14] with an incremental learning approach. GNG
thus overcomes the problem of prespecifying the number of
nodes that is required to reach a certain goal. Heinke et al.
[15] provided a comparison of different incremental neural
network algorithms. Their comparison comprises Growing
Cell Structures (GCS), Fuzzy Artmap (FAM), and Growing
Neural Gas (GNG). As benchmark the performance of the
multi-layered perceptron (MLP) was used. The GNG algo-
rithm outperforms FAM on nearly all datasets and generates

less nodes then GCS with similar performance for most
datasets.

In the following, a brief introduction to the GNG algorithm
is given to ease the understanding of the choice of certain
parameters and the termination criterion. For a more detailed
description of the algorithm the reader is referred to [13]. The
network consists of the following components:

e A set of nodes N, each node n € N has an associated

position vector w,,.
e A set of edges E, each edge ¢ € E connects pairs of
nodes and has an associated age.
The algorithm can be described with the following steps:
1) Create two nodes n; and no with random positions
Wy, and wnp,.
2) Select one feature f from the training set randomly.
3) Identify the nearest and second nearest nodes n, and
ny to the feature f.
4) Increment the age of all edges starting from n,,.
5) Accumulate the error of node n, by the squared
distance of node position wy,, and input signal f:

Aey, = ||lwn, — f||2

6) Move the nearest node n, and the second nearest node
ny towards the input signal f using the learning rates
Sspe and spp:

Awp, = spa(f —wp,)
Awnb = Spb(f - wnb)

7) Reset the age of the edge from the nearest to second
nearest node ¢, », to zero. If no edge exists, create a
new edge.

8) Remove edges with an age larger than a,,q,.

9) If the accumulated error e, of one node n. exceeds
the maximum error e,,,, insert a new node in the
following way:

o Identify the node connected to n. with the maxi-
Mum error 7Nyy,.

o Insert a new node n. halfway between the two
nodes n. and n,,:

(wn, +wy,,)
Wy, = ——==
¢ 2
o Insert edges ¢y, n, and ¢y, p,, and remove the
edge cn, n., -
« Set the accumulated error e, of the new node to
the mean error of the nodes n. and n,.
¢ Decrease the accumulated error e, and e, by
multiplication with a constant factor o < 1.
10) Decrease all error variables by multiplication with a
constant v < 1:
eln = Yén
11) Check termination criterion. If not matched restart with
step 2.
Depending on the termination criterion and the parameters

used for training, the GNG algorithm will produce a topo-
logical map of the input data with respect to the distribution



of the input data. Figure 2 shows an example outcome of the
GNG clustering for 720 CCH features, which describe the
rotation of 10 objects.

The parameters used for training the GNG were deter-
mined empirically. Aim of the parameter choice was a bal-
ance between stability of the network and fast convergence.
Throughout the experiments a maximum edge age ayqp =
20 was used. The learning rates were set to sp, = 0.16
and spp, = 0.01. The factors for the adjustment of the
accumulated error in the case of a new node («) and for
each iteration () were set to o = 0.001 and v = 0.995.

The parameters for the maximum accumulated error per
node e,,,, and the termination criterion directly influence
the number of nodes created for the input data. The choice
of these parameters will be discussed in section III.

Each node from the network represents one cluster in the
space of input features and is considered a keyframe.

D. Labeling

The clustering results in a set of nodes N = (n1,...,n,).
In order to use these nodes for object representation and
recognition we have to restore the association of object views
with the clusters formed by the nodes. In the following,
s objects W = (F1,..., Fs) each described with ¢ features
Fy = (fs1,--., fz,) are considered.

To associate object labels with nodes all objects = and their
features f, , are traversed. For each node n; the number of
features of the object where the node is the nearest neighbor
to the corresponding feature is determined as:

bi,x = Hf:rv EES argminue{l,...,r}nwnu - fx,v||2}| 3)

If b; ,, is not zero, the object label x is appended to the list
of object labels L; for node n;, if not already present:

L = (L) )

Additionally, the activation a;, of the node n; for the
object x is calculated by the following equation:

Aj . = bi’x

’ Zz bi,x
The activation describes how likely a feature which is
associated to the node n; will belong to the object x. If
bi .. 1s non-zero, the activation a; , is appended to the list of
activation A; of the node:

A} = (A, ais) (6)

It is guaranteed that for all labels of one object the sum
of the corresponding activations is equal one, i.e.:

> aia=1 @
=1

This shows that if the activation for an object for the node
equals 1, then the corresponding keyframe describes one
object uniquely. The node will only contain one object label
in this case.

In the object database, the node positions wy,, - , Wn,
are stored along with the associated labels L,,,,- - , Ly, and
activations A,,, -, Ap,.

)

E. Classification

In the classification step, a perceived view of an object
in terms of its CCH f is matched with the keyframes
stored in the object database. This can be accomplished
by identification of the nearest neighbor n; in the set of
keyframes:

= argminue{ly,,,,r}ﬂwnu - f||2 ®)

If the label list L; contains only one label, the corresponding
object is found. Otherwise the classification can not be per-
formed in a unique way. The list of labels L; contains objects
that have views similar to the currently perceived view. The
corresponding activations A; describe the probabilities for
the individual objects.

In the case of multiple potential candidates for the current
view, the feature extraction method used is not sufficient
to separate between the objects in this class. In this case
other modalities are required to uniquely detect the object
corresponding to the perceived view. For this purpose our
approach reduces the number of possibilities to similar
objects in the modality observed and allows the restriction
to only a few objects for the search in other modalities.

III. PARAMETER EVALUATION

For all experiments in this paper, object views from the
Amsterdam Library of Object Images (ALOI) [16] are used.
The ALOI contains images of objects on black background
from 72 distinct viewing angles, which are generated by
rotating the object around the vertical axis. We use 10 objects
for the evaluation of our approach, which results in 720
CCHs.

As mentioned earlier, the maximum error €,,,, and the
termination criterion are crucial for the number of nodes that
are generated by the GNG algorithm. In the following, our
choice of these parameters is explained.

To verify if the network has converged, the overall error
E(t) of the network is monitored for each iteration t.
The overall error can be determined by summing up the
accumulated errors of all nodes:

B =3 et ©)
x=1

The overall error is smoothed by calculating the mean overall
error M (t) over the last 200 iterations. This helps in coping
with local peaks in the course of the error over the iterations.
To detect the convergence of the network, we check if M ()
is in a defined range r for a minimum number of iterations
At. The termination criterion c(t) is defined in the following
way:

(t) = 0 a<M({t—ty)<b0<ty<At;b—a<r
=9 1 otherwise

We choose a range of » = 5000 and set the minimum
time the mean overall error has to stay in this range to
At = 500 iterations. Figure 3(a) shows the development
of the overall network error E(t) and the mean error M (t)
during one training phase. Every time the accumulated error
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(a) Overall network error during one training phase. The upper and lower
bounding from the termination criterion are denoted with horizontal lines.

Fig. 3.

of one node exceeds e,,4, the accumulated error is adjusted
and a new node is inserted. This results in a diminution
of the overall error. On new input data, the accumulated
error of both nodes increases again. The overall error of a
network containing more nodes can exceed the overall error
of a network with less nodes because each single node can
accumulate an error of up to e,,4;. The termination criterion
terminates the training, if the error stays inside the range r
denoted by the two horizontal lines.

In order to determine the maximum node error e,,,, for
our experiments, two measures were observed using a range
of emar € [10000 : 50000]. First the mean number of
labels per node 'L was observed. Furthermore, the mean
number of labels per object I was observed. In figure 3(b)
both measures L and I are recorded. The graphs show that
with a large e;,q., the mean number of labels per node
decreases fast. With decreasing e,q., the gradient of L
reduces. The number of nodes per object I grows about linear
with decreasing e,,q,. A suitable choice of e,,,, should
reduce the number of labels produced per node, since this
decreases the uncertainty during recognition. Furthermore,
not too many nodes per object should be generated, since the
resulting representation has to be compact. For this reason, a
maximum accumulated error of e,,q, = 25000 was chosen
for our experiments. The choice of a maximum accumulated
error less than 25000 would result in the generation of more
nodes without significantly decreasing the number of labels
per node.

IV. EXPERIMENTAL RESULTS

In our experiments, the GNG algorithm proved to be very
stable. For the 10 objects with 720 views the number of
nodes usually converged to 19. Depending on the sequence
of the random selection of input data that was exposed to
the network, occasionally 18 or 20 nodes were created.

mean nodes per object
mean labels per node

0 L L L L L L L
50000 45000 40000 35000 30000 25000 20000 15000

maximum accumulated error per node

10000

(b) Development of the mean number of labels per node and the mean number
of nodes per object dependent on the maximum accummulated error emqz.

Results from the parameter evaluation

Fig. 4. Important views of objects as extracted by our approach. Only
views corresponding to an activation a; , above 20% are shown.

A. Keyframe Selection

The GNG network produces clusters of similar views and
corresponding nodes with object labels L; and activations
A;. The node positions do not exactly correspond to object
views. In order to visualize important views for the objects,
the nearest neighbor from the set of samples for each object
x which is in the list of labels L; is identified. Views are
reported only if the activation a; , from the list of activations
A; is above a given threshold. Thus, only those views are
reported that are produced by clusters where the object
participates with a significant amount of views.

Figure 4 shows the important views produced by our
approach with a threshold of a; ; > 0.2. The selected views
depend on the used feature extraction method. Using a color
descriptor like CCH results in the selection of views which
are stable in terms of color.
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Fig. 5. During recognition, the orange on the left side can be identified
uniquely. The can on the right side is associated to a keyframe with two
labels. The connections are tagged with the corresponding activations a; .
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Fig. 6. Percentage of views of all 10 objects in relation to the number of
similar objects associated.

B. Recognition

In the recognition phase all object views are associated to
the corresponding keyframes. Figure 5 shows two examples
of associated views. In the first case, the view was associated
to a keyframe which containes only one label. In the second
case, the keyframe contained two labels. The keyframes are
visualized with the corresponding closest views for each
label contained in the label list. The connections are tagged
with the activations a; ;.

In order to provide a measure on how our approach
reduces the uncertainty about the perceived object, we as-
sociate all object views to their keyframes. For each view
the uncertainty can be expressed with the number of similar
objects obtained from the label list. Figure 6 shows the
percentage of views in relation to the number of similar
objects. 6% of the object views are associated to keyframes
which contain only one view and thus can be uniquely
identified. 80% of the views are associated to keyframes
which contain two or three labels. The remaining views are
associated to keyframes with four and more views. The mean
number of similar objects per view is about 2.7.

V. CONCLUSION

The proposed approach allows for the extraction of
keyframes on the basis of similarities among objects. For 10
objects with overall 720 views we were able to reduce the
number of stored features for one modality to only 19. The
experiments show, that with these 19 features, the potential
candidates for a perceived object can be reduced to 2.7 on
average.

An artificial perception system for a cognitive robot has to
rely on more then one modality to identify and classify the
manifold of different object types it encounters in real world
tasks. The proposed approach will be used in conjunction
with a combination of different descriptors for the object
appearances. Despite the mentioned CCHs we plan to apply
the same approach to other feature extraction methods eg.
Zernike Moments. If chosen accordingly, the combination
of different modalities will allow to identify the perceived
objects uniquely.

Finally, the system will be implemented on our humanoid
robot to ease the acquisition of objects during exploration of
the environment.
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We describe a process in which the segmentation of objects as well as the extraction of
the object shape becomes realized through active exploration of a robot vision system.
In the exploration process, two behavioural modules that link robot actions to the visual
and haptic perception of objects interact. First, by making use of an object independent
grasping mechanism, physical control over potential objects can be gained. Having eval-
uated the initial grasping mechanism as being sucessful, a second behaviour extracts the
object shape by making use of prediction based on the motion induced by the robot.
This also leads to the concept of an ’object’ as a set of features that change predictably
over different frames.

The system is equipped with a certain degree of generic prior knowledge about the
world in terms of a sophisticated visual feature extraction process in an early cogni-
tive vision system, knowledge about its own embodiment as well as knowledge about
geometric relationships such as rigid body motion. This prior knowledge allows for the
extraction of representations that are semantically richer compared to other approaches.

Keywords: Early Cognitive Vision, Grasping, Exploration

1. Introduction

1

According to Gibson' an object is characterized by three properties: It

O1 has a certain minimal and maximal size related to the body of an agent
02 shows temporal stability
O3 is manipulatable by the agent

Note that all these three properties are defined in relation to the agent (even tempo-
ral stability (O2) is relative to the lifetime span). Hence, no general agent indepen-
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dent criterion can be given. For an adult, a sofa certainly fulfills all three properties
but for a fly, a sofa is more a surface than an object.

The detection of ’objectness’ according to the three properties described above
is not a trivial task. When observing a scene, usually in a visual system, a number
of local features become extracted for which it is unclear whether and to which
object they correspond to. Actually, property (O3) can only be tested by actively
acting on the scene in case that no prior object knowledge is available.

In many artificial systems, in particular in the context of robotics, the object
shape is given by a CAD representation a priori and is then used for object identi-
fication and pose estimation (see, e.g., Lowe?). However, CAD representations are
not available in a general context, and for any cognitive system, it is an important
prerequisite that it is able to learn object representations from experience.

In this paper, we address both problems: We introduce a procedure in which the
objectness becomes detected based on the three Gibsonian criteria mentioned above.
In addition, the object shape becomes extracted by making use of the coherence of
motion induced by the agent after having achieved physical control over something
that might turn out to become an object.

Our approach is making use of the concept of Object Action Complexes (OACs)
where we assume that objects and actions (here the ”grasping action” and controlled
object movement) are inseparably intertwined. Hence, the intention of performing
a grasp, the actual attempt to grasp and the evaluation of its success as well as a
controlled movement of the object in case of a successful grasp will let the ’object-
ness’ as well as a representation of the object’s shape emerge as the consequence of
the actions of the cognitive agent?®.

It is worth noting that both aspects, achieving physical control over a thing®
as well as the extraction of object shape is based on a significant amount of prior
knowledge, which however is much more generic than a CAD model of an object.
More specifically, this prior consists of the system’s knowledge about

1) its own body in terms of the shape, the degrees of freedom and the current
joint configuration of the robot arm as well as the relative position of the stereo
camera system and the robot co-ordinate system,

2) a developed early cognitive system® that extracts local multi-modal symbolic
descriptors (see figure 1, a—e), in the following called primitives, and relations
defined upon these primitives expressing statistical and deterministic properties
of visual information (see figure 2).

2We note that this extends the notion of ”affordances” by Gibson. According to Gibson: Objects
afford actions. While this remains true, it is also - in our hands - the case that an action defines
an object. Hence the action of drinking defines a cup, where the action of ”placing on top” makes
the same(!) thing a pedestal (an upside down cup).

bWe denote with ’thing’ something that causes the extraction of a visual feature but which is not
yet characterized as an object since it could be for example also something fixed in the workspace

of the robot and hence does not fulfill condition three above.
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3) two behavior modules in terms of two OACs:

B1 An object independent ’grasping reflex’ leads in some cases to successful

grasping of potential objects (figure le shows the end-effector’s pose for
one successful grasp). Note that here it is less important to have a high
success-rate of grasping attempts but that is is more important that a
success is actually measurable and that it then triggers a second exploration
mechanism (see B2).
The ’grasping reflex’ is based on three semantic relations defined within
the early cognitive vision system: First, co-planarity of descriptors indicate
surfaces and by that possible grasping options. The co-planarity relation
is enhanced by a co-linearity and co-colority relation to further enhance
the success rate of the ’grasping reflex’.

B2 After a successful grasp an accumulation module explores the object by
looking at different views of the object (see figure 1f,g) and accumulating
this information to determine the objectness of the thing as well as to
extract the shape of the object 1h. This accumulation module is based
on prediction based on a rigid body motion relation between primitives.
Having gained physical control over an object by the grasping reflex allows
for inducing a rigid body motion on the object and by that the object (its
objectness as well as its shape) can be characterized by the set of visual
descriptors changing according to the induced motion.

The idea of taking advantage of active components for vision is in the spirit
of active vision research®®. The grounding of vision in cognitive agents has been
addressed for example by a number of groups in the context of grasping®” as well
as robot navigation®.

The work of Fitzpatrick and Metta® is the most related one to our approach
since the overall goal as well as the hardware set up is similar: Finding out about
the relations of actions and objects by exploration using a stereo system combined
with a grasping device. We see the main distinguishing feature of this work to our
approach in the amount of pre-structure we use. For example, we assume a much
more sophisticated vision system that covers multiple visual modalities in a con-
densed form as well as visual relations defined upon them. This allows us to operate
in a highly structured feature space where, instead of pixel-wise representations,
we can operate on local symbols for which we can predict changes not only of posi-
tion but also other feature attributes such as orientation and colour. Furthermore,
the use of a very precise industrial robot allows for a precise generation of changes
exploited for the extraction of the 3D shape of the object. It is not clear what
exact prior knowledge can be assumed in the human system. However, there exist
strong indications for an innate concept of 3D space as well as for sophisticated
feature extraction mechanisms being in place very early in visual experience. For a
discussion of this issue see for example Kellmann and Arterberry?). The question
of prior knowledge in the context of depth perception and possible consequences for
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the design of artificial systems is described in Kriiger and Worgotter!?.

Similar to Fitzpatrick and MettaS, we assume first ‘reflex-like’ actions that trig-
gers exploration. However, since in our system the robot knows about its body and
the 3D geometry of the world and since the arm can be controlled more precisely,
these reflexes can make use of more complex visual events. As a consequence we
can make use of having physical control over the object and to extract rather pre-
cise 3D information (in addition to the appearance based information coded in the
primitives).

Modayil and Kuipers® addressed the problem of detection of objectness and the
extraction of object shape in the context of a mobile robot using laser information.
Here also motion information (in terms of the odometry of the mobile robot) is used
to formulate predictions. In this way they were able to extract a top-view of the
3D shape of the object however only in terms of geometric information and only in
terms of a 2D projection to the ground floor.

The paper is organized as following: In section 2 the early cognitive vision system
is briefly described. In section 3 and 4 we give a description of the two sub-modules,
i.e., the grasping reflex and the accumulation scheme. Sub—aspects of the work have
been presented at two workshops!'!!12.

2. An Early Cognitive Vision System

In this section, we introduce the visual system in which the detection of 'objectness’
as well as the acquisition of the object representation is taking place. The system is
characterized by rather structured prior knowledge: First, a scene representation is
computed in terms of local symbolic descriptors (in the following called primitives)
covering different visual modalities as well as 2D and 3D aspects of visual data
(section 2.1). Second, there are relations defined upon the symbolic descriptors that
cover spatial and temporal dependencies as briefly described in section 2.2. It is only
the use of this prior knowledge that allows for the formulation of the two OACs
described in sections 3 and 4.

2.1. Multi—-modal Primitives as local scene descriptors

In this work we use local, multi-modal contour descriptors hereafter called
313 (see figure 1). These primitives give a semantically meaningful de-
scription of a local image patch in terms of position as well as the visual modal-

primitives

ities orientation, colour and phase. The importance of such a semantic grounding
of features for a general purpose vision front—end, and the relevance of edge-like
structures for this purposes was discussed, e.g., by Elder!.

The primitives are extracted sparsely at locations in the image which are the
most likely to contain edges. The sparseness is assured using a classical winner—
take—all operation, ensuring that the generative patches of the primitives do not
overlap. Each primitive encodes the image information contained by a local image
patch. Multi-modal information is gathered from this image patch, including the
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Fig. 1. Overview of the system. (a) Image of the scene as viewed by the left camera at the first
frame. (b) Symbolic representation of a primitive wherein (1) shows the orientation, (2) the phase,
(3) the colour, (4) the optic flow of the primitive. (c) 2D primitives extracted at one object in the
scene from (a). (d) Illustration of the reconstruction of a 3D primitive from a stereo pair of 2D
primitives. (e) 3D primitives reconstructed from the scene and one grasping hypothesis. (f)-(g)
Two views of robot rotating the grasped object to build its 3D representation. (h) The learned 3D
representation of the object.

position @ of the center of the patch, the orientation 6 of the edge, the phase w of
the signal at this point, the colour ¢ sampled over the image patch on both sides of
the edge, the local optical flow f and the size of the patch p. Consequently a local
image patch is described by the following multi-modal vector:

™= (wagawvcafvp)Tv (1)
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that we will name 2D primitive in the following. The primitive extraction process
is illustrated in figure 1.

In a stereo scenario, 8D primitives can be computed from correspondences of
2D primitives (figure 1)

n=(X,0,0,C)7, (2)

where X is the position in space, © is the 3D orientation, 2 is the phase of the
contour, and C' is the colour on both sides of the contour.

2.2. Perceptual relations between primitives

The sparseness of the primitives allows for the formulation of four structural re-
lations between primitives that are crucial in our context since they allow us to
relate feature constellations to grasping actions (in the first OAC in section 3) or
visual percepts in consecutive frames (in the second OAC described in section 4).
See Kalkan et al.'® for more details.
Co—planarity Two spatial primitives II; and 1I; are co-planar iff their orientation
vectors lie on the same plane. The co—planarity relation is illustrated in Fig. 2(b).
In the context of the grasping reflex described in section 3 grasping actions become
associated to the plane spanned by co-planar primitives.
Collinear grouping (i.e., collinearity): Two 3D primitives II; and II; are
collinear (i.e., part of the same group) iff they are part of the same contour. Due
to uncertainty in 3D reconstruction process, in this work, the collinearity of two
spatial primitives II; and II; is computed using their 2D projections m; and ;.
Collinearity of two primitives is illustrated in Fig. 2(a).
Co—colority: Two spatial primitives II; and II; are co—color iff their parts that
face each other have the same color. In the same way as collinearity, co—colority of
two spatial primitives II; and II; is computed using their 2D projections 7; and ;.
Fig. 2(c), a pair of co—color and non co—color primitives are shown.

Testing for collinearity and co—colority help to reduce the number of generated
grasping hypotheses (see section 3.2).
Rigid body motion: The change of position and orientation induced by a rigid
body motion between two frames at time ¢ and ¢ 4+ 1 (II**! = RBM(II!)) can be
computed analytically'®, phase and colour can be approximated to be constant.

3. Grasping Reflex

In this section, we describe the first OAC that leads to a physical control over
objects. Note that a high success rate is not important in this context, but more
that the success can be evaluated by haptic feedback which then gives indications
to proceed with another OAC described in section 4.
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b)

Fig. 2. Illustration of the relations between a pair of primitives. (a) Collinearity of two 2D prim-
itives m; and 7. (b) Co—planarity of two 3D primitives II; and II;. (c¢) Co—colority of three 2D
primitives m;, m; and 7. In this case, m; and 7; are cocolor, so are m; and 7y; however, m; and 7y,
are not cocolor.

3.1. Elementary grasping actions associated to co-planar
Primitives

Coplanar relationships between visual primitives suggests different graspable planes.
Fig. 3(a) shows a set of spatial primitives on two different contours /; and [; with
co—planarity, co—colority and collinearity relations.

Four elementary grasping actions (EGA) will be considered as shown in Fig. 3,b—
e. EGAL1 is a “pinch” grasp on a thin edge like structure with approach direction
along the surface normal of the plane spanned by the primitives. EGA2 is an “in-
verted” grasp using the inside of two edges with approach along the surface normal.
EGA3 is a “pinch” grasp on a single edge with approach direction perpendicular
to the surface normal. EGA4 is wide grasp making contact on two separate edges
with approach direction along the surface normal.

The EGAs will be parameterized by their final pose (position and orienta-
tion) and the initial gripper configuration. For the simple parallel jaw gripper,
an EGA will thus be defined by seven parameters: EGA(x,y, z, k,l,m,d) where
p = [z,y, #] is the position of the gripper “center” according to Fig. 3(f); k,l, m are
the roll, pitch and yaw angles of the vector n; and § is the gripper configuration, see
Fig. 3(f). Note that the gripper “center” is placed in the “middle” of the gripper.

We intend to compute these grasp parameters from coplanar pairs of 3D-—
primitives. Let I' = {II1,IIo} be a primitive pair for which the coplanar relationship
is fulfilled. Let I'; be the ith pair and p the plane defined by the coplanar rela-
tionship of the primitives of I';. Let A(II) be the position of II and ©(II) be the
orientation of II. The parameterization of the EGAs is given with the gripper nor-
mal n and the normal a of the surface between the two fingers as illustrated in
Fig. 3(f). From this, the yaw, pitch and roll angles can be easily computed. For
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b) EGA1 |c) EGA2

d) EGA3 |e) EGA4

Fig. 3. (a) A set of spatial primitives on two different contours I; and I; that have co—planarity, co—
colority and collinearity relations; a plane P defined by the co—planarity of the spatial primitives
and and an example grasp suggested by the plane. (b)-(e) Elementary grasping actions, EGA1,
EGA2, EGA3 and EGAA4 respectively. (f) Parameterization of EGAs.

example for EGA1, there will be two possible parameter sets given the primitive
pair I' = {II;,II5}. The parameterization is as follows:

Pgripper = A(Hl)v
n = V(p),
a = perp,(9(IL;))/ || perp,(O(IL;)) | for i = 1,2, (3)

where V(p) is the normal of the plane p and perp,(a) is the projection of a
perpendicular to u.

The main motivation for choosing these grasps is that they represent the simplest
possible two fingered grasps humans commonly use which can also be simulated
on our robot system. The result of applying the EGAs can be evaluated by the
information given by the gripper (Schunk, PT-AP 70) which gives the distance
between the two jaws at each instance of time.

For EGA1, EGA3 and EGA4, a failed grasp can be detected by the fact that the
gripper is completely closed. For EGA1 and EGA3, the expected grasp is a pinch
type grasp, i.e. narrow. Therefore, they can also “fail” if the gripper comes to a halt
too early. EGA2 fails if the gripper is fully opened, meaning that no contact was
made with the object. If none of the above situations is encountered the EGA is
considered successful. The details of how EGAs are computed can be found in Aarno

et al.ll,

3.2. Limiting the number of actions

For a typical scene, the number of coplanar pairs of primitives is on the order of
103 —10%. Given that each coplanar relationship gives rise to six different grasps from
the four different categories, it is obvious that the number of suggested actions must
be further constrained. In addition, there exist many coplanar pairs of primitives
affording similar grasps.
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(a) (b) (c) (d)

Fig. 4. Two example scenes designed for testing (a,c) and a selection of the generated actions

(b,d).

To overcome some of the above problems, we make use of the structural richness
of the primitives. First, their embedding into collinear groups naturally clusters the
grasping hypotheses into sets of redundant grasps from which only one needs to
be tested. Furthermore, co—colority, gives an additional hypothesis for a potential
.11 quantified the reduction in EGAs hypotheses using collinearity
and co—colority in a simulation environment, showing that the number of EGAs can
be reduced systematically.

grasp. Aarno et a

3.3. Ezxperimental evaluation

To evaluate the grasping reflex we made experiments within the simulation envi-

t17 and with a real scene. In the Grasplt environment, we evaluated

ronment Graspl
success rate on scenes of different complexity (see Fig. 4 for a number of successful
grasps on two scenes). Success rate was dependent on the scene complexity, ranging
from appr. 90%° in the case of a simple plane (see Fig. 4a,b), to around 25% for
scenes of larger complexity 4c,d.

We then evaluated the exploration strategy on a real scene (see Fig. 5(a)).
After reconstructing 3D—primitives from stereo images (Fig. 5(b)), 912 EGAs were
generated. However, in a real set—up there are additional constraints such as the
definition of a region of interest where objects are supposed to occur, the fact that
not all EGAs are actually performable due to limited workspace.d In addition,
grasps leading to collisions with the floor or the wall need to be eliminated. Table
1 shows effects of reductions.

In a full exploration sequence, the system attempts to perform one of the 50

€A success is counted when one of the six EGAs has been performed successfully
dNote that workspace needs to be defined in terms of a 6D pose and that even when a 3D point is
reachable, it is not certain that the desired end—effector orientation can be achieved at this point.
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(e) ()

Fig. 5. The experimental scene for testing EGAs. (a) The view from the left camera. The origin
and orientation of world coordinate frame are illustrated in top left corner. (b) Extracted 3D
primitives displayed in the visualization environment module. (c,e) Successful grasps shown in
our 3D displaying software. (d,f) The robot arm executing the grasps shown in (c,e).

remaining EGAs. A failure to grasp an object generally causes changes in the scene,
and the whole sequence of capturing images, generating and reducing EGAs would
be repeated. However, for the purpose of evaluating the whole set of proposed
EGAs for a single scene, the objects in this experiment were placed at their original
position after each attempted grasp.

In the specific scenario shown in Fig. 5, three out of the four objects could be
grasped by the reflex. Out of 50 grasps, 7 lead to physical control over objects.
In one case, the contact area was too small, leading to an unstable grip, and the
accumulation module (see section 4.1) could not be applied.
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Table 1. The results of applying reductions to the initial set of EGAs.

Reductions: Initial number of EGAs  deleted remaining
to region of interest 912 684 228
to reachable configurations 228 123 105
collision free (floor) 105 55 50
collision free (self) 50 0 50

4. Detection of Objectness and Object Shape

Having achieved physical control over an object, measured by the distance between
the gripper’s jaws after closing or opening (in case of EGA2), a second OAC is
triggered that makes use of the additional capability that has the agent of actively
manipulating the object.

If an object’s motion within the scene is known, then the relation between this
object’s features in two subsequent frames becomes deterministic (excluding the
usual problems of occlusion, sampling, etc.). This means that a 3D-primitive that
is present in one frame is subject to a transformation that is fully determined by
the object’s motion: generally a change of 3D position and 3D orientation.® If we
assume that the motion between consecutive frames is reasonably small then a
contour will not appear or disappear unpredictably, but will have a life-span in the
representation, between the moment it enters the field of view and the moment it
leaves it. Assuming having a fully calibrated system and having physical control
over the object (as gained by the first OAC described in section 3) we can compute
the 3D—primitives’ change in camera coordinates.

These predictions are relevant in different contexts:

Establishment of objectness: The objectness of a set of features is charac-
terized by the fact that they all move according to the robot’s motion. This
property is discussed in the context of a grounded Al planning system in Geib
et al.18.
Segmentation: The system segments the object from the rest of the scene
using its predicted motion.

e Disambiguation: Erroneous 3D—primitives can be characterized (and elimi-
nated) by inconsistent motion according to the predictions.
Learning the object model: A full 3D model of the object can be extracted
by merging different 2%D views created by the motion of the end effector.

4.1. Making predictions from the Robot Motion

If we consider a 3D-primitive II! € 8; describing an object’s contour at time instant
t, and assume that the object’s motion is known between the two instants ¢t and
t + At, then we can predict this primitive’s position at ¢ + At.

©We neglect the effects of lighting and reflection, and assume that phase and colour stay constant.
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Fig. 6. Example of the accumulation of a primitive (see text) [NK: I see one problem with this
figure. A rectangle has two meanings once it is a frame that becomes enlarged in the bottom image
and once it is an object].

The projection of 3D-primitives to the image domain predict where 2D-
primitives should be extracted from each camera’s image at time ¢ + At. It is then
possible to assess the correctness of a reconstructed 3D—primitive by how reliably
it is confirmed by subsequently extracted 2D—primitives.

This prediction/verification process is illustrated in Fig. 6. The left column shows
an image from a scene at time ¢; the right column shows an image from the same
scene, taken at a later time ¢ + At. The top row shows the complete image of the
object; the bottom row shows object’s details indicated by the black rectangle. If
we consider the object A (solid rectangle in the top—left and top-right images) that
is subjected to a motion M;_,; A, between time ¢ and ¢ + At (as illustrated in the
figure’s top row). Two object’s shape hypotheses generate two distinct predictions
at time ¢ + At: A’ (correct and similar to the actual pose of the object, denoted by
the blue rectangle in the top—right image) and A” (erroneous, red rectangle). The
consequences for individual primitives on the object is shown in the bottom row:
the primitive 7! lies on the contour of A at the instant ¢ (bottom-left image). Two
t and 7 at time ¢, lead to the reconstruction

J
of two mutually exclusive 3D—primitives II¢_ . and II!_,, and thus the prediction

i—J 7

of two different poses at time ¢ + At: 1) the correct hypothesis Hf_)j predicts a

plausible stereo correspondences 7

2D-primitive 7’ that matches closely with one of the a 2D-primitive 7rf+A‘It (blue
in the bottom-right image), newly extracted at t + At from the contour of A, thus
comforting the original hypothesis; 2) the incorrect hypothesis It , predicts a 2D—
primitive 7" (red in the bottom-right image), that do not match any primitive
extracted from the image, thereby revealing the erroneousness of the hypothesis.

We then propose to use these predictions to re—evaluate 3D—primitives’ confi-
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dence depending on their resilience over time. This is justified by the continuity
assumption, which states that 1) scene’s objects or contours should not appear and
disappear abruptly from the field of view (FoV) but move in and out gracefully ac-
cording to the estimated ego-motion; and 2) a contour’s position and orientation at
any point in time is fully determined by the knowledge of its position at a previous
instant in time and of its motion since.

Consider a primitive II;, predicting a primitive f[ﬁ at time t. We write the fact
that this prediction is confirmed by the images at time time ¢ as 1, (II;) = 1; and the
fact that it is not confirmed (i.e., there is no 2D—primitive extracted at time ¢ that
is similar to the projection of 12[;t on the image plane) as ,ut(f[i) = 0. By extension,
we code the resilience a primitive II;, from its apparition at time 0 until time ¢ as
the binary vector:

N ~ ~ T
p(I) = (o), e (1) () 4)

We then apply Bayes formula to evaluate the posterior likelihood that a 3D—
primitive is correct knowing its resilience vector:

p(p)pd)
P ((IL)[TD) p (IT) + p (pa(TL;)[TT) p (TT)
In this formula, II and II are correct and erroneous primitives, respectively. The
quantities p (II) and p (I:I) are the prior likelihoods for a 3D—primitive to be cor-

p (I p(1L;)) = (5)

rect and erroneous. The quantity p (u(f[l)ﬂ_[) (resp. p (p,(Hl)|ﬁ)) expresses the
probability of occurrence of a resilience vector u(Il;) for a correct (resp. erroneous)
primitive II;.

Furthermore, if we assume independence between the matches ut(ﬁi), then for
a primitive II; that exists since n iterations and has been matched successfully m

times, we have the following relation:
p ((L)TT) =TT, p (()I)
= p (pel1) = 111) " p (pa(i1) = 0frr)" "

In this case the probabilities for u; are equiprobable for all ¢, and therefore if we

define the quantities a = p(II), 8 = p (ut(H) = 1|H> and v = p (ut(ﬂ) = 1|f[)

then we can rewrite Eq. (5) as follows:

(6)

. ﬂm(l _ ﬁ)n—ma
P(WEM) = i gpma s i
We measured these prior and conditional probabilities using a video sequence
with known motion and depth ground truth obtained via range scanner. We found
values of @ = 0.46, § = 0.83 and v = 0.41. This means that, in these examples,
the prior likelihood for a stereo hypothesis to be correct is 46%, the likelihood for
a correct hypothesis to be confirmed is 83% whereas for an erroneous hypothesis it
is of 41%. These probabilities show that Bayesian inference can be used to identify
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(a) (b) (©) (d)

Fig. 7. Gripper elimination (a) grasper and grasper coordinate system (b) bounding boxes of
grasper body and its fingers (c) primitives before grasper elimination (d) primitives after grasper
elimination

correct correspondences from erroneous ones. To stabilize the process, we will only
consider the n first frames after the appearance of a new 3D-primitive. After n
frames, the confidence is fixed for good. If the confidence is deemed too low at this
stage, the primitive is forgotten. During our experiments n = 5 proved to be a
suitable value.

The end-effector of the robot follows the same motion as the object. Therefore,
this end-effector becomes extracted as well. Since we know the geometry of this
end-effector (Fig. 7 (a)), we can however easily subtract it by eliminating the 3D
primitives that are inside the bounding boxes that bounds the body of the gripper
and its fingers (Fig. 7 (b)). For this operation, three bounding boxes are calculated
in grasper coordinate system. In Fig. 7 (c) 2D projection of 3D primitives extracted
from a stereo pair is presented. After gripper elimination, the 2D projections of
remaining primitives are shown in Fig. 7 (d).

4.2. Ezxperiments

We applied the accumulation scheme to a variety of scenes where the robot arm
manipulated several objects. The motion was a rotation of 5 degrees per frame.
The accumulation process on one such object is illustrated in Fig. 8. The top row
show the predictions at each frame. The bottom row, shows the 3D—primitives that
were accumulated (frames 1, 12, 22, and 32). The object representation becomes
fuller over time, whereas the primitives reconstructed from other parts of the scene
are discarded. Fig. 9 shows the accumulated representation for various objects. The
hole in the model corresponds to the part of the object occluded by the gripper.
Accumulating the representation over several distinct grasps of the objects would
yield a complete representation.

5. Conclusion

We introduced a scheme in which two modules in terms of Object Action Complexes
(OACs) become combined to extract world knowledge in terms of the objectness
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(a) (b) (c) (@

Fig. 8. Birth of an object (a)-(b) top:2D projection of the accumulated 3D representation and
newly introduced primitives, bottom:accumulated 3D representation. (c) newly introduced and
accumulated primitives in detailed. Note that, the primitives that are not updated are red and the
ones that have low confidence are grey (d) final accumulated 3D representation from two different
poses.

Fig. 9. Objects and their related accumulated representation.

of a set of local features as well as the object shape. Although this exploration
scheme is completely autonomous, we argued that there is a significant amount of
prior knowledge in terms of generic properties of the world built into the system.
Starting with a rather sophisticated feature extraction process covering common
visual modalities, functional relations defined on those features such as co-planarity,
co-linearity, basic laws about Euclidean geometry and the motion of rigid object has
been exploited. Furthermore and at least of equal importance, it was the capability
to act on the world that made this process possible. Here the embodiment of the
agent is of high importance. The option to grasp and move the objects in a controlled
way is rather unique to few species and with high likelihood linked to develop higher
cognitive capabilities.
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The work described in this paper is part of the EU project PACOplus'® which
alms at a system covering different levels of cognitive processing from low-level
processes as described here up to a planning Al level (see Geib et al'®). This work
introduced describes an important module of such a cognitive system which gives
information that higher levels require to start operating. First, it segments the
world in objects which are the basic entities that higher level reasoning is based on.
Moreover, it generates 3D object representations in a procedural way which then
can be used for object identification and pose estimation (see, e.g., Lowe? for the
use of 3D models for object recognition and Detry and Piater?® for first steps in
directly making use of the extracted representations described in this paper). By
the described exploratory procedure, a natural mechanism is given that enlarges
the internal world model that then can be used by higher levels for reasoning and
planning (for first steps, see Geib et al'®).

Acknowledgements: We would like to thank Tamim Asfour, Mark Steedman,
Christopher Geib and Ron Petrick for fruitful discussions. This work has been
funded by the EU project PACOPlus!?.
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