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Abstract:
This report contains several scientific publications that are relevant for deliverable 
D3.1.1. Deliverable D3.1.1 is concerned with the recognition and synthesise of goal-
directed  arm  movements  and  hand  grasps  of  objects.  The  included  publications 
discuss different aspects of this area, including vision based tracking, learning and 
synthesizing of arm movements and grasps.
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1 Introduction

Deliverable D3.1.1, Aspects of Vision Based Upper Body and Grasp Activity Recognition, is
concerned with two aims:

1. To become able to identify human upper body movements and actions which may include
objects. Examples of such movements are humans pointing at objects or humans grasping
objects. Here, two sub-issues are important:

(a) Action recognition: Here, the aim is to recognize that a human, e.g., points or grasps
an object. The problem of recognition is relatively simplified as in many situations,
approximate information is sufficient. For example the mere fact that an object moves
in 3D space in the same manner as the hand is sufficient to show that the object was
grasped. How the grasping precisely was performed is often not important. See for a
discussion [5] and the demo [3].

(b) Learning from demonstration: Here, the aim is to learn movements and actions from
observation. Contrary to the recognition task above, this task is more demanding as
it matters how the action is precisely executed. For example, what kind of grasping
is performed needs to be considered here so that later, the robot can perform such
grasps itself.

2. o become able to synthesize actions based on those seen before. A typical example is a
situation where a human teacher has explained to a robot to perform a certain action by
having demonstrated it (learning from demonstration). A general problem in this case
is that new, upcoming situations will not perfectly match the situation during training.
Objects may be at different locations and the robot itself may be positioned differently
from before. Thus, the robot has to learn not the precise trajectory of the movement but
a more abstract representation of the action such as grasp that type of object and insert
it into a box, where, e.g., grasp implies the appropriate and specific hand grasp at the
position of the object.

In this reporting period, we have focused on the following aspects1:

1. Development of a new learning framework for synthesized goal-directed actions from ex-
ample movements [8]. The approach is based on memorizing of training data and locally
weighted regression to compute suitable movements for a large range of situations. This
method is especially useful for performances of very precise movements, such as the em-
ployed test movement of throwing a ball into a basket.

2. Development of a representation that allows to a) recognize movements performed by
other humans independent from the parameterizations of the movements and b) synthesize
movements based on given parameters [5]. For example a human may point to an object
on a table. The pointing movements is parameterized through the object position on
the table. The movement as well as its parameterization can be recognized. Similarly, a
movement can be synthesized with a given parameterization. For example, the robot may
grasp the object at which a human has pointed earlier and the parameterization of the
newly synthesized movement is done with the parameters previously recovered from the
observed movement that was performed by the human.

3. Human motion capture is a requirement for human action learning and recognition to
work online. In [1] we have developed further our marker-free human motion capture

1These are described in greater detail in the same order in Sect. 2-6
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approach. A sub-aspect of marker-free human body motion capture was discussed in [2].
Marker-free human body tracking in conjuction with [5] allows online action recognition
as demonstrated in demo (see [3]).

4. The work in [5] is concerned with the learning and recovery of arm movements in general
but does not discuss the learning and recovery of the precise grasps. The grasping itself
is a problem on its own and is discussed in [7]. To incorporate this into one joint demo is
ongoing work.

5. Finally, we were able to show in [6] that the recognition of actions can be greatly eased
when decoupling complex actions into motor primitives.

The following sections give an overview and summary of the appended publications in the
context of this deliverable. The order in which the publications are appended follows the order
of the subsequent sections.

2 New learning framework for synthesized goal-directed actions
from example movements

Learning actions on objects without the availability of prior physical models is a difficult problem.
While many tasks can be learned assuming a proper representation for the physics of the task,
such an approach relies on a priori knowledge about the task and therefore does not solve the
complete learning problem. If physical models are not available, the search space becomes
very large. Learning from demonstration or imitation learning has been proposed to effectively
reduce the search space. However, in tasks involving the manipulation of objects, it is not
possible to directly replicate the demonstrated movements. Instead, they need to be adapted
to the current state of the 3-D world. For any given situation, it is highly unlikely that an
appropriate movement would be observed in advance and included in the library.

In [8] we have developed a new learning framework for synthesizing goal-directed actions
from example movements. The approach is based on the memorization of training data and
locally weighted regression to compute suitable movements for a large range of situations. The
proposed method avoids making specific assumptions about an adequate representation of the
task. Instead, we use a general representation based on fifth order splines. The data used for
learning comes either from the observation of events in the Cartesian space or from the actual
movement execution on the robot. Thus it informs us about the appropriate motion in the
example situations. We show that by applying locally weighted regression to such data, we can
generate actions having proper dynamics to solve the given task. To test the validity of the
approach, we present simulation results under various conditions as well as experiments on a
real robot. Our experiments demonstrate that we can achieve fairly accurate results without
providing the system with models about the dynamics of the task and without needing to acquire
an excessive amount of example movements.

3 Recognizing and Synthesizing Parametric Movements

The aim of the above work is to enable a robot to execute precise movements (such as throwing
something into a basket).

In another work we focus also on learning action, however, with the focus of recognizing
classes of actions. We developed an exemplar-based parametric hidden Markov model (PHMM)
that allows to represent, e.g., movements of a particular type (e.g. pointing actions) and that
compensates for the different appearances and parameterizations of that movement. The PHMM
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is based on exemplar movements that have to be ”demonstrated” to the system. Recognition
and synthesis are carried out through locally linear interpolation of the exemplar movements.

In order to be able to interpolate several HMMs, we have developed a new training method
that allows to train several differently actions exemplars at the same time. Dynamic Time
warping, which is commonly used, does not allow to synchronize more than two signals at a
time. Our new approach allows to synchronize any number of signals during the EM training
for the HMMs.

In our experiments we combine our PHMM approach with our 3D body tracker. Experi-
ments were performed with pointing and grasping movements. The synthesis for grasping was
parameterized by the positions of the objects that were to be grasped. In the case of recognition,
our approach is able to recover the position of an object at which a human volunteer is pointing.
Our experiments show the flexibility of the PHMMs in terms of the amount of training data and
its robustness in terms of noisy observation data. In addition, we have compared our PHMM
approach to another kind of PHMM, which has been introduced earlier by Wilson and Bobick.
The report [5] includes and extends the publication [4].

4 Aspects of Stereo-based Marker-free Human Motion Capture

We continued our work on a stereo-based marker-based human motion capture system that can
run in real-time on a humanoid robot, making use of the cameras integrated in its head only [1].
In order to be able to capture movements that include arm poses which result in projections
of only very short edges in the camera images, stereo vision is used explicitly to measure 3D
positions of the hands and the head. These positions are used as an additional cue to the
commonly used edge cue. The combination of these both cues enables tracking arm movements
in situations in which a purely edge- and region-based system would fail, while preserving the
advantages of contour-based tracking. With this approach, we could successfully track the
movements of a person in front of the robot with a processing rate of 15 fps.

In [2] we discuss a sub-aspect of marker-free human body tracking. We combine two classical
methods for parameter estimation in this context, namely gradient descent and particle filtering.
The combination is done such that (a) the correspondence based estimation gains the advantage
of the particle filter and becomes able to follow multiple hypotheses while (b) the particle filter
becomes able to propagate the particles in a better manner and thus gets by with a smaller
number of particles. We were able to show that pairing up the two methods allows to reduce
the number of particles and to increase convergence speed.

5 Recognition and Synthesis of Human Grasps

Extraction and tracking of hand contours represents an important part of sign language and
gesture recognition systems. In robotics, recent developments in imitation learning show the
need for complete hand pose estimation such that recognition and evaluation of grasps applied
to object can be performed.

In [7] We have developed a model based stereo approach. Once hand contours are identified
in each of the stereo images, the points along the contours are matched in order to compute
their 3D position. The contribution of our work is a method for matching and reconstruction of
contour points using Dynamic Time Warping (DTW), giving a 3D reconstruction of the hand
contour. This 3D contour can be tracked over time while the hand is performing various object
manipulation activities. The estimated configuration of the hand gives information about a
number of parameters, such as the type of grasp, the grasp approach vector and the grasping
point for the type of object grasped.
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As the study showed 3D estimation of hand pose to be an extremely challenging problem,
the current work in this area in PACO+ is directed towards 3D pose (or grasp) recognition
without explicit estimation of the hand pose. The results of this effort will be presented in the
next PACO+ deliverable.

6 Modelling and Recognition of Actions through Motor Primi-
tives

In earlier work at KTH, an HMM model was designed for recognition of manipulating actions.
The model was based upon the assumption that any action can be described as a sequence of
motor primitives. 3D positions and orientations of a number of points of the hand, measured
with magnetic 3D sensors, were used as input to the model.

There are two problems with generative approaches like HMM. Firstly, assumptions (possibly
erroneous) have to be made about the motion data, like the Markov assumption that the state at
the current time step only depends on the previous state and not on any earlier states. Secondly,
the motion data has to be segmented prior to classification.

To address these issues, a discriminative sequential classification method was employed [6],
conditional random fields (CRF). The performance of the HMM and CRF models was evaluated
on a body of magnetic 3D data, and the results showed the CRF to perform slightly better.
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Abstract— We present a new learning framework for syn-
thesizing goal-directed actions from example movements. The
approach is based on the memorization of training data and
locally weighted regression to compute suitable movements for a
large range of situations. The proposed method avoids making
specific assumptions about an adequate representation of the
task. Instead, we use a general representation based on fifth
order splines. The data used for learning comes either from the
observation of events in the Cartesian space or from the actual
movement execution on the robot. Thus it informs us about the
appropriate motion in the example situations. We show that
by applying locally weighted regression to such data, we can
generate actions having proper dynamics to solve the given task.
To test the validity of the approach, we present simulation results
under various conditions as well as experiments on a real robot.

I. INTRODUCTION

Humanoid robotics has dealt with the problem of learning
complex humanoid behaviors for a long time. It was soon real-
ized that to overcome problems arising from high dimensional
and continuous perception-action spaces, it is necessary to
guide the search process, thus effectively reducing the search
space, and also to develop higher-level representations suitable
for faster learning. To achieve these goals, researchers in sen-
sorimotor learning have explored various solutions. Some of
the most notable among those are learning from demonstration
(or imitation learning) and motor primitives.

Building on the large body of work by the computer
graphics community, it has been shown that motion capture
technology can be used to generate complex humanoid robot
motions that may require a great deal of skills and practicing
to be realized, e. g. dancing [11], [18], [19]. Techniques to
adapt the generated movements with respect to various robot
constraints have also been proposed [10], including more com-
plex constraints such as self-collision avoidance and balancing
of a free standing dancing robot [8], [14]. Dynamics filter

that can create a physically consistent motion from motion
capture data has also been proposed [22]. While these works
can overcome the problem of different embodiments of the
robot and the demonstrator, they do not deal with the effects
of motion acting on the external world. Different methods are
needed to adapt the captured motions to the changes in the
external world and synthesize goal-directed actions, such as
in the case of object manipulation tasks.

In tasks involving the manipulation of objects, it is neces-
sary to adapt the observed movements to the current state of
the 3-D world. For any given situation, it is highly unlikely
that an appropriate movement would be observed in advance
and included in the library. While many tasks can be learned
assuming a proper representation for the physics of the task,
such an approach relies on a priori knowledge about the
action and therefore does not solve the complete learning
problem. To avoid specifying the physical model of the task,
Miyamoto et al. [9] based their methodology on programming
by demonstration and derived a representation for optimal tra-
jectories, which they referred to as via-points. They were able
to teach a robotic arm a fairly difficult game of Kendama and
tennis serves. Schaal et al. [5], [17] proposed a more general
nonparametric approach based on nonlinear dynamic systems
as policy primitives. They developed canonical equations for
rhythmic and discrete movements and demonstrated that these
systems can be used to learn tasks such as tennis strokes
and drumming. Hidden Markov models (HMMs) are another
popular methodology to encode and generalize the observed
movements [1], [3], [6]. While techniques that enable the
reproduction of generalized movements from multiple demon-
strations have been proposed, generalization across movements
to attain an external goal of the task is not central to these
works. HMMs, however, can be used effectively for motion
and situation recognition [6] and to determine which control
variables should be imitated and how [3].



Fig. 1. Human demonstration of the ball throw, unsuccessful direct reproduction on a humanoid robot, and a successful action execution after coaching

The computer graphics community has also studied human
motion synthesis from example movements. The most com-
mon approach is to generalize across a number of movements
by linear interpolation, like e. g. [21]. If done correctly, such an
approach results in physically correct movements under many
circumstances [15]. Rose et al. [13] represent the motions by
B-splines and use radial basis functions to interpolate between
the control points of B-Splines. Automatic re-timing of the
captured movements based on registration curves has also
been considered [7]. Most of the early works dealt with the
intepolation of relatively short movements, but interpolation
of longer action sequences is also possible as shown in [16].
While these works address many problems relevant to the
robotics community, their main aim is to generate realistic
computer animations. Our focus, however, is to show that
movement interpolation can generate actions that can change
the external world in such a way that the goal of an action
is attained. In order words, we focus on the synthesis of
goal-directed actions and how to make action synthesis from
example movements applicable for the implementation on a
real robotic system.

In the following we propose a new movement generalization
methodology based on locally weighted regression [2]. The
goal of an action is used to index into the library of stored
movements. We also briefly deal with different approaches that
can be applied to generate a suitable movement library. We
show both in simulation and on a real robot that the proposed
approach can be used to synthesize goal-directed actions. As a
test example we use the task of throwing a ball into a basket,
which has the advantage that its physics is well understood
and we can thus compare our results with an ideal system.

II. COLLECTING THE EXAMPLE MOVEMENT LIBRARY

As mentioned in the introduction, motion capture has been
used successfully to generate fairly complex movements on a

humanoid robot. However, direct reproduction of movements,
even if it includes the physical constraints of a robot, rarely
results in a successful execution of the task that involves
external goals. In the throwing example of Fig. 1, the direct
reproduction ended up in a throw that missed the basket
(middle row of figures). Moreover, the execution of the
throwing movement was suboptimal in many other ways such
as for example timing of the ball release and smoothness. It
was therefore necessary to develop a methodology to adapt
the initial robot motion. In our previous work, we explored
the coaching paradigm to solve these problems. Coaching
provides a familiar setting to most people for interacting
with and directing the behavior of a complex humanoid robot
where human-robot communication takes the form of coach’s
demonstrations and high-level qualitative instructions. In this
way it is possible to generate throwing movements that result
in successful throws with good dynamical properties, which
are suitable for generalization. See [12] for more details.

There are other ways than coaching to adapt captured move-
ments to attain the goal of the task in a given situation. The via-
point representation based on the forward-inverse relaxation
neural network model (FIRM) [20] is one of them. Via points
are extracted sequentially by taking the first two via-points
to be the end-points of the movement and interpolating the
movement using the minimum principle for the approximated
dynamics model (point mass), which results in a minimum
jerk trajectory (fifth order polynomial). New via-points are
determined by calculating the distance between the observed
and interpolated trajectory and adding the via-points at the
point of the maximum squared error until the error is small
enough. Hovewer, the movement generated by the final set
of via-points still cannot ensure the successful execution of
the task. It was therefore proposed to adapt the trajectory by
moving the via-points until the robot is successful [9]. This is



accomplished by constructing a function from via-points to the
task goal and by moving the via-points using a Newton-like
optimization method.

In certain situations, it is well possible that a skilled
engineer would be able to design optimal trajectories for some
situations. The coaching paradigm described above just pro-
vides the technology that enables non-skilled people to design
”good” movements for learning. Thus, all these methods for
trajectories generation can be utilized for the construction of a
library of movements. The method we propose in the following
is independent of the data collection method1.

III. GENERALIZATION ACROSS MOVEMENTS

The data collection mechanisms described in the previous
section provide us with a set of movements M i, i =
1, . . . , NumEx, that were executed by the robot and suc-
ceeded to accomplish the goal of the task in the observed situ-
ations. We denote the goals by qi ∈ Rm, i = 1, . . . , NumEx.
In the case of throwing a ball into a basket, the goals {qi} are
specified by the positions of the basket. Every movement M i

is encoded by a sequence of trajectory points pij at times
tij , j = 1, . . . , ni. We have experimented both with end-
effector trajectories (in this case pij are points in the Cartesian
space) and with robot joint trajectories (in this case pij are
the joint angles stemming from the active degrees of freedom).
Our aim is to develop a method that can compute motions that
attain the goal of the task for any given query point (goal) q.

To find a representation for the desired movements, we
follow [9], [20] and represent the trajectories by fifth order
splines. Due to their local support property, we chose B-splines
[4] to implement the spline functions, which results in the
following representation

M(t) =
∑

k

bkBk(t), (1)

where Bk are the basis functions from the selected B-spline
basis.

A. Determination of Basis B-Spline Functions
We adapted the via-point approach of [9] to find a good

spline basis. Unlike [9], which deals with only one example
movement, we need to consider multiple examples. We there-
fore introduce what we call common knot points. Common
knot points are extracted sequentially as follows:

1) First all trajectories are time-scaled to interval [0, 1].
The duration of every movement Ti is also stored
with each example. Without re-timing it is not pos-
sible to interpolate between the examples. See Sec-
tion III-C for more details on this issue. The initial
knot sequence for the fifth order spline is taken to be
K1 = {0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1}, which results in a
so called clamped spline. Clamped splines can be used to
calculate minimum jerk splines interpolating the desired
position, velocity, and acceleration at the end points (0

1However, a via-point like method is used to obtain a suitable representation
for goal-directed actions.

and 1). The initial spline basis consists of six basis
functions.

2) For every movement M i we determine the best approxi-
mating fifth order spline Sli with basis functions defined
by the current knot sequence Kl.

3) For all configurations (pij , sij), sij = tij/Ti, we
calculate the distance to the generated spline trajectories

elij = ‖pij − Sli(sij)‖. (2)

We select the knot point to be added to the existing knot
sequence at the point of the maximum squared error
elij between the example movements and the generated
spline trajectories. The new knot sequence is given by

Kl+1 = {0, . . . , sij , . . . , 1}. (3)

4) The procedure continues at step 2 (with l ← l +1) until
the difference between the example movements and the
generated spline trajectories becomes sufficiently small.

The above process is similar to the way Miyamoto et al. [9]
determine via-points. Its final result, the knot sequence KL,
is applied to define a spline that we use to synthesize goal-
directed actions.

B. Synthesizing New Actions
Given a goal q, we would like to find movement M(q)

that can attain this goal. Using the above representation we
can write

M(q) =
N∑

k=1

bk(q)Bk, (4)

where N is the number of B-spline basis functions defined by
the knot sequence KL. In computer graphics, new movements
are often synthesized by simply interpolating the splines
approximating the example movements [15]

M =
∑

i

wiM i. (5)

However, if the approximation by splines is not accurate,
such an approach can introduce undesired deformations in the
example movements, which can affect the synthesized actions.
We therefore studied other techniques such as locally weighted
regression [2] to generate movements for any given goal. Our
main motivation is that it is difficult to find global models that
are valid everywhere and that it is therefore better to look for
local models that are correct only in one particular situation,
but are easier to compute. In locally weighted regression, local
models are fit to nearby data. Its application results in the
following optimization problem

M(q) = arg min
b

{C(q)},

C(q) =
NumEx∑

i=1

ni∑

j=1

∥∥∥∥∥

N∑

k=1

bkBk(sij)− pij

∥∥∥∥∥

2

W (di(q,qi)) .

(6)
Here W is the weighting kernel function and di are the
distance functions between the query point and the data points



qi. The unknown parameters we minimize over are b =
[bT

1 , . . . , bT
N ]T .

Since W (di(q,qi)) does not depend on the B-spline coeffi-
cients bk, the optimization problem (6) is a classic linear least
squares problem. It is, however, very large because it contains
all data points pij describing the example movements. Before
describing how to solve it, we define distance functions di

and the kernel function W. We take the weighted Euclidean
distance for di, i. e.

di(q,qi) =
1
ai
‖q− qi‖, ai > 0. (7)

It is best to select ai so that there is some overlap between
the neighboring query points. One possibility is

ai = 2min
j
‖qi − qj‖ (8)

By selecting ai in this way we ensure that as query points
transition from one data point to another, the generated move-
ments also transition between example movements associated
with the data points.

There are many possibilities to define the weighting function
W [2]. We chose the tricube kernel

W(d) =
{

(1− |d|3)3 if|d| < 1
0 otherwise (9)

This kernel has finite extent and continuous first and second
derivative. Combined with distance (7), these two functions
determine how much influence each of the example move-
ments M i has. It is easy to see that the influence of each M i

diminishes with the distance of the query point q from the
data point qi. If the data points qi are distributed uniformly
along the coordinate axes, then every new goal directed
movement M(q), q %= qi, will be influenced by 4m example
movements2, where m is the dimension of the query point.

Optimization of criterion (6) is a linear least-squares prob-
lem. Locally weighted regression combined with the local
support of B-spline basis functions make the resulting linear
system that needs to be resolved sparse. Additionally, since
only the weights and not the basis functions depend on the
query point q, the sparse system matrix can be precomputed
in its entirety. We applied the Matlab implementation of sparse
matrix algebra to solve the resulting linear problems, which
enabled us to generate new actions quickly despite the large
number of trajectory points pij . Another advantage of the
proposed method is that there is no need to search for nearby
movments in the database; locally weighted regression and
sparse matrix algebra do this job.

C. Re-Timing of the Generated Actions

To interpolate between example movements, we needed to
first scale the timing of all trajectories to a common interval,
which we chose to be [0, 1]. This scaling, however, causes
the velocities and accelerations of both the example move-
ments and the synthesized actions to be scaled. To synthesize

2Exception are the movements at the edge of the training space.

movements with proper velocities and accelerations – which
is essential to solve dynamic tasks – we need to rescale
the resulting actions back to the original time interval. As
described in Section III-A, the timing of each example motion
M i is scaled by 1/Ti, where Ti is the duration of the example
movement. Hence to re-time the synthesized action, we need
to compute an estimate for the expected time duration T .

For this purpose, we approximate the expected timing by
a multivariate B-spline function ft : Rm → R, which is
estimated by minimizing the following criterion

NumEx∑

i=1

(ft(qi)− Ti)
2 . (10)

In our experiments we defined a B-spline basis by uniformly
subdiving the domain of the goal points qi. A suitable timing
for the synthesized action is then given by

T = ft(q) =
M∑

i=1

aiBi(q). (11)

Finally, the correctly timed trajectories for the synthesized
actions obtained by minimizing criterion (6) can be calculated
by mapping the knot points KL = si to the new knot sequence
K ′

L
K ′

L = {0, . . . , T ∗ si, . . . , T}. (12)

The optimal coefficients bk(q) remain unchanged and the
spline with these coefficients defined on the knot sequence
K ′

L specifies an action with appropriate velocities and accel-
erations.

It should be noted here that uniform scaling might not
be suitable for every task. In some situations it might be
more appropriate to segment the example movements and
apply different scaling factors to different time intervals.
Here matching of key events is crucial for good results [15].
Computer graphics community has proposed some approaches
to automatically resolve this problem [7], [13]. Since the
task considered in this paper does not require nonuniform
scaling, we did not attempt to develop more complex re-timing
methods here.

IV. EXPERIMENTAL RESULTS

We validated our approach both in simulation and on the real
robot. As a test example we considered the task of throwing
a ball into a basket, which has the advantage that it is a
dynamic task, dependent not only on the positional part of
the movement, and that its physics is well understood. This
allows us to compare our results with an ideal system. It can
easily be shown that the trajectory of the ball after the release
is fully specified by the position and velocity at the release
point

x = x0 + v0t cos(α), y = y0 + v0t sin(α)− gt2

2
, (13)

where (x0, y0) is the release point, v0 is the linear velocity of
the ball at release time and α is the initial angle of the throw.
We considered the problem where the target basket is placed



in xy-plane. Note that a humanoid robot could normally turn
towards the basket, thus solving this problem allows the robot
to throw the ball to any position in space.

A. Simulation Results

For the interpolation to work, the style of example move-
ments must be similar. Interpolation between movements that
have nothing in common would not results in sensible actions.
To generate examples that can be used for action synthesis,
we used Eq. (13) to design Cartesian space trajectories that
theoretically result in successful throws for a given basket
position. The base of the robot, which was taken to be a seven
degrees of freedom arm, was fixed in space. The designed
trajectories consisted of circular and linear parts. From a given
basket position, we determined a suitable release point and by
specifying the desired angle under which the ball should fall
into a basket (taken to be 60 degrees), a good trajectory for
each situation could be calculated. We distributed the goal
basket positions within a rectangular area of size 4× 2 meter
squares, with the lower left corner positioned at (1.2, 0.1)
meters. The base of the robot was placed at (−0.5, 0.1) meters.
Fig. 2 shows the velocity profiles of the movements generated
by specifying a grid in thin rectangular area with baskets
placed every 0.5 meters (altogether 45 basket positions). We
used inverse kinematics to generate example trajectories in
joint space.

By specifying different grid sizes for training (we took grid
side lenghts of 0.25, 0.5, and 1 meter, which resulted in 15,
45, and 153 example movements within the training area), we
tested how many example movements are necessary to throw
a ball anywhere within the training area with good precision.
Tables I and II show the errors in the synthesized throws. They
were calculated by using Eq. (13) to determine the ball flight
trajectory after release. All values in the tables are given in
centimeters. The density of the training data is specified by
the grid size (rightmost column). Since the error was smaller
away from the edges of the library (see Fig. 3), we estimated
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Fig. 2. Cartesian velocities of example movements
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Fig. 3. The throw error. The graph corresponds to the condition of Tab. I
with grid size 50× 50, joint space synthesis. The error is larger at the edges
of the training area where less data is available for synthesis.

the error in the complete training area and in the area reduced
by the side length of the grid along the edges. In Tab. I the
data points pij used in (6) consisted of both positions and ve-
locities3, which were approximated by the spline functions. In
Tab. II the data points pij consisted of positional information
only. To test the method we evaluated the throws by applying
a grid of 2.5×2.5 centimeter squares, which resulted in 13041
test throws for every training condition.

Both tables show that the accuracy of the ball throw
is significantly improved when more data is available. We
achieved average precision between 1 and 2.5 cm for the
two finer grids. Hence, 45 training examples were enough for
an average precision of below 2 cm within the reduced area.
The comparison of Tab. I and II also shows that the explicit
addition of velocity information did not improve the throwing
precision. We believe that the main reason for this is that our
data was simulated at a typical robot servo rate of 500 Hz,

3Formula (6) is valid for positional information only, but extension to
velocities and accelerations is straightforward and does not significantly
change the linear system that needs to be resolved.
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TABLE I
ERRORS IN THE SYNTHESIZED THROWS (IN CENTIMETERS). SEE TEXT

FOR THE EXPLANATION.

Joint space Cartesian space Grid size

Training area Full Reduced Full Reduced

Average error 2.18 1.52 1.70 1.28 25× 25

Max. error 10.39 5.79 9.63 4.67 25× 25

Average error 2.72 1.75 2.25 1.40 50× 50

Max. error 12.57 7.08 13.79 6.01 50× 50

Average error 10.15 7.03 9.85 6.37 100× 100

Max. error 38.97 15.27 37.71 13.23 100× 100

TABLE II
ERRORS IN THE SYNTHESIZED THROWS WITHOUT INCLUDING

VELOCITIES IN THE DATA (IN CENTIMETERS). SEE TEXT FOR THE

EXPLANATION.

Joint space Cartesian space Grid size

Training area Full Reduced Full Reduced

Average error 2.25 1.50 2.25 1.60 25× 25

Max. error 10.03 4.89 9.69 4.58 25× 25

Average error 2.41 1.54 2.43 1.61 50× 50

Max. error 13.35 6.17 13.77 5.91 50× 50

Average error 10.39 6.55 10.23 6.40 100× 100

Max. error 38.31 13.34 37.78 12.94 100× 100
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Fig. 5. Accuracy of the learned throwing action executed by the robot

hence enough data was available to estimate the velocities
from positional information. For sparser data the addition of
velocity and acceleration will become more important.

We applied the proposed approach to the data collected in
both the Cartesian and the joint space. Tab. I and II show that
in most but not all cases the precision was slightly better when
using the Cartesian space data. However, the differences were
so small that we consider both types of data equally suitable.

The improvement with denser training data was much more
significant when moving from the grid size of 1×1 to 0.5×0.5
meter squares than when moving to the grid size of 0.25×0.25.
The main reason was that the estimation of the timing function
ft of Section III-C (see Fig. 4) used the same set of basis
functions to form the approximating spline in all cases. Thus
when the grid size was reduced, the inaccuracies in the timing
function started to dominate and the throwing precision did
not improve any further. This shows the importance of the
proper estimation of timing.

Our results demonstrate that albeit the system was not
provided with the model of the task, it managed to learn
how to throw the ball with high precision using no other
information but the example movements and the associated
basket positions.
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Fig. 6. Cartesian velocities of generated robot movements for throws into a
basket positioned at 1.4, 1.45, 1.5, ... 2.1 meters

B. Robot Experiments

We used a humanoid robot arm with seven degrees of free-
dom for our first real-world action synthesis experiments. We
used five training examples (taken at 1.37, 1.63, 1.77, 1.98, and
2.18 meters) to train the throwing behavior along the line from
1.4 to 2.1 meters. Fig. 5 shows the accuracy of the synthesized
throws. The average error was 3.36 centimeters. The training
had to be done in the joint space because the robot can not
follow Cartesian space trajectories with sufficient accuracy.
Also, it is important to use the desired joint trajectories and not
the actual joint trajectories for training, so that the synthesized
actions directly relate to the actual robot commands. Our
results show that locally weighted regression provides us with
the ability to synthesize goal-directed actions directly from the
data instead of first approximating the example movements by
spline functions and then interpolating the coefficients of the
approximating splines,

Fig. 6 depicts the velocities of robot hand movements in
xy−plane of the Cartesian space. These velocities are different
from the velocities of example simulated movements in Fig.
2 because we used different types of throws in these two



1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3
220

225

230

235

240

245

250

255

distance (meters)

re
le

a
s
e
 t

im
e
 (

m
ill

is
e
c
o

n
d
s
)

Fig. 7. Spline function approximating the release times (blue) and release
times of the example movements (red)

examples. Nevertheless, both figures show a typical smooth
transition between movements as the target position moves
in space. Finally, Fig. 7 shows the spline approximating
the release point timings. Again, the form of the spline is
somewhat different from the simulated spline of Fig. 4, but
both splines exhibits smooth transition of release times as the
basket position changes.

V. CONCLUSION

The most important result of this paper is that dynamic
goal-directed actions can be synthesized by applying locally
weighted regression to the library of example movements,
where each of the example movements is known to fulfil the
task in one particular situation. We showed how to connect
action synthesis with techniques such as coaching and pro-
gramming by demonstration, which enables us to acquire the
example library. Our experiments demonstrate that we can
achieve fairly accurate results without providing the system
with models about the dynamics of the task and without need-
ing to acquire an excessive amount of example movements.
Finally, we demonstrated that locally weighted regression is
suitable for synthesizing goal-directed actions directly from
the training data instead of first approximating the example
movements by spline functions and then interpolating the
approximating splines.

Our approach is by no means limited to ball throwing. It is
pretty straightforward to apply it to other discrete movements
such as reaching, catching, tennis strokes, etc. More work is
necessary to generalize the approach to rhythmic movements.
We believe, however, that such a generalization is possible by
utilizing closed splines instead of the clamped splines, which
we used to synthesize discrete movements in this paper.

Acknowledgment: The work described in this paper was
partially conducted within the EU Cognitive Systems project
PACO-PLUS (FP6-2004-IST-4-027657) funded by the Euro-
pean Commission.

REFERENCES

[1] T. Asfour, F. Gyarfas, P. Azad, and R. Dilmann, “Imitation learning of
dual-arm manipulation tasks in humanoid robots,” in Proc. IEEE-RAS
Int. Conf. Humanoid Robots, Genoa, Italy, December 2006, pp. 40–47.

[2] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally weighted learn-
ing,” AI Review, vol. 11, pp. 11–73, 1997.

[3] A. Billard, S. Calinon, and F. Guenter, “Discriminative and adaptive
imitation in uni-manual and bi-manual tasks,” Robotics and Autonomous
Systems, vol. 54, pp. 370–384, 2006.

[4] C. de Boor, A Practical Guide to Splines. New York: Springer-Verlag,
1978.

[5] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor landscapes
for learning motor primitives,” in Advances in Neural Information
Processing Systems 15, S. Becker, S. Thrun, and K. Obermayer, Eds.
Cambridge, Mass.: MIT Press, 2003, pp. 1547–1554.

[6] T. Inamura, I. Toshima, H. Tanie, and Y. Nakamura, “Embodied symbol
emergence based on mimesis theory,” Int. J. Robotics Research, vol. 23,
no. 4-5, pp. 363–377, 2004.

[7] L. Kovar and M. Gleicher, “Flexible automatic motion blending with
registration curves,” in Eurographics/ACM SIGGRAPH Symposium on
Computer Animation, 2003, pp. 214–224.

[8] S. Kudoh, T. Komura, and K. Ikeuchi, “Stepping motion for a human-
like character to maintain balance against large perturbations,” in Proc.
IEEE Int. Conf. Robotics and Automation, Orlando, Florida, 2006, pp.
2561–2567.

[9] H. Miyamoto, S. Schaal, F. Gandolfo, H. Gomi, Y. Koike, R. Osu,
E. Nakanao, Y. Wada, and M. Kawato, “A kendama learning robot based
on bi-directional theory,” Neural Networks, vol. 9, no. 8, pp. 1281–1302,
1996.

[10] N. S. Pollard, J. K. Hodgins, M. Riley, and C. G. Atkeson, “Adapting
human motion for the control of a humanoid robot,” in Proc. IEEE
Int. Conf. Robotics and Automation, Washington, DC, May 2002, pp.
1390–1397.

[11] M. Riley, A. Ude, and C. G. Atkeson, “Methods for motion generation
and interaction with a humanoid robot: Case studies of dancing and
catching,” in Proc. 2000 Workshop on Interactive Robotics and Enter-
tainment, Pittsburgh, Pennsylvania, April/May 2000, pp. 35–42.

[12] M. Riley, A. Ude, C. G. Atkeson, and G. Cheng, “Coaching: An
approach to efficiently and intuitively create humanoid robot behaviors,”
in Proc. IEEE-RAS Int. Conf. Humanoid Robots, Genoa, Italy, December
2006, pp. 567–574.

[13] C. Rose, B. Bodenheimer, and M. F. Cohen, “Verbs and adverbs:
Multidimensional motion interpolation using radial basis functions,”
Computer Graphics, Proc. SIGGRAPH ’96, pp. 147–154, August 1998.

[14] M. Ruchanurucks, S. Nakaoka, S. Kudoh, and K. Ikeuchi, “Humanoid
robot motion generation with sequential physical constraints,” in Proc.
IEEE Int. Conf. Robotics and Automation, Orlando, Florida, 2006, pp.
2649–2654.

[15] A. Safonova and J. Hodgins, “Analyzing the physical correctness of
interpolated human motion,” in Eurographics/ACM SIGGRAPH Sympo-
sium on Computer Animation, 2005, pp. 171–180.

[16] ——, “Construction and optimal search of interpolated motion graphs,”
in ACM Transactions on Graphics, 2007.

[17] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, “Learning movement
primitives,” in Robotics Research: The Eleventh International Sympo-
sium, P. Dario and R. Chatila, Eds. Berlin, Heidelberg: Springer, 2005,
pp. 561–572.

[18] A. Ude, C. G. Atkeson, and M. Riley, “Planning of joint trajectories
for humanoid robots using B-spline wavelets,” in Proc. IEEE Int. Conf.
Robotics and Automation, San Francisco, California, April 2000, pp.
2223–2228.

[19] ——, “Programming full-body movements for humanoid robots by
observation,” Robotics and Autonomous Systems, vol. 47, no. 2-3, pp.
93–108, 2004.

[20] Y. Wada and M. Kawato, “A neural network model for arm trajectory for-
mation using forward and inverse dynamics models,” Neural Networks,
vol. 6, no. 7, pp. 919–932, 1993.

[21] D. J. Wiley and J. K. Hahn, “Interpolation synthesis of articulated figure
motion,” IEEE Computer Graphics and Applications, vol. 17, no. 6, pp.
39–45, 1997.

[22] K. Yamane and Y. Nakamura, “Dynamic filter – Concept and imple-
mentation of online motion generator for human figures,” IEEE Trans.
Robotics Automat., vol. 19, no. 3, pp. 421–432, 2003.



Copenhagen

Computer Vision and Machine Intelligence Lab (CVMI)

Advances in Computer Vision and Machine Intelligence CVMI 2008:1

ISSN 1902-2034

Parametric Hidden Markov Models for Recognition

and Synthesis of Movements

Dennis Herzog, Volker Krüger, Daniel Grest



Dennis Herzog, Volker Krüger, Daniel Grest
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Abstract

A common problem in human movement recognition is the recognition of movements of a partic-
ular type (semantic). E.g., grasping movements have a particular semantic (grasping) but the actual
movements usually have very different appearances due to, e.g., different grasping directions. In
this paper, we develop an exemplar-based parametric hidden Markov model (PHMM) that allows to
represent, e.g., movements of a particular type and that compensates for the different appearances
and parameterizations of that movement. The PHMM is based on exemplar movements that have
to be ”demonstrated” to the system. Recognition and synthesis are carried out through locally lin-
ear interpolation of the exemplar movements. For a meaningful interpolation, the exemplars have
to be in sync, what exhibits certain problems that are resolved in this paper. In our experiments we
combine our PHMM approach with our 3D body tracker. Experiments are performed with pointing
and grasping movements. Synthesis for grasping is parameterized by the positions of the objects
to be grasped. In case of recognition, our approach is able to recover the position of an object at
which a human volunteer is pointing. Our experiments show the flexibility of the PHMMs in terms
of the amount of training data and its robustness in terms of noisy observation data. In addition, we
compare our PHMM to an other kind of PHMM, which has been introduced by Wilson and Bobick.

Keywords: action recognition, action representation, computer vision, robotics, AI

1 Introduction

One of the major problems in action and movement1 recognition is to recognize actions that are of the
same type but can have very different appearances depending on the situation they appear in. In addition,
for some actions these differences are of major importance in order to convey their meaning. Consider for
example the movement of a human pointing at an object, “This object there...”, with the finger pointing
at a particular object (like in Fig. 1). Clearly, for such an action, the action itself needs to be recognized
but also the spot in 3D space at which the human is pointing. Only together do these two pieces of
information convey the full semantics of the movement. Another common problem is the synthesis of
action: This concerns two major problem areas: In robotics, one is interested in teaching robots through
simple demonstrations (imitation learning) [1, 2, 10]. In 3D human body tracking, one is interested in
using motion models in order to constrain the parameter space (e.g. [8] for simple cyclic motions). In
both cases, one is interested in teaching the system in an easy and efficient manner a particular movement
so that afterwards, the system is able to synthesize movements of the same type, however, with a different
parameterization. Here, we consider grasping movements as an example where a human is reaching out
for an object to grasp it2. One may perform as demonstration a set of grasping movements. All grasping

1We use the terms action and movement interchangingly. Actions usually denote movements that involve objects.
2The precise choice of a hand grasp depends on the type of object, from where it is being grasped, etc. In our discussion,

we omit the issue of the different hand grasps and focus only on the arm movements.
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Figure 1: The image shows the setup of the capturing session for our dataset. The person is currently
pointing at a raster position at the table-top.

movements depend on the location of the object to be grasped. In case of a humanoid robot, the synthesis
should then allow the robot to perform the learned grasping movements with new parameterizations, e.g.,
grasping objects at different positions. In case of the 3D body tracking, synthesis would allow a better
prediction of the next pose and even allows an estimate of parametric actions instead of the full joint
configuration which would result into a considerable reduction in search space.

Most current approaches model movements with a set of movement prototypes, and identify a move-
ment by identifying the prototype which explains the observed movement best. This approach, however,
has its limits concerning efficiency when the space of possible parameterizations is large.

A pioneering work in this context was done by Wilson and Bobick [12]. Wilson and Bobick presented
a parametric HMM approach that is able to learn an HMM based on a set of demonstrations. Their train-
ing and recognition approach is based on the EM algorithm, where the parameters of the movements are
taken as latent variables. For recognition, they recover the parameters that explains best the observation.

In this paper, we develop a different parametric hidden Markov model approach. Contrary to Wilson
and Bobick, our aim is recognition as well as synthesis. Also, we would like to provide a simpler and
more efficient training strategy by being able to simply provide exemplars based on which the generation
of novel HMMs can be done.

A further contribution is a novel method for time warping of HMM training data that is not limited
to pairwise warps like the classical time warping approaches.

In the following section, we give a short overview of the related work. In Sect. 3 we provide some
basics to introduce our exemplar-based parametric HMM in Sec. 4. Extensive experimental results in-
cluding a comparison with [12] are presented in Sect. 5. Conclusions in Sect. 6 complete our paper.

2 Related Work

Most approaches for movement representation that are of interest in our problem context are trajectory
based: Training trajectories, e.g., sequences of human body poses, are encoded in a suitable manner.
Newly incoming trajectories are then compared with the previously trained ones. A recent review can be

2



found in [7].
Some of the most common approaches to represent movement trajectories use hidden Markov models

(HMMs) [4, 9]. HMMs offer a statistical framework for representing and recognition of movements. One
major advantage of HMMs is their ability to compensate for some uncertainty in time. However, due
to their nature, HMMs are only able to model specific movement trajectories, but they are not able to
generalize over a class of movements that vary accordingly to a specific set of parameters.

One possibility to recognize an entire class of movements is to use a set of hidden Markov models
(HMMs) in a mixture-of-experts approach, as first proposed in [5]. In order to deal with a large parameter
space one ends up, however, with a lot of experts and a large amount of training becomes necessary.

Another extension of the classical HMMs into parametric HMMs was presented in [12], as mentioned
above. A more recent approach was presented by [1]. In this work, the interpolation is carried out in
spline space where the trajectory of the end-effector is modeled. Apart from the fact that the authors have
not yet performed an evaluation of their system, their approach does not seem suitable for controlling the
entire arm movements for movement synthesis and recognition.

In addition to HMMs, there are also other movement representations that are interesting in our con-
text, e.g., [6, 11]. However, these approaches share the same problems as the HMM based approaches.

3 Preliminaries of HMMs

A hidden Markov model is a probabilistic finite state machine extended in a probabilistic manner, that
is defined as a triple λ = (A,B,π), where the transition matrix A = (aij) defines the transition
probability between the hidden states i, j = 1, . . . , N , and B defines the output distributions bi(x) =
P(x|qt = i) of the states. The vector π defines the probabilities of each state of being the initial state of
a hidden state sequence.

In our approach a restrictive type of continuous left-right HMMs (as in [3]) is used, whose output
probability distributions of each state i are modeled by single Gaussian distribution bi(x) = N (x|µi,Σi),
and whose state transitions are self-transitions or are transitions leading to the successor state, i.e., other
transition probabilities are set to zero.

If such an HMM is used to model, e.g., a simple trajectory or sequence X = x1 . . .xt . . .xT , then
each Gaussian Ni(x) := bi(x) would “cover” some part of the trajectory, where the state i increases
as the time of the trajectory evolves. In addition, the temporal behavior of the trajectory is coded in the
transition probabilities. In the case of multiple trajectories of the same kind, the Gaussian capture the
variance of these trajectories, but in addition, such a model can compensate for different progression rates
between the trajectories. As we want to facilitate the synthesis of movements it is obviously necessary
to use left-right HMMs. However, it is worth to be mentioned that, even in the case of such a restrictive
left-right model, there is no strict assignment between states and observations xt.

For a comprehensive introduction to HMMs, we refer to [4, 9]. The most important algorithms of
the HMM framework are mentioned in the following example section.

3.1 Recognition using HMMs

For recognition or classification HMMs are generally used as follows: For each specific class k of se-
quences an HMM λk is trained by a representative training set X k for that class. The training of an
HMM λ is done by adjusting the model parameters to values, which are maximizing the likelihood
function P(X|λ). For this maximization, we apply the Baum/Welch expectation maximization (EM)
algorithm [9].

The classification of a specific output sequence X = x1 . . .xT is done by selecting that class k,
for which the likelihood P(X|λk) is maximal. The probability of a sequence X given the model is
efficiently computed by the forward/backward algorithm [9].
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One obvious approach for handling whole classes of parameterized actions for the purpose of action
recognition and parameter estimation is a mixture-of-experts approach [5] and to sample the parameter
space by training for each sample a prototype HMM. The HMM that maximizes the likelihood—given
an action sequence—identifies class membership and the parameterization of the action. However, this
approach is not appropriate, because too many repetitions of the action are needed to train the proto-
type HMMs of all samples. Therefore, we introduce the parameterization of the movements as a new
parameter of the model, which also is the basic idea of the approach in [12].

4 Parametric HMM Framework

The main idea of our approach for handling whole classes of parameterized actions is a supervised
learning approach where we deduce an HMM for novel action parameters by locally linear interpolation
of exemplar HMMs that were previously trained on exemplar movements with known parameters. The
generation of newly parameterized HMMs can be done online or offline.

The deduction of an HMMs λφ for a specific parameter is carried out by component-wise linear
interpolation of the nearby exemplar models. That results, e.g., in case of a single scalar parameter u and
two given exemplar models λ0 and λ1 for u = 0, 1, in a state-wise or Gaussian-wise deduction of the
Gaussian N u

i (x) = N (x|µui ,Σu
i ) of the state i of the model λu with means and covariances, as given

by

µui = (1− u)µ0
i + uµ0

i

Σu
i = (1− u)Σ1

i + uΣ1
i .

(1)

This situation of two exemplar models λ0 and λ1 for u = 0, 1 is scetched in Fig. 2 for sequences of
parameterization u = 0, and u = 1. Obviously, in the case of such an arrangement, the state-wise
interpolation results in a good model λu for sequences, e.g., in the middle (where u = 0.5). But this is
the case only if the same two states of the exemplar HMMs do model the same semantical part of the
motion. Consider, e.g., the n-th state of each of the two HMMs, where one of the two states state possibly
models a part of a forward motion of a hand while the other might model a part of a backward motion.
Clearly, interpolation of two such states does not make sense. Therefore, we develop an alignment of the
states as described in Sec. 4.2 below. The expansion to the multi-variate case of parameterization φ is
straightforward, e.g., by using bilinear (φ = (u, v)) or trilinear interpolation.

0

1

0

1

Figure 2: The upper three dark ellipsoids are depicting the GaussiansN 0
1 , . . . ,N 0

3 of the states i = 1, 2, 3
of an HMM λ0 that is trained by sequences, that begin on the left and are leading to the upper part of
the vertical line on the right hand side. In this case the parameterization of the sequences is u = 0. The
dots sketch one of these training sequences. Similarly, the lower three ellipsoids of an HMM λ1 model
sequences with a parameter u = 1. Additionally, the Gaussians Ni of a global model λ are indicated in
light gray. In this case λ is trained with all training sequences.
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4.1 Synthesis

Suppose a given grasp position p on a table. Then, synthesis can be done as follows: At first, four
HMMs λi,i=1,...,4 with closest associated grasp positions pi are chosen under the constraint that at least
three of the pi are strongly not collinear and that p lies accurately in the convex hull of {pi}. Then, the
bilinear interpolation parameters u, v are estimated such that the interpolated point puv approximates p
best. Then, the model λuv, i.e., the sequence µuv1 . . .µuvN of the Gaussians, is calculated. Afterwards,
this sequence can be expanded to a function f(t) by using spline interpolation (we use linear spline
interpolation). If needed, this can be done with respect to the time durations coded in the transition
probabilities.

4.2 Synchronized Setup of HMM States

As mentioned above, it is necessary to setup corresponding states of local exemplar HMMs in such a way,
that the corresponding states model the same semantical parts of the movements. This task is somehow
similar to dynamic time warping. The time warping algorithms synchronize sequences to compensate for
different dynamics. But these algorithms are not suitable for our task. On the one hand, these algorithms
synchronize sequences only pairwise. On the other hand, the alignment of sequences do not overcome
the task of setting up the exemplar HMMs. Here, it is worth to mention, that we have successfully used
HMMs for time warping—in a not pairwise way—of several sequences, which do vary, considerably.

Here, the underlying idea is to set up local exemplar HMMs λφ by using the ability of HMMs to
compensate to some extend temporal variations. We precede in two steps: In the first step a global HMM
λ is trained based on the whole training set X that contains movements of different parameterizations φ,
but of the same type. Such a global HMM is sketched in Fig. 2 with the light gray ellipsoids/Gaussians.
The situation that movements of different parameterizations are covered in such a symmetrical way as in
Fig. 2 can be enforced, in some way, by enforcing the hidden state sequences to pass the states always in
the same sequential order from state 1 to state N . This is caused by the choice of the type of left-right
model, and by allowing only sequences that start in the first and end in the last state.

In the second step, consider the reduced training set λφ of a specific parameterization φ. On this
training set we train an exemplar HMM λφ while using the parameters of the global HMM λ as initial
values. In the terminology of the EM algorithm, the exemplar model λφ for Xφ is computed using
λ as an initial configuration and by fixing the means of the Gaussians after the first EM iteration. It
is worth to note, that this gives the wanted result: In the first E step of EM the posterior probabilities
γkt (i) = P(qt = i|Xk,λ) of being in state i at time t given the global model are computed for each
sequence Xk = x1 . . . xT of the training set X φ. Thus, γkt (i) defines the somehow the “responsibility”
of state i for generating xkt . In the M step the mean µi of the Gaussian of state i is re-estimated as an
γkt (i)-weighted mean:

µki =
∑

tk γ
k
t (i)xkt∑

tk γt(i)
(2)

If one considers the case of Fig. 2 and the depicted upper sequence x1x2 . . .x7 the responsibilities γt(i)
would be large for t = 1, 2 and i = 1 but small for i > 1 (and t = 1, 2) caused by the position of the
Gaussian of state i = 1. This way µ1, as calculated by Eq. (2), lies between x1 and x2, as required. One
issue gives raise to problems concerning the setup of our PHMM. The Gaussians of the global HMM that
is used for the alignment of the exemplar HMMs should cover the movements of exemplar movements of
different parameterization in a symmetrical way as shown in Fig. 3, and described in Sec. 4.2. However,
sometimes the global HMM takes a form, where some Gaussians model only movements of certain
parameterizations—similar to the Gaussians on the right of Fig. 3. This is not surprising if one consider
the ability of HMM to compensate for temporal variations, even in our restrictive left-right model. Such
an HMM can be a good model for a sequence, even though one state does not fit for the sequence,
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Figure 3: Synchronized setup of HMMs. Left: Some Gaussians of a global HMM are depicted on the
left, which model index finger trajectories leading from the right (green ball) to the left, where the disc
like ellipsoid of a Gaussian models finger positions for all pointed at positions on a table. This global
HMM is used to setup the local exemplar HMMs for specific positions in a synchronized way (right).

Figure 4: Time Durations of States. The upper state of a left-right HMM is replaced by the lower three
pseudo states, so that the state duration lays between 2 and 3.

because, a hidden state sequence can pass a state that doesn’t fit in one step and can stay for several time
steps in suitable states. We addressed that problem by adding explicit time durations to the states of the
HMM. For simplicity we replaced each state of the left-right HMM by some pseudo states which share
one Gaussian (compare Fig. 4). This forces the hidden states sequences to stay in a state, e.g., as in
Fig. 4, for at least two and for maximal three time steps.

4.3 Recognition and Parameters

In this section, we describe the recognition of the type and the parameterization of the recognized type of
a parameterized movement. This is straight forward compared to the nonparametric case of classification.
Consider a given sequence X . We precede in two steps: First, for each possible movement type k the
most likely parameter φk of the corresponding parameterized HMM λφ

k is estimated. We maximize
fk(φ) = P (X|λφ

k ) under the constraint of senseful values (e.g., φ ∈ [0−ε, 1+ε]d) by using gradient
descent. The next step is the recognition of the action type. Now, the classification is reduced to the
classical way by choosing the most likely model λk = λ

φk
k . Furthermore, the parameter φk of the most

likely action gives us the parameterization of the recognized movement, e.g., the pointed at position puv

in the table-top scenario, which is given by the bilinear interpolation parameters (u, v) = φk.
In our table-top experiments there are up to nine exemplar HMMs in the PHMM. Therefore, the

estimate of the parameter φ is done in a hierarchical way. In a first step φ is estimated based on the
PHMM given by bilinear interpolation of the outermost four exemplar positions or HMMs. In a second
step φ is refined as an estimate using four exemplar HMMs, which are nearest to the previous estimate.

5 Experiments

In our experiments we focus our considerations on pointing and grasping actions, which are in common
action scenarios probably two of the most important movements. The pointing movements are move-
ments such as “This object there...” (Fig. 1). Our grasping movements are reaching towards a particular
object in order to grasp it.
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Figure 5: Capture Model of Right Arm. This model is used for motion capturing, for what the model’s
markers (tiny balls in picture) are aligned to captured marker positions (compare to Fig. 1).

In our systematic experiments we limit our considerations on extensive data that is acquired using
a motion capture system. This way, we exclude the vision problem and are able to focus only on the
representational issues for movement representation. Based on this data, we evaluate the synthesis and
recognition performance of our PHMM approach. In addition, we compare the results to the results that
are yielded by that type of PHMMs, which has been proposed by Wilson and Bobick [12]. However, we
consider only the linear case of their model. — Concerning online recognition and synthesis, we have
first results in a form of an online video, but our experiments based on visual stereo tracking data are still
ongoing.

The motion capture data of our systematic experiments is acquired with an eight camera visual
marker motion capture system of Vicon. For capturing, a model of the right arm (see Fig. 5) is aligned
to visual-captured marker positions. The recognition and synthesis experiments are based on seven 3D
points located at different segments of the model’s body. Capturing speed is 60Hz. The seven data points
are located at: sternum; shoulder, and elbow of the right arm; knuckles, index finger, and thumb of the
right hand.

The setup of the capture session for acquiring takes place, as follows: The person or actor sits in
front of a table (see Fig. 1). The actions are performed at a specific table-top position in such a way, that
it is starting and ending in a base position (arm hanging down).

The exemplar positions at table-top form a regular raster, which covers a region of 80cm × 30cm
(width × depth). For training, a 3 × 3 raster is used, where 10 repetitions have been recorded for each
exemplar position and each action type (pointing, grasping). For evaluation, a 5×7 raster is used, with 4
repetitions for each position to allow a good evaluation statistic (all in all several hundreds of repetitions).

5.1 Training: Setup of PHMMs

The setup of the exemplar HMMs of the PHMMs for the grasping and pointing movements are done as
described in Sect. 4.2. Training is done as described in Sect. 4.2. We train the PHMMs based on data
of the full 3×3 raster (9 exemplar HMMs) or based on a 2×2 raster, which consists of the four corner
exemplar positions of the 3×3 raster. These PHMMs, will be refered in the following as 3×3 or 2×2
PHMM of grasping or pointing. The linear PHMM developed by Wilson and Bobick is also trained
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by using the training data of the 3×3 or 2×2 raster, which is refered by us as “Wilson’s n×n-trained
PHMM”.

The PHMMs are setup as follows: The training sequences are rescaled to 100 samples. The PHMMs
have 20 states, where the hidden state sequences are forced to stay between 4 and 6 steps in each state.
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Figure 6: Synthesis Error of Pointing for 2×2 PHMM.
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Figure 7: Synthesis Error of Pointing for 3×3 PHMM.
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Figure 8: Synthesis Error of Pointing for Wilson’s 2×2-trained PHMM.
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Figure 9: Synthesis Error of Pointing for Wilson’s 3×3-trained PHMM.

5.2 Synthesis

Synthesis is done as described above in Sec. 4.1. The performance of synthesis is systematically eval-
uated by plotting the synthesis error for each of the 5×7 positions, for which test exemplars have been
recorded.

The error calculation for each of the 35 synthesized movements for the raster is done as follows: The
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Figure 10: Synthesis Error of Grasping for 3×3 PHMM.

error is calculated as a distance measure between the synthesized movement and a statistical ground truth
estimate which is based on the four test exemplars. Therefore, the four test movements of a specific posi-
tion are averaged by first training an 80 state HMM with the test movements and by then re-synthesizing
the average movement f̄(t) = (f̄ i(i))7i=1 from the HMM. where the f i(t)i=1,...,7 are 3D trajectories
(e.g., of the wrist, elbow. . . ).

The error ε of the synthesized movement f(t) = (f i(t))7i=1, which is synthesized based on the
PHMM, is calculated as the route-mean-square error between the time warped synthesis, f(t), and ref-
erence, f̄(t):

ε =

√√√√∫ 7∑
i=1

(f i(α(t))− f̄ i(ᾱ(t)))2

7
dt
/∫

α(t)dt, (3)

where α(t) and ᾱ(t) are warping functions. The calculation of ε is based on the super-sampled sequences
using linear interpolation. As the starting and ending points of the reference f̄(t) do vary slightly, the
first and last 10% of the sequences are not considered in the error measure.

The Figs. 6, and 7 compare the synthesis errors for the pointing movement over the 5×7 raster
(covering a table-top range of 80cm×30cm) for our PHMM approach based on 2×2 and 3×3 exemplar
HMMs. Clearly, the performance in the middle of the covered region increases, if the 3×3 PHMM is
used. The Figs. 8, 9 show the performance of Wilson’s PHMM. Here, the performance does not change
dramatically for a training raster of higher resolution. This is, however, not surprisingly as we use only
the linear type of Wilson’s PHMM. Fig. 10 shows that the results for the grasping action are very similar
to the pointing actions.

The synthesis errors are approximately 1.8cm for our PHMM for grasping and pointing, if the outer
regions are neglected, where the pose of the person is extremely stretched. For the linear type of Wilson’s
PHMM, the errors are slightly higher (≈2.5).
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Figure 11: Loglik of the Model Parameters (u, v) given a sequence of Parameterization (0.5, 0.5). The
interval [0, 1]2 3 (u, v) is mapped to the table-top region of 80cm×30cm.
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Figure 12: Recognition Error of Pointing for 2×2 PHMM.

5.3 Recognition

Here, two things are to be considered: the recognition performance in terms of the recognized associated
position of an action, and rate of correct classifications of the types of the test actions.

In advance, it is worth to take a look at Fig. 11, which gives a hint that the optimization problem
of maximizing the log likelihood function f(u, v) = logP (X|λuv) given a movement X is tractable
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Figure 13: Recognition Error of Pointing for 3×3 PHMM.
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Figure 14: Recognition Error of Pointing for Wilson & Bobick’s 3×3-trained PHMM.

by standard optimization techniques (smoothness and strict convexity). In this case, the most likely
parameterization (u, v), or associated table-top position of X can be easily estimated. However, in our
experiments it has turned out that the maximum of f(u, v) is sometimes a very sharp peak. To address
this problem, the function can be smoothed for the first iterations of the optimization by increasing the
covariances of the model’s Gaussians.

The recognition performance of the associated table-top positions behave very similar to the results
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Figure 15: Recognition Error of Grasping for Wilson’s 3×3 PHMM.

of synthesis. The error for each position of the 5×7 raster are calculated as the average deviation of the
estimated position and the ground truth position for all four test example movements. The recognition
performance of our PHMM for pointing and grasping and the performance of Wilson and Bobick’s
PHMM are presented (Fig. 12–15). Again, clearly, the performance increases in the inner region for our
3×3 PHMM (Fig. 12) compared to the 2×2 PHMM (Fig. 13).

The recognition performance of our 3×3 HMM are similar to Wilson and Bobick’s linear type of
PHMM (averaged errors of ≈2cm, and slightly smaller for our PHMM).

The rate of right-classified types of the 280 grasping and pointing test movements decreases from
94% to 93% by using the 3×3 PHMMs instead of the 2×2 PHMMs. It is 95% for Wilson and Bobick’s
PHMM, independently from the used training data (data of the 3×3 or 2×2 raster).

5.4 Online Recognition

Our online demo [REF] shows the applicability of our approach for online recognition of pointing, the
position pointed at, and also for motion synthesis. For the synthesis of the robot’s arm movement, a
PHMM is used, that is trained by the data used in the experiments above. The recognition is based on
the position of the elbow and wrist, that are estimated by our online body tracker based on 3D data of a
stereo head camera. For the recognition, a PHMM is trained for the last part of pointing movements. The
recognition of the position is estimated as the most likely parameter of the PHMM over a recent time
window of the elbow and wrist positions, which is recognized as pointing by simple thresholding.

6 Conclusion

We have presented and evaluated a novel approach to handle recognition and synthesis of movements
of particular type (sematic), which vary in a parametric way. The basic idea is to incorporate the pa-
rameterization of the movements into the HMM (PHMM). Contrary to Wilson and Bobick [12], where
the model learns the variation of the Gaussian means, we align some exemplar HMMs for specific pa-
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Figure 16: Online Demo. A person is advising a virtual robot arm to relocate a red object (currently, in
hand of the robot) at table-top. A person is pointing at the new position. The ball nearby the person’s
hand indicates the recognized position. The current color (green) of the ball indicates a high likelihood
of a pointing movement.

rameterizations, so that the interpolation between the Gaussians is senseful. In our approach all PHMM
parameters are allowed to vary depending on the parameterization, unlike in [12].

The experiments show the applicability of our approach for synthesis and recognition of movements
(errors≈2cm), where the performance is similar compared to that of Wilson and Bobick’s approach. The
classification rate is for both approaches similar ≈ 94%.

Finally, it’s worth mentioning—even though, we did not compare to the nonlinear case of Wilson
and Bobick’s approach—that our approach should perform better in such cases, where the movements
do vary strongly (as all PHMM parameters can change), with the draw back that several exemplar HMMs
have to be setup.
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Abstract

A common problem in movement recognition is the
recognition of movements of a particular type. E.g.
pointing movements are of a particular type but dif-
fer in terms of the pointing direction. Arm move-
ments with the goal of reaching out and grasping
an object are of a particular type but differ with
the location of the involved object. In this paper,
we present an exemplar-based parametric hidden
Markov model (PHMM) that is able to recognize
and synthesize movements of a particular type. The
PHMM is based on exemplar movements that have
to be “demonstrated” to the system. Recognition
and synthesis are carried out through locally linear
interpolation of the exemplar movements. Exper-
iments are performed with pointing and grasping
movements. Synthesis is done based on the object
position as parameterization. In case of the recog-
nition, the coordinates of the grasped or pointed at
object are recovered. Our experiments show the
flexibility of our exemplar-based PHMMs in terms
of the amount of training data and its robustness in
terms of noisy observation data.

1 Introduction

One of the major problems in action and movement1

recognition is to recognize actions that are of the
same type but can have very different appearances
depending on the situation they appear in. In addi-
tion, for some actions these differences are of major
importance in order to convey their meaning. Con-
sider for example the movement of a human point-

1we use the termsaction andmovementinterchangingly. Ac-
tions usually denote movements that involve objects.

ing at an object, “This object there...”, with the fin-
ger pointing at a particular object. Clearly, for such
an action, the action itself needs to be recognized
but also the spot in 3D space at which the human
is pointing. Only together do these two pieces of
information convey the full semantics of the move-
ment. Another common problem is the synthesis
of action: This concerns two major problem ar-
eas: In robotics, one is interested in teaching robots
through simple demonstrations (imitation learning)
[3, 13, 2]. In 3D human body tracking, one is inter-
ested in using motion models in order to constrain
the parameter space (e.g. [11] for simple cyclic mo-
tions). In both cases, one is interested in teaching
the system in an easy and efficient manner a partic-
ular movement so that afterwards, the system is able
to synthesize movements of the same type, how-
ever, with a different parameterization. Here, we
consider grasping movements as an example where
a human is reaching out for an object to grasp it2.
One may perform as demonstration a set of grasp-
ing movements. All grasping movements depend on
the location of the object to be grasped. In case of a
humanoid robot, the synthesis should then allow the
robot to perform the learned grasping movements
with new parameterizations, e.g., grasping objects
at different positions. In case of the 3D body track-
ing, the synthesis would allow a better prediction of
the next pose.

Most current approaches model movements with
a set of movementprototypes, and identify a move-
ment by identifying the prototype which explains
the observed movement best. This approach, how-

2The precise choice of a hand grasp depends on the type of
object, from where it is being grasped, etc. In our discussion, we
omit the issue of the different hand grasps and focus only on the
arm movements.
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ever, has its limits concerning efficiency when the
space of possible parameterizations is large.

A pioneering work in this context was done by
Wilson and Bobick [15]. Wilson and Bobick pre-
sented a parametric HMM approach that is able to
learn an HMM based on a set of demonstrations.
Their training and recognition approach is based
on the EM algorithm, where the parameters of the
movements are taken as latent variables. For recog-
nition, they recover the parameter set that explains
best the observation.

In this paper, we develop a different parametric
hidden Markov model approach. Contrary to Wil-
son and Bobick, our aim is recognition as well as
synthesis. Also, we would like to provide a simpler
and more efficient training strategy by being able to
simply provide exemplars based on which the gen-
eration of novel HMMs can be done.

In the following section, we give a short overview
of the related work. In Sect. 3 and 4 we introduce
our exemplar-based parametric HMMs. Extensive
experimental results are presented in Sect. 5. Con-
clusions in Sect. 6 complete our paper.

2 Related Work

Most approaches for movement representation that
are of interest in our problem context are trajec-
tory based: Training trajectories, e.g., sequences of
human body poses, are encoded in a suitable man-
ner. Newly incoming trajectories are then compared
with the previously trained ones. A recent review
can be found in [9].

Some of the most common approaches to rep-
resent movement trajectories use hidden Markov
models (HMMs) [12, 5]. HMMs offer a statisti-
cal framework for representing and recognition of
movements. One major advantage of HMMs is their
ability to compensate for some uncertainty in time.
However, due to their nature, HMMs are only able
to model specific movement trajectories, but they
are not able to generalize over a class of movements
that vary accordingly to a specific set of parameters.

One possibility to recognize an entire class of
movements is to use a set of hidden Markov mod-
els (HMMs) in a mixture-of-experts approach, as
first proposed in [7]. In order to deal with a large
parameter space one ends up, however, with a lot
of experts and a large amount of training becomes
necessary.

Another extension of the classical HMMs into
parametric HMMs was presented in [15], as men-
tioned above. A more recent approach was pre-
sented by [2]. In this work, the interpolation is car-
ried out in spline space where the trajectory of the
end-effector is modeled. Apart from the fact that
the authors have not yet performed an evaluation of
their system, their approach does not seem suitable
for controlling the entire arm movements for move-
ment synthesis and recognition.

In addition to HMMs, there are also other move-
ment representations that are interesting in our con-
text, e.g., [14, 8]. However, these approaches share
the same problems as the HMM based approaches.

3 Preliminaries

A hidden Markov model is a probabilistic finite
state machine, which is generally defined as a triple
λ = (A, B, π), where the transition matrixA de-
fines the transition probability between the hidden
statesq = 1, . . . , N , B defines the output proba-
bilities of each state, andπ defines the probabilities
of each state of being the initial state of a hidden
state sequence.

In this approach continues HMMs are used,
whose output probabilities are modeled by single
Gaussian distribution. For each statei the output
distributionbi(x) = P(x|q = i) = N (x|µi,Σi)
is just defined by the parametersµi and Σi. In
this simple case of single Gaussian distributions it
is more intuitive to use the notationNi(x) instead
of bi(x).

To facilitate synthesis of actions we chose to use
left-right HMMs (as used in [4]) to model the ac-
tions. Here, a state sequence always has to start at
the same state, thereforeπ is setπ = (1, 0, . . . , 0).
In addition, state transition are restricted to the state
itself or to the next state (other transition probabil-
ities are set to zero). Such an HMM is depicted in
Fig. 1.

3.1 Recognition using HMMs

For recognition or classification HMMs are gener-
ally used as follows: For each specific classk of
sequences an HMMλk is trained by a representa-
tive training setX k for that class. The training of
an HMM λ is done by adjusting the model parame-
ters to values, which are maximizing the likelihood
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Figure 1: Left-to-Right HMM. For each statei the
output normal distributionNi is implied by an el-
lipsoid. An output sequenceX = x1 . . . x9 go-
ing from left to right is implied by small black
dots. This sequence is likely to be generated by that
HMM, whereP(X |λ) ≫ 0.

functionP(X|λ). For this maximization, we apply
the Baum/Welch algorithm [6].

The classification of an specific output se-
quenceX = x1 . . . xT is done by selecting that
class k, for which the likelihoodP(X |λk) =
maxi P(X |λi) is maximal.

One obvious approach for handling whole classes
of parameterized actions for the purpose of action
recognition and parameter estimation is a mixture-
of-experts approach [7] and to sample the param-
eter space by training for each sample a prototype
HMM. The HMM maximizing the likelihood of an
given action sequence identifies class membership
and the parameterization of the action. However,
this approach is not appropriate, because too many
repetitions of the action are needed to train the pro-
totype HMMs of all samples.

4 Parametric HMMs

The main idea of our approach for handling whole
classes of parameterized actions is a supervised
learning approach where we generate an HMM
for novel action parameters by locally linear inter-
polation of exemplar HMMs that were previously
trained on exemplar movements with known pa-
rameters. The generation of a newly parameterized
HMM can be done online or offline.

The interpolation of HMMs is carried out state-
wise, as we will explain in Sect. 4.1. As we will
see, an interpolation is only possible, if the states
of the exemplar HMMs are aligned in time. This
alignment is discussed in Sect. 4.2. In Sect. 4.3 and
4.4, we explain the approaches for recognition and
synthesis of the movements.

4.1 Interpolation of HMM

For simplicity the approach is explained in the case
of a class of actions parameterized by a single pa-
rameteru, e. g., sequences of trajectories of a per-
son’s wrist leading to different positions on a table,
where the positions are on a straight line leading
from left to right on the table. This idea is depicted
in Fig. 2.

It is assumed that two HMMsλl andλr belong-
ing to motions of different parameterizationu are
given, whereu = 0 andu = 1 respectively. Addi-
tionally, it is assumed that the GaussiansN l

i andN r

i

of λl andλr are arranged as depicted in Fig. 2. Un-
der this assumptions the GaussiansN u

i of an HMM,
that shall model motions leading to some parame-
terized locationu, can be approximated by state-
wise interpolation of corresponding Gaussians. The
interpolation of the Gaussians is directly applied to
the means and sigmas:

N u
i (x) = N (x|µu

i ,Σu
i ), (1)

where

µ
u
i = (1 − u)µl

i + uµ
r

i

Σu
i = (1 − u)Σl

i + uΣr

i

(2)

This is very intuitive in the constellation of Fig. 2,
e. g., foru = 0.5, theN u

i would define horizontal-
oriented ellipsoids laying between theN l

i andN r

i .
Clearly, the interpolation is not meaningful if the
two Gaussians of the same state of different HMMs
do not belong to the same part of different motions,
e. g., if the third state of one HMM belongs to a part
of a forward motion of a forward-and-backward
motion and the third state of the other belongs to
the backward part of that motion.

Therefore, it is crucial for a meaningful interpo-
lation that learned HMMs are synchronized or state-
wise aligned.

4.2 Aligned or Synchronized Setup of sev-
eral HMMs

Starting point are movements that are performed
into different directions. Even if they are aligned
through linear warping the alignment with in the
training sequences is not sufficiently good. Dy-
namic time warping algorithms [10] are existing
just for pairwise alignment of sequences. And time
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Figure 2: The upper three dark ellipsoids are de-
picting the output normal densitiesN l

1, . . . ,N
l

3 of
the states1, . . . , 3 of an HMM λl that is trained
by sequences beginning on the left side of the pic-
ture and are leading onto the left of the vertical
line, where the parameter of the parameterization
of these sequences is supposed to beu = 0. The
dots passing this ellipsoids imply one training se-
quence. Accordingly, the lower three ellipsoids due
to an HMM λr trained by sequences leading to the
right of the line, where the parameteru is supposed
to beu = 1. Additionally, GaussiansNi of an λ

trained by sequences of different parameterizations
u ∈ [0, 1] are indicated in light gray.

warping does not solve the problem of setting up the
aligned HMMs. Our aim now is to train HMMs for
non-aligned training data such that the HMM states
correspond, so that Eq. (2) becomes senseful.

For easier explanation, we will use again the ex-
ample setup from Sect. 4.1: For both HMMsλl, λr

training setsX l andX r are given. In order to find
the two aligned HMMsλr andλl, we first train a
more general HMMλ for the whole training data
X l ∪ X r. In Fig. 2, we have depicted the general
HMM λ with light gray ellipses. Now, for each
samplex of each sequenceX in X l andX r, the
closest Gaussian (or State) of the HMMλ can be
easily assigned. HMMλ is then used as the start-
ing point for the training of the specific HMMsλl

andλr using this assignment. In that sense, HMM
λ can be interpreted as a pre-alignment of the train-
ing data.

In the precise notion of the Baum/Welch EM-
algorithm—an iterative algorithm, that repeatedly
executes EM steps—that aligned setup is per-
formed, e. g., by starting with the HMMλl := λ

trained by the whole training set (likewise:λr :=
λ). Then, one EM step is performed forλl just us-
ing the dataX l for training. The same procedure is
applied to setup all HMMs for the needed key points

in parameter space (like the HMMλr usingX r in
our example). The single final EM step adapts the
GaussiansNi to its specific exemplar movements,
but preserves the alignment.

Now, let’s look at the precise EM steps, and let’s
considerλl. Let X l = {X1, . . . , XM} be the
training set ofλl, which repetitions are denoted by
Xk = xk

1 . . . xk
T . In the E step the posterior proba-

bilities γk
t (i) = P(qt = i|Xk, λ) of being in state

i at timet (wherexk
t is emitted) are computed for

eachXk. Thus,γk
t (i) defines the responsibility of

statei for generatingxk
t —or vice versa the mem-

bership ofxk
t to statei. In the M step the out-

put probability density functions are re-estimated.
Therefore, the means and covariance matrices are
re-estimated for each GaussianNi of statei based
on the responsibilitiesγk

t (i). In the case of a sin-
gle output sequenceX = x1 . . . xT the mean re-
estimation

µi =

P

t γt(i)xt
P

t γt(i)
(3)

can be regarded as the weighted mean of
x1, . . . , xT by using the responsibilities as weights.
The covariance re-estimation

Σi =

P

t γt(i)(xt − µt)
⊤(xt − µt)

P

t γt(i)
(4)

can also be regarded asγt(i)-weighted covariance,
whereµi denotes the previous re-estimation. (In
the case of multiple observationXk the nominators
and denominators of (3,4) have to be extended to
marginalizeγk

t (·) andxk
t overk.) As the responsi-

bilities γt(i) are chosen due to the general HMMλ
each state of the HMM trained with a subset of the
training data remains aligned to those of the other
HMMs.

4.3 Recognition of Parameterized Se-
quences

The recognition of parameterized sequences is
straightforward compared to the simple class classi-
fication. Given a sequenceX . For each classk and
corresponding parameterized HMMλφ

k that classk
and parameterφ ∈ R

n are taken, which yields the
maximal likelihoodmaxk,φ P(X |λφ

k ).
In the more general casen > 1 with φ =

(φ1, . . . , φn) this is done by using gradient de-
scent methods for the maximization ofP (X |λφ

k )



for eachk separately. Therefore, for a fixedk the
parameters ofφ are iteratively adapted in the direc-
tion of the gradient ∂

∂φ P (X |λφ

k ), into which the

likelihood functionf(φ) = P (X |λφ

k ) increases.
Therefore, the likelihood functionf has to be eval-
uated several times in the iteration process. The
computation is done by the Forward/Backward Al-
gorithm [6], which is the standard algorithm for this
task. It is worth to be mentioned that the compu-
tationally cost of the evaluation off is very small
O(NT ) in case of left-right HMMs. Here,N is the
number of states, andT is the length of the output
sequence.

In the case of several available exemplar HMMs,
one needs to find those four closest exemplar
HMMs that interpolate a newly observed movement
most accurately. We do this by recursively compar-
ing pairwise sets of HMMs. Consider the case of
2 × 3 aligned HMMsλij with associated grasping
positionspij , that are forming a grid on the table
such as

»
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is lying on the left side of the line defined byp11

and p10 the procedure is repeated using the four
left most HMMsλ01, λ00, λ11, λ10, otherwise us-
ing the four right most.

4.4 Action Synthesis

Suppose a grasp positionp on the table-top is given.
Then synthesis can be done as following:

1. The three HMMsλi,i=1,2,3 with closest asso-
ciated grasp positionspi are chosen under the
constraint that thepi are not collinear.

2. Then the interpolation parametersu, v are es-
timated as given by the point equation

p − p
1 =

h

p
2 − p

1

˛

˛

˛
p

3 − p
1

i

„

u

v

«

.

Here, least-squares approximation has to be
used in that case thatp is not exactly in the
plane ofpi.

3. As basis for synthesis the interpolated HMM
λuv = λ1 + u(λ2 − λ1) + v(λ3 − λ1)
is used. The synthesized sequence is the se-
quenceµ

1
. . . µN of the means of the HMM

λuv. As the number of statesN is small com-
pared to the original recorded sequences, the
sequence is linearly interpolated.

5 Experiments

In our experiments we focus our considerations on
pointing and grasping actions, which are in com-
mon action scenarios the most important move-
ments. The pointing movements were movements
such as “This object there...”. Our grasping move-
ments are reaching towards a particular object in or-
der to grasp it.

In our experiments we do not use visual track-
ing data but limit our considerations on data that is
acquired using a motion capture system. This way,
we exclude the vision problem and are able to fo-
cus only on the representational issues for move-
ment representation.

The motion capture data is acquired with the
electro-magnetic motion capture systemMotion
Star by Ascension[1]. For the capturing seven
markers are placed on the person (see Fig. 3): one

Figure 3: The dots mark the positions of the electro-
magnetic sensors in our dataset.

at the neck and one at the shoulder, the wrist, in
the middle of the hand, at the index finger and the
thumb of the right elbow. The captured sequences
consist of the 3D point positions for each of the



seven markers recorded with 25Hz. The person or
actor sits in front of a table (see Fig. 4). The po-
sitions on the table, on which the actions are per-
formed, are covering a region of 30cm(in deeps) by
80cm (in width). For recognition the 3D point po-
sitions of the markers of right arm are directly used
for training the HMMs. We have recorded six dif-

Figure 4: The image shows the setup of the record-
ing session of our dataset.

ferent exemplar movements (i.e. (action/grasping)
movements to six different distinct positions on the
table), each one with 9 repetitions. Two table posi-
tions are at the left and two are at the right side of
the30cm× 80cm region. The other two exemplars
are in the middle. For validation of the approach,
additional movements to 10 different random posi-
tions on the table were recorded with 4 repetitions,
each. All training and test sequences are normalized
to 50 samples in length (2 sec.). No additional tem-
poral alignment between the sequences was done.

5.1 Synchronized Setup of HMMs

The synchronized setup of the special/prototype
HMMs for the 6 exemplar positions is done as de-
scribed in Sect. 4.2. As one of the aims is to pro-
vide an approach with fast and simple training, we
will focus our investigation of synthesis and recog-
nition performance vs. number of HMM statesN ,
number of exemplar movements and number of rep-
etitions R. In our experiments, we have trained
HMMs with N = 16, 28, 40 states, with 4 or 6
exemplar movements and withR = 3, 6, 9 repe-
titions3. Fig. 5 shows example images of different

3The relatively high number of states is used to assure a rea-
sonable good precision of the synthesis. Arguably, we could have

states of the synchronized HMMs (yellow) and the
general HMM (red). Here, one can verify the syn-
chronization visually. In the recognition and syn-
thesis experiments, below, we will implicitly verify
the quality of the alignment.

Figure 5: The 6 images (row-wise) are showing
the states 1,7,9,14,25 and 30 of six synchronized
HMMs with 40 states trained with grasping se-
quences of the six exemplar positions on the table
(yellow arms) and the same states of the general
HMM (red), that was used to align the states of the
six HMMs.

5.2 Synthesis

In this section we summarize our results for the syn-
thesis experiments. Here, we have tested the qual-
ity of the synthesis of movements, given a specific
parameterization. The parameters were given as co-
ordinates on the table. As test parameters we used
those of the 10 random test movements. The quality
of our synthesis approach has been tested based on
these 10 random test movements, which serve here
as ground truth references with known parameters
(coordinates). The synthesis tests have been done
for pointing and for grasping movements.

As explained above, we have trained different ex-
emplar HMMs with different number of states and
different number of repetitions. To estimate the syn-
thesis quality we have tested based on

chosen HMMs with less states.



1. different number of statesN = 16, 28, 40,
2. different number of repetitionsR = 3, 6, 9,
3. 4 and 6 exemplar movements for interpolation.

Tab. 1 and Tab. 2 summarize the experimental re-
sults for different number of HMM states, num-
ber of repetitions for each exemplar movement and
number of exemplars used for the synthesis. As
the intuitively best configuration, we chose a setting
of 16 states, 6 repetitions for each exemplar and 6
exemplars movements. This setting is highlighted
bold for grasping and pointing (top of each table).

The errors in the table were computed as follows:
A movement is synthesized for each of the ran-
dom table positions. Each synthesized movement
is compared to the corresponding reference move-
ment by computing the average Euclidean distance
between the synthesized movement and the refer-
ence movement. The mean and standard deviation
of this error are listed in the tables asSynthesis Er-
ror and is given incm.

There is a natural variance in the human move-
ments. As a reference, we have computed the mean
error and the variance for the 40 different refer-
ence movements (10 movements with 4 repetitions
each). These values are denoted in the tables asIn-
trinsic Error and are again given incm.

Table 1: Synthesis of Grasping. For different num-
bers of States, Repetitions of exemplars and differ-
ent number of Exemplars: the average Synthesis Er-
ror for 10 randomly chosen positions and the Stan-
dard Deviation in regard to the positions are listed
in cm. Additionally, the Intrinsic Error Means and
Deviations are listed.

Synth. Err. Intr. Err.
St. Rp. Ex. Mean σ Mean σ

16 6 6 2.7 0.7 1.4 0.4
16 6 4 3.2 0.7 1.4 0.4
28 6 6 3.0 0.6 1.4 0.4
40 6 6 3.1 0.6 1.4 0.4
16 3 4 2.7 0.7 1.4 0.4
16 9 4 2.8 0.7 1.4 0.4

One can see that the synthesis error is rather
small ≈ 3cm, where the intrinsic error is above
1cm. Furthermore, it is interesting to see that the
influence of different number of states or repetitions
on the synthesis quality is surprisingly small. Also

Table 2: Synthesis of Grasping. For different num-
bers of States, Repetitions of exemplars and number
of Exemplars: the Synthesis and Intrinsic Errors for
10 positions are listed incm.

Synth. Err. Intr. Err.
St. Rp. Ex. Mean σ Mean σ

16 6 6 2.5 0.5 1.5 0.3
16 6 4 2.6 0.5 1.5 0.3
28 6 6 2.6 0.5 1.5 0.3
40 6 6 2.6 0.5 1.5 0.3
16 3 4 2.5 0.4 1.5 0.3
16 9 4 2.4 0.5 1.5 0.3

interesting is that the experiment with only three
repetitions and only four exemplars gave one of the
best results.

5.3 Recognition

In the experiments for recognition, we do not
test the ability to recognize the type of move-
ment (pointing/grasping), but how good our ap-
proach is able to recover the parameterization of a
newly observed movement. Once the parameters
are known, the recovery of the movement type is
trivially solved with ML. We have used for test-
ing the 80 random movements (10 movements with
4 repetitions each for pointing and grasping) with
known ground truth. For each of these movements,
the parameters, i.e., the coordinates on the table,
were recovered and compared to the ground truth
values.

As above, we have run our experiment with dif-
ferent settings (number of states, number of repe-
titions used for the prototype exemplars and num-
ber of prototypes). The recognized positionsp =
p(u, v) are calculated by using the interpolation pa-
rametersu, v, which maximize the likelihood func-
tion f(u, v) = P(X |λuv) of the bilinear interpo-
lation between the 4 HMMs of the nearest exem-
plars. As the grasping/pointing positions of the 6
exemplars are labeled, the recognized positionp is
calculated through bilinear interpolation.

In Tab. 3 and Tab. 4 the recognized position mean
error and standard deviation with respect to the 80
test movements are summarized. It is interesting
to note that since the random pointing actions were
supposed to be performed in a “natural” way, the in-



Table 3: Recognition of Grasping Positions. The
Recognition Error and Intrinsic Error are listed for
each setup.

Recog. Err. Intr. Err.
St. Rp. Ex. Mean σ Mean σ

16 6 6 3.2 1.1 0.6 0.3
16 6 4 5.0 1.5 0.6 0.3
28 6 6 2.7 1.1 0.6 0.3
40 6 6 2.7 1.2 0.6 0.3
16 3 4 3.0 1.0 0.6 0.3
16 9 4 3.2 1.1 0.6 0.3

Table 4: Recognition of Pointing Positions. Here,
the recognition of the meant Pointing Positions on
the table (upper block of table) and Fingertip Posi-
tions (lower block) are listed, separately. (The Fin-
gertip doesn’t touch the table!) The Recognition
Error and Intrinsic Error are listed for each setup.
However, as the meant pointing positions on the ta-
ble are given ahead, no intrinsic error is meaningful.

Recog. Err. Intr. Err.
St. Rp. Ex. Mean σ Mean σ

16 6 6 2.5 1.0
16 6 4 3.7 0.8
28 6 6 2.5 0.9
40 6 6 2.4 0.9
16 3 4 2.7 1.2
16 9 4 2.3 0.9

16 6 6 4.2 1.9 2.0 0.9
16 6 4 4.7 1.4 2.0 0.9
28 6 6 4.2 1.7 2.0 0.9
40 6 6 4.0 1.7 2.0 0.9
16 3 4 4.7 2.1 2.0 0.9
16 9 4 4.1 1.9 2.0 0.9

dex finger did not touch the table but rather stopped
somecm above! Therefore, we summarize in the
Tab. 4 two different errors: the error of the rec-
ognized pointing position on the table, which was
meant by the person as elongation of the pointing
direction, and the index finger tip position itself.

As before, we compute the intrinsic mean errors
and standard deviations of the ground-truth coordi-
nates of the 80 test movements. However, as the
meant pointing position on the table is predefined

and supposed to be correct, no intrinsic errors are
listed. On the other hand, the grasping positions
and the fingertip positions of the pointing actions
are given by the motion sequences.

The entire experiment has been repeated with the
random test movements disturbed by noise. The
added noise was Gaussian withσ = 5, 10, 15cm.
Tab. 5 and Tab. 6 summarize the results forσ =
15cm. For σ = 5, 10cm, no or only a very minor
error increase was observable.

The errors of the recognized positions are accept-
able (≈ 3cm) and as presumed slightly higher for
the meant pointing positions on the table. In con-
trast to the results of synthesis fewer prototype ex-
emplars (4 instead of 6) give significantly less accu-
rate results (errors≈ 4 − 5cm).

Table 5: Recognition of Grasping Positions with
Noise. The noise is normal distributed with sigma
equal 15cm.

Recog. Err. Intr. Err.
St. Rp. Ex. Mean σ Mean σ

16 6 6 4.1 1.5 0.6 0.3
16 6 4 5.7 1.3 0.6 0.3
28 6 6 3.5 1.3 0.6 0.3
40 6 6 3.0 1.3 0.6 0.3
16 3 4 4.5 1.7 0.6 0.3
16 9 4 3.0 1.2 0.6 0.3

6 Conclusion

In this paper we have presented an exemplar-based
parametric hidden Markov model which allows to
represent entire classes of movements. We have
focused our considerations on human arm move-
ments, but we believe that the approach can also be
used in other contexts such as surveillance scenar-
ios.

We have limited our considerations on movement
data captured with an electro-magnetic motion cap-
ture system. We view the vision and the move-
ment representation issues as two distinct problems
and have focused our considerations on the move-
ment representation alone. Presently, we are in the
process of combining our movement representation
with our 3D human body tracker.



Table 6: Recognition of Pointing Positions with
Noise. The noise is normal distributed with sigma
equal 15cm. Again, the recognition of the meant
Pointing Positions on the table (upper block) and
Fingertip Positions (lower block) are listed, sepa-
rately.

Recog. Err. Intr. Err.
St. Rp. Ex. Mean σ Mean σ

16 6 6 4.0 0.8
16 6 4 4.3 1.0
28 6 6 3.2 1.2
40 6 6 3.2 1.2
16 3 4 5.0 2.0
16 9 4 4.5 2.2

16 6 6 5.1 1.2 2.0 0.9
16 6 4 5.1 1.8 2.0 0.9
28 6 6 4.9 1.6 2.0 0.9
40 6 6 4.9 1.6 2.0 0.9
16 3 4 6.2 2.1 2.0 0.9
16 9 4 5.3 3.0 2.0 0.9
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Stereo-based Markerless Human Motion Capture for Humanoid Robot
Systems

Pedram Azad1 Aleš Ude2 Tamim Asfour1 Rüdiger Dillmann1

Abstract— In this paper, we present an image-based mark-
erless human motion capture system, intended for humanoid
robot systems. The restrictions set by this ambitious goal are
numerous. The input of the system is a sequence of stereo image
pairs only, captured by cameras positioned at approximately
eye distance. No artificial markers can be used to simplify the
estimation problem. Furthermore, the complexity of all algo-
rithms incorporated must be suitable for real-time application,
which is maybe the biggest problem when considering the high
dimensionality of the search space. Finally, the system must
not depend on a static camera setup and has to find the initial
configuration automatically.

We present a system, which tackles these problems by
combining multiple cues within a particle filter framework,
allowing the system to recover from wrong estimations in a
natural way. We make extensive use of the benefit of having
a calibrated stereo setup. To reduce search space implicitly,
we use the 3D positions of the hands and the head, computed
by a separate hand and head tracker using a linear motion
model for each entity to be tracked. With stereo input image
sequences at a resolution of 320×240 pixels, the processing rate
of our system is 15 Hz on a 3 GHz CPU. Experimental results
documenting the performance of our system are available in
form of several videos.

I. INTRODUCTION

The idea of markerless human motion capture is to capture
human motion without any additional arrangements required,
by operating on image sequences only. Implementing such
a system on a humanoid robot and thus giving the robot
the ability to perceive human motion would be valuable for
various reasons. Captured trajectories, which are calculated
in joint angle space, can serve as a solid base for learning
human-like movements. Commercial human motion capture
systems such as the VICON system [1], which are popular
both in the film industry and in the biological research field,
require reflective markers and time consuming manual post-
processing of captured sequences. A real-time human motion
capture system using the image data acquired by the robot’s
head would make one big step toward autonomous online
learning of movements. Another application for the data
computed by such a system is the recognition of actions
and activities, serving as a perceptive component for human-
robot interaction. However, providing data for learning of
movements and actions – often referred to as learning-by-
imitation – is the more challenging goal, since transforming
captured movements in configuration space into the robot’s
kinematics and reproducing them on the robot sets the higher
demands to smoothness and accuracy.

1Institute for Computer Science and Engineering, University of Karlsruhe
(TH), Germany

2Jozef Stefan Institute, Ljubljana, Slowenia

For application on an active head of a humanoid robot,
a number of restrictions has to be coped with. In addition
to the limitation to two cameras positioned at approximately
eye distance, one has to take into account that an active head
can potentially move. Furthermore, computations have to be
performed in real-time, preferably at 30 Hz or higher, in
order to achieve optimal results.

The general problem definition is to find the correct
configuration of the underlying articulated 3D human model
for each input image respectively image tuple when using
multiple cameras. The main problem is that search space
increases exponentionally with the number of Degrees Of
Freedom (DOF). A realistic model of the human body has
at least 14 DOF if only modeling the upper body without the
neck (3 DOF for each shoulder, 1 DOF for each elbow, 6
DOF for base translation and rotation), or 25 DOF for the full
body (plus 3 DOF for each hip joint, 1 DOF for each knee,
3 DOF for the neck), leading to a very high-dimensional
search space.

There are several approaches to solve the general problem
of markerless human motion capture, differing in the sen-
sors incorporated and the intended application. When using
multiple cameras, i.e. three or more cameras located around
the area of interest, two different systems have shown very
good results. The one class of approaches is based on the
calculation of 3D voxel data, as done by [2], [3]. The other
approach is based on particle filtering and became popular
by the work of Deutscher et al. [4]. Other approaches depend
on incorporation of an additional 3D sensor and the Iterative
Closest Point (ICP) algorithm, such as the Swiss Ranger, as
presented by [5]. Other approaches concentrate on deriving
as much information as possible from monocular image
sequences [6], and reducing the size of the search space by
applying restrictions to the range of possible movements,
e.g. by incorporating a task-specific dynamic model [7].
Our experience is that it is not possible to build a general
3D human motion capture system using monocular image
sequences only, since in many cases a single camera is not
sufficient to determine accurate 3D information, based on the
principle depth through scaling. A further strategy to reduce
search space is search space decomposition i.e. performing
a hierarchical search, as done by [8]. However, by doing
this, the power of the system is limited, since in many
cases the global view is needed to determine the correct
configuration, e.g. for rotations around the body axis, the
information provided by the positions of the arms is very
helpful.

Recently, we have started to adapt and extend the particle
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filter based system for real-time application on a humanoid
robot head ([9], [10]), presenting our newest results in the
following. Particle filtering has proven to be an applicable
and robust technique for contour tracking in general ([11],
[12], [13]), and for human motion capture in particular, as
shown in [4], [6]. However, in particle filters, a larger search
space requires a greater number of particles. One strategy
to cope with this problem is to reduce the dimensionality of
configuration space by restricting the range of the subject’s
potential movements, as already mentioned, or to approach
a linear relationship between the dimension of configuration
space and the size of the search space by performing a
hierarchical search. A general but yet effective way to reduce
the number of particles is based on the idea of Simulated
Annealing, presented in [4], [14]. However, the final system,
which uses three cameras at fixed positions in the corners
of a room, requires on average 15 seconds to process one
frame on a 1 GHz CPU [14].

Theoretically, an edge-based cue would be already suf-
ficient to track the movements of a human – if using an
adequate number of particles. To span the search space with
a sufficient resolution when using an edge-based cue only,
millions of particles would be necessary for a successful
tracker. Therefore, the common approach using particle fil-
ters for human motion capture is to combine edge and region
information within the likelihood function, which evaluates
a given configuration matching the current observation. Al-
though this is a powerful approach, the computational effort
is relatively high. Especially the evaluation of the region
based cue is computationally expensive.

Our strategy is to combine as many cues derivable from
the input images as possible to reduce search space implicitly
by achieving a faster convergence. We present a running
system on our humanoid robot ARMAR using the benefits
of a stereo setup and combining edge, region and skin color
information. The initial configuration is found automatically
– a necessity for any perceptive component of a vision
system. The system is able to capture real 3D motion without
using markers or manual post-processing. The processing
rate of our algorithm is 15 Hz on a 3 GHz CPU using stereo
input image sequences with a resolution of 320×240 pixels.

II. USING PARTICLE FILTERS FOR HUMAN MOTION
CAPTURE

Particle filtering has become popular for various visual
tracking applications – often also referred to as the Conden-
sation Algorithm. The benefits of a particle filter compared to
a Kalman filter are the ability to track non-linear movements
and the property to store multiple hypotheses simultaneously.
The price one has to pay for these advantages is the higher
computational effort. The probability density function repre-
senting the likelihood of the configurations in configuration
space matching the observations is modeled by a finite set of
N particles S = {(s1, π1), ..., (sN, πN)}, where si denotes
one configuration and πi the likelihood associated with it.
The core of a particle filter is the likelihood function p(z|s)
computing the a-posteriori probabilities πi, where s denotes

a given configuration and z the current observations i.e.
the current image pair. This likelihood function must be
evaluated for each particle for each frame i.e. N ·f times per
second. As an example this means for N = 1000 particles
and f = 30 Hz N · f = 30000 evaluations per second.

For resampling the particle set, N particles from the last
generation are picked proportional to their probability. The
configuration of each of these particles is used as a base
to build a new configuration, incorporating a motion model
and adding Gaussian noise. We use a first-order linear motion
model together with adaptive Gaussian noise, whose amount
is decreased or increased depending on the current errors.
A detailed description about the use of particle filters for
human motion capture can be found in [9].

A. Edge Cue

Given the projected edges of a configuration s of the
human model and the current input image z, the likelihood
function p(z|s) for the edge cue calculates the a-posteriori
probability that the configuration leading to the set of pro-
jected edges is the proper configuration i.e. the one taht best
matches the gradient image.

The approach we use is to spread the gradients in the
gradient image with a Gaussian filter or any other suitable
operator and to sum the gradient values along a projected
edge, as done in [4]. Assuming that the spread gradient map
has been remapped between 0 and 1, the modified likelihood
function can be formulated as:

pg(z|s) ∝ exp

− 1
2σ2

gMg

Mg∑
m=1

(1− gm)2


where gm denotes the remapped gradient value for the mth
point.

B. Region Cue

The second cue commonly used is region-based, for which
a foreground segmentation technique has to be applied. The
segmentation algorithm to be picked is independent from
the likelihood function itself. The most common approach is
background subtraction. However, this segmentation method
assumes a static camera setup and is therefore not suitable
for application on a potentially moving robot head. Another
option is to segment motion by using difference images or
optical flow, but this method also assumes a static camera
setup. It has to be mentioned that there are extensions of
the basic optical flow algorithm that allow to distinguish
real motion in the scene and ego-motion [15]. However,
the problem with all motion-based methods – which does
not include background subtraction – is that the quality of
the segmentation result is not sufficient for a region-based
cue. Only those parts of the image that contain edges or any
other kind of texture can be segmented, and the silhouette
of segmented moving objects often contains parts of the
background, resulting in a relatively blurred segmentation
result.

Having segmented the foreground in the input image,
where foreground pixels are set to 1 and background pixels
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are set to 0, the likelihood function commonly used can be
formulated as [4]:

pr(z|s) ∝ exp

{
− 1

2σ2
rMr

Mr∑
m=1

(1− rm)2
}

(1)

where rm denotes the segmentation value of the mth pixel
from the set of pixels of all projected body part regions.
Although this function can be optimized further, using the
fact that rm ∈ {0, 1}, its computation is still rather inef-
ficient. The bottleneck is the computation of the set of all
M projected pixels together with reading the corresponding
values from the segmentation map.

C. Fusion of Multiple Cues
The both introduced cues are fused by multiplying the two

likelihood functions resulting in:

pg,r(z|s) ∝ exp

(
−

1

2

 PMg

m=1(1− gm)2

σ2
gMg

+

PMr
m=1(1− rm)2

σ2
rMr

!)

Any other cue can be fused within the particle filter with the
same rule. One way of combining the information provided
by multiple cameras is to incorporate the likelihoods for
each image in the exact same manner [4]. In our system,
we additionally use 3D information which can be computed
explicitly by knowing the stereo calibration. This separate
cue is then combined with the other likelihoods with the
same method, as will be described in Section III.

III. MULTIPLE CUES IN THE PROPOSED SYSTEM

In this section, we want to introduce the cues our sys-
tem is based on. Instead of the commonly used region-
based likelihood function pr, as introduced in Equation (1),
we incorporate the result of foreground segmentation in a
more efficient way, as will be introduced in Section III-
A. In Section III-B we will present the results of studies
regarding the effectivity of the introduced cues, leading to a
new likelihood function. As already mentioned, we use the
benefits of a stereo system in an additional explicit way, as
will be introduced in III-C. The final combined likelihood
function is presented in Section III-D.

A. Edge Filtering using Foreground Segmentation

When looking deeper into the region-based likelihood
function pr, one can state two separate abilities:

• Leading to a faster convergence of the particle filter
• Compensating the failure of the edge-based likelihood

function in cluttered backgrounds
The first property is discussed in detail in Section III-
B, and an efficient alternative is presented. The second
property can be implemented explicitly by using the result of
foreground segmentation directly to generate a filtered edge
map, containing only foreground edge pixels. In general,
there are two possibilities:

• Filtering the gradient image by masking out background
pixels with the segmentation result

• Calculating gradients on the segmentation result

While the first alternative preserves more details in the
image, the second alternative computes a sharper silhouette.
Furthermore, in the second case, gradient computation can
be optimized for binarized input images, which is why we
currently use this approach. As explained in Section II-B, the
only commonly used foreground segmentation technique is
background subtraction, which we do not intend to use, since
the robot head can potentially move. It has to be mentioned
that taking into account that the robot head can move is not a
burden, but there are several benefits of using an active head,
which will be discussed in Section VI. As an alternative to
using background subtraction, we are using a solid colored
shirt, which allows us to perform tests practically anywhere
in our lab. Since foreground segmentation is performed in
almost any markerless human motion capture system, we do
not restrict ourselves compared to other approaches, but only
trade in the restriction of wearing a colored shirt for the need
of having a completely static setup. Experiments have shown
that the segmentation result using a colored shirt leads to a
slightly smoother output of the human motion capture system
compared to background subtraction. However, if the shirt
color is not to be used, background subtraction still results
in a robust system.

B. Cue Comparison and Distance Likelihood Function

In order to understand the benefits and drawbacks of each
likelihood function and thus getting a feeling of what a
likelihood function can accomplish and what not, it is helpful
to measure their effectivity in a simple one-dimensional
example. The experiment we have used in simulation is
tracking a square of fixed size in 2D, which can be further
simplified to tracking the intersection of a square with a
straight line along the straight line i.e. in one dimension.

The model of the square to be tracked is defined by
the midpoint (x, y) and the edge length k, where y and
k are constant and x is the one dimensional configuration
to be predicted. In [10], we have compared three different
likelihood functions separately: the gradient-based cue pg ,
the region-based cue pr, and a third cue pd, which is based
on the Euclidian distance:

pd(z|s) ∝ exp
{
− 1

2σ2
d

|f(s)− c|2
}

where c is an arbitrary dimensional vector which has been
calculated previously on the base of the observations z, and
f : Rdim(s) → Rdim(c) is a transformation mapping a
configuration s to the vector space of c. In our example,
c denotes the midpoint of the square in the observation
z, dim(s) = dim(c) = 1, and f(s) = s. For efficiency
considerations, we have used the squared Euclidian distance,
practically resulting in the SSD. Evidently, in this simple
case, there is no need to use a particle filter for tracking, if the
configuration to be predicted c can be determined directly.
However, in this example, we want to show the characteristic
properties of the likelihood function pd, in order to describe
the performance in the final likelihood function of the human
motion capture system, presented in the sections III-C and
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III-D. In the update step of the particle filter, we applied
Gaussian noise only, with an amplification factor of ω = 3.
The task was to find a static square with k = 70, based on the
pixel data at the intersection of the square with the x-axis.
The number of iterations needed depending on the initial
distance to the goal is given in Figure 1 for each likelihood
function. While with starting points in a close neighborhood
of the goal the gradient cue leads to the fastest convergence,
the region cue and the distance cue converge faster the farther
the starting point is away from the goal. The results of the
comparison of the cues is explained in detail in [10].
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Fig. 1. Comparison of iteration numbers: an iteration number of 100
indicates that the goal was not found

As a conclusion, one can state that whenever possible to
determine a discrete point directly, it is the best choice to use
the likelihood function pd rather than pr. A second drawback
of the region cue is explained in Section III-D. While it is
not possible to do a successful tracking without the edge
cue – especially when scaling has to be taken into account
– it is also not possible to rely on the edge cue only. The
higher the dimensionality of search space is, the more drastic
the lack of a sufficient number of particles becomes. Thus,
in the case of human motion capture with dimensions of
14 and greater, the configurations will never perfectly match
the image observations. Note, that the simulated experiment
examined a static case. In the dynamic case, the robustness
of the tracker is always related to the frame rate at which
images are captured and processed, and to the speed of the
subject’s movements. In the next section, we show how the
likelihood function pd is incorporated into our system using
3D points, leading to a significant implicit reduction of the
search space.

C. Using Stereo Information

There are various ways to use stereo information in a
vision system. One possibility is to calculate depth maps,
however, the quality of depth maps is in general not sufficient
and only rather rough information can be derived from them.
Another option in a particle filter framework is to project the
model into both the left and the right image and evaluate
the likelihood function for both images and multiply the
the resulting likelihoods, as already mentioned in Section
II-C. This approach can be described as implicit stereo. A
third alternative is to determine correspondences for specific

features in the image pair and calculate the 3D position for
each match explicitly by triangulation.

In the proposed system, we use both implicit stereo and
stereo triangulation. As features we use the hands and the
head, which are segmented by color and matched in a
pre-processing step. Thus, the hands and the head can be
understood as three natural markers. The image processing
line for determining the positions of the hands and the head
in the input image is described in Section IV.

There are two alternatives to use the likelihood function pd

together with skin color blobs: apply pd in 2D for each image
separately and let the 3D position be calculated implicitly
by the particle filter, or apply pd in 3D to the triangulated
3D positions of the matched skin color blobs. We have
experienced that the first approach does not lead to a robust
acquisition of 3D information. This fact is not surprising,
since in a high dimensional space the mismatch between the
number of particles used and the size of the search space
is more drastic. This leads, together with the fact that the
prediction result of the likelihood function pd is noisy within
an area of 1-2 pixels already in a very simple experiment,
to a considerable error in the implicit stereo calculation in
the real scenario. For this reason we apply pd in 3D to the
triangulation result of matched skin color blobs. By doing
this, the particle filter is forced to always move the peak
of the probability density function toward configurations in
which the positions of the hands and the head from the model
are very close to the real 3D positions, which have been
determined on the base of the image observations.

D. Final Likelihood Function

In the final likelihood function, we use two different
components: the edge cue based on the likelihood function
pg , and the distance cue based on the likelihood function pd,
as explained in the sections III-B and III-C. The region cue
is left out for two reasons: it reduces the efficiency of the
system significantly, and it can diminish the accuracy of the
estimation. The reason for this is that the region cue is less
precise than the edge cue; in many cases it evaluates wrong
configurations with a similar or even equal likelihood as it
does for the proper configuration, as illustrated in Figure 2.

Fig. 2. Illustration of a wrong and a proper configuration, which are
assigned the same likelhood by the region cue

We have experienced that when leaving out the square in
Equation (II-A), i.e. calculating the Sum of Absolute Dif-
ferences (SAD) instead of the Sum Of Squared Differences
(SSD), the quality of the results remains the same for our
application. In this special case one can optimize pg further,
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resulting in:

p′
g(z|s) ∝ exp

− 1
2σ2

g

(1− 1
Mg

Mg∑
m=1

gm)


For a system intended for real-time application, we have de-
cided to replace the region-based cue based on pr completely
by the distance cue based on pd. In order to formulate the
distance cue, first the function di(s, c) is defined as:

di(s, c) :=
{

|fi(s)− c|2 : c 6= 0
0 : otherwise

where n := dim(s) is the number of DOF of the human
modal, dim(c) = 3, i ∈ {1, 2, 3} to indicate the function
for the left hand, right hand or the head. The transformation
fi : Rn → R3 transforms the n-dimensional configuration of
the human model into the 3D position of the left hand, right
hand or head respectively, using the forward kinematics of
the human model. The likelihood function for the distance
cue is then formulated as:

p′
d(z|s) ∝ exp

{
− 1

2σ2
d

(d1(s, c1) + d2(s, c2) + d3(s, c3))
}

where the vectors ci are computed on the base of the
image observations z using skin color segmentation and
stereo triangulation, as explained in Section III-C. If the
position of a hand or the head can not be determined because
of occlusions or any other disturbance, the corresponding
vector ci is set to the zero vector. Note that this does not
falsify the resulting probability density function in any way.
Since all likelihoods of a generation k are independent from
the likelihoods calculated for any previous generation, the
distribution for each generation is also independent. Thus, it
does not make any difference that in the last image pair one
ci was present, and in the next image pair it is not. The final
likelihood function is the product of p′

g and p′
d:

p(z|s) ∝ exp

8<:−1

2

0@ 1

σ2
d

3X
i=1

di(s, ci) +
1

σ2
g

(1−
1

Mg

MgX
m=1

gm)

1A9=;
IV. IMAGE PROCESSING PIPELINE AND TRACKING OF

HANDS AND HEAD

The image processing pipeline transforms each image of
the stereo pair into a skin color map and a gradient map,
which are then used by the likelihood function presented in
Section III −D. In Figure 3, the pipeline is shown for one
image; in the system, the pipeline is applied twice: once for
each image of the stereo pair. After the input images are
smoothed with a 3 × 3 Gaussian kernel, the HSV image is
computed. The HSV image is then filtered twice, once for
skin color segmentation and once for foreground segmen-
tation by segmenting the shirt color. A simple combination
of a 2 × 1 and a 1 × 2 gradient operator is applied to the
segmented foreground image, which is sufficient and the
most efficient for a binarized image. Finally, a gradient pixel
map is generated by blurring the gradient image, as done in
[4].

Currently, the hands and the head are segmented using a
fixed interval color model in HSV color space. Similar to
the idea presented in [16], each color blob is tracked with

Smooth HSI

Skin Color
Segmentation

Shirt Segmentation

Gradients

Eroded Skin Color MapGradient Pixel Map

Fig. 3. Visualization of the image processing line

a linear motion model, which makes it possible to track
through images in which blobs are occluded or blobs fall
together. In these images, the state of the affected blobs from
the last image is propagated to the current image, predicting
their current position by using the linear motion model. The
resulting color blobs are matched between the left and right
image, taking into account their size, the ratio between the
height and width of the bounding box, and the epipolar
geometry. By doing this, false regions in the background can
be discarded easily. Finally, the centroids of matched regions
are triangulated using the parameters of the calibrated stereo
setup.

All image processing routines and mathematical compu-
tations are implemented using the Integrating Vision Toolkit
(IVT) [17]. It is an Open Source vision library, offering a
clean interface to image devices and camera calibration, and
a variety of filters, segmentation methods, stereo routines,
mathematical function and data structures.

V. EXPERIMENTAL RESULTS

The experiments being presented in this section were
performed on the humanoid robot ARMAR. In the robot
head, two Dragonfly cameras are positioned at a distance
of approximately eleven centimeters. As input for the image
processing line, we used a resolution of 320× 240, captured
at a frame rate of 25 Hz. The particle filter was run with a
set of N = 1000 particles. The computation times for one
image pair, processed on a 3 GHz CPU, are listed in Table I.
As one can see, the processing rate of the system is 15 Hz,
which is not yet real-time for an image sequence captured
at 25 Hz, but very close. Of course, when moving slowly, a
processing rate of 15 Hz is sufficient.

In Figure 4, six screenshots are shown which demonstrate
how the system automatically initializes itself. No initial
configuration is given; it autonomously finds the only possi-
ble configuration matching the observations. Figure 5 shows
four screenshots of the same video sequence, showing the
performance of the human motion capture system tracking
a punch with the left hand. We have also run successful
experiments with a half a minute sequence with a resolution
of 640× 480 captured at 57 Hz.
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Time [ms]
Image Processing Line 14
1000 Forward Kinematics and Projection 23
1000 Evaluations of Likelihood Function 29
Total 66

TABLE I
PROCESSING TIMES WITH N = 1000 PARTICLES ON A 3 GHZ CPU

USING A 320× 240 STEREO INPUT IMAGE SEQUENCE

Fig. 4. Screenshots showing automatic initialization

Fig. 5. Screenshots showing tracking performance. Top: input images of the
left camera with projected estimation. Middle: Visualization with a simple
3D model. Bottom: Visualization by mapping to a realistic human model

VI. CONCLUSION

We have presented an image-based markerless human
motion capture system for application on a humanoid robot.
The system is capable of computing motion trajectories in
the configuration space of a human body. We presented our
strategy for fusing multiple cues within the particle filter.
The proposed strategy is supported by the results of a study
examining the properties of commonly used image cues and
the newly introduced distance cue. We showed that by using
the 3-D distance cue we could find optimal configuration
withs less particles than standard approaches. This implicit
reduction of the search space allows us to capture human
motion with a particle filter using as few as 1000 particles,
which results in a processing rate of 15 Hz on a 3 GHz CPU
for a 320× 240 stereo input video stream.

In the near future, we plan to extend the system by

incorporating the legs and feet into the human model. Fur-
thermore, we intend to make use of the active head to follow
the human subject, thus keeping her/him in the robot’s field
of view. This would not be possible with a static head.
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Abstract. Tracking of rigid and articulated objects is usually addressed within a
particle filter framework or by correspondence based gradient descent methods.
We combine both methods, such that (a) the correspondence based estimation
gains the advantage of the particle filter and becomes able to follow multiple
hypotheses while (b) the particle filter becomes able to propagate the particles
in a better manner and thus gets by with a smaller number of particles. Results
on noisy synthetic depth data show that the new method is able to track motion
correctly where the correspondence based method fails. Further experiments with
real-world stereo data underline the advantages of our coupled method.

1 Introduction

Motion tracking and human pose estimation are important applications in motion anal-
ysis for sports and medical purposes. Motion capture products used in the film industry
or for computer games are usually marker based to achieve high quality and fast pro-
cessing.

Marker-less motion capture approaches often rely on gradient based methods [13,
3, 19, 7, 10, 18]. These methods estimate the parameters of a human body model by
minimizing differences between model and some kind of observations, e.g. depth data
from stereo, visual hulls or silhouettes. Necessary for minimization are correspondences
between model and observed data. The main problem of these correspondence based
optimization methods is, that they often get stuck in wrong local minima. From this
wrong estimated pose they can usually not recover.

Other approaches like particle filters [5, 11] try to approximate the probability dis-
tribution in the state space by a large number of particles (poses) and are therefore
unlikely to get stuck in local minima, because they can follow and test a large num-
ber of hypotheses. However, to be sure that the “interesting” region (typical set) of a
high-dimensional state space is properly sampled, a large amount of particles is usually
necessary [15, 2].

To take the advantages of both approaches, we combine a particle filter based ap-
proach [15, 11, 6] with correspondence based gradient estimation.

The effect can be interpreted in two ways: (1) Following the local gradient within the
particle filter allows to find minima (including the global minimum) with less particles
and (2) enhancing the gradient descent method with multiple hypothesis helps to avoid
to get stuck in local minima.



The key to our approach and the main difference to a particle filter like CONDEN-
SATION [11] is the gradient descent for each particle and the merging of particles.
Particles, which are close to each other after the gradient descent, are merged into a sin-
gle particle. Then, the idea is to re-distribute (propagate) the particles in a way that takes
into account the local shape of the likelihood function. That way the number of particles
can be greatly reduced while maintaining the ability to follow multiple hypotheses.

We will discuss our new approach in the context of marker less motion tracking
from a single stereo view with two cameras. There is a wide variety of stereo algorithms
available differing in quality and processing time. Commercial stereo cameras calculate
depth data on chip using a simple algorithm [20] in real-time and keep the CPU free.
Other more sophisticated algorithms need up to multiple minutes per image pair [8].

We will at first discuss relevant work within the field of motion tracking. Then,
introduce our body model and the motion parameterization, which are used in the cor-
respondence based optimization. The next section briefly explains important aspects of
particle filter tracking methods, which are necessary for the combination. Then, results
on synthetic data and real motion sequences are given, that show the advantages of the
combined motion tracking. The last section concludes the paper with a short discussion
of the presented achievements.

2 Related work

Motion tracking of the human body is addressed in the literature with different methods.
A recent and extensive survey of vision based human motion tracking can be found in
[16]. Approaches relevant to this work arise from different directions depending on the
kind of input data, e.g. depth data or images, and the number of cameras. Visual hull
approaches have shown to give very accurate results [13, 3]. They build the visual hull
of the person from segmented images of multiple cameras and then fit a template model
to the 3D hull. Usually some kind of gradient based optimization is utilized to estimate
the motion parameters of the model. Fitting the template model directly to segmented
images is another possibility as done in [19], where it was shown, that the marker-less
approach has an accuracy similar to marker based tracking.

Similar to the visual hull approach is [12], where multiple stereo cameras observe
the motion of a person. The resulting 3D points are then used with an Extended Kalman
Filter to estimate the upper body motion.

When only two or less cameras are used for motion tracking, particle filters [11]
or particle filtering methods are utilized [5]. Their advantage is, that multiple track-
ing hypotheses can be followed, because a large number of particles approximates the
posterior probability of the system’s state. Therefore, the tracking is not prone to get
stuck in local minima and multiple hypotheses can be followed. This ability to track
multiple hypotheses is very useful, because body parts can become occluded, if only
a single viewpoint is used. Then, the occluded motion has to be ’guessed’ in order to
track successfully, when the occluded body part becomes visible again. However, if full
body motion with 30 DOF is to be estimated the number of particles can approximate
the posterior distribution only within a small region in the state space. Therefore, once
again it is likely to face the problem of local minima. Otherwise the number of parti-



cles has to be increased, which increases computation time. For 30 DOF the necessary
amount of particles can result in a computation time of up to multiple hours per im-
age frame of a video sequence. However a parallel processing of particles is possible.
Our approach decreases the amount of necessary particles significantly and allows such
processing in reasonable time.

Motion tracking from a single stereo view as in this work has been addressed before
in [4], where the human is modeled with 6 cylinders and motion can be roughly tracked
with 10Hz. The authors use projective methods, which are inferior to direct methods as
they state themselves in [4], but are easier to implement and require less computation
time (no comparison is made). In [18] a direct approach is taken, where a human model
consisting of spheres (meta-balls) is fitted to stereo data silhouettes from a single view.
Due to the high number of estimated parameters, the method is not real-time capable.
Both methods use a correspondence based gradient descent method, which requires
manual initialization and can get stuck in local minima.

In [17], 3D body tracking is done using particle propagation. The Zakai Equation
is applied to model the propagation of probability density function (pdf) over time in
order to reduce the number of particles.

In a previous work [10] we showed that our direct approach is able to track upper
arm motion with 5Hz and can therefore compete with the projective method of [4]
according to processing time. Here we present a combination with a particle filter that
allows us to track very noisy arm motion and complex full body motion of the whole
body from stereo data alone, even though body parts are temporarily occluded.

A nice review on Monte Carlo-based techniques can be found in [15]. Classical
papers about particle filtering are Condensation[5, 11], Sequential Importance Sampling
[6] and sequential Monte Carlo [14].

3 Body Model and Motion Parameterization

Fig. 1. Left: The body model with rotation axes shown as arrows. Right: The difference (small
blue lines) between observed depth point and nearest model point (black boxes) is minimized.



The motion capabilities of the human model is based on the MPEG4 standard, with
up to 180 DOF. An example model is shown in Fig. (1) left. The MPEG4 description
allows to exchange body models easily and to re-animate other models with the cap-
tured motion data. The model for a specific person is obtained by silhouette fitting of a
template model as described in [9].

The MPEG4 body model is a combination of kinematic chains. The motion of a
point, e.g. on the hand, may therefore be expressed as a concatenation of rotations [10].
As the rotation axes are known, e.g. the flexion of the elbow, the rotation has only one
degree of freedom (DOF), i.e. the angle around that axis. In addition to the joint angles,
there are 6 DOF for the position and orientation of the object within the global world
coordinate frame. For an articulated object with p joints we describe the transformation
of the point p within the chain [10] as

m(θ,p) = (θx, θy, θz)T +
(Rx(θα) ◦Ry(θβ) ◦Rz(θγ) ◦Rω1,q1(θ1) ◦ · · ·
· · · ◦Rωp,qp(θp))p

where (θx, θy, θz)T is the global translation, Rx, Ry, Rz are the rotations around the
global x, y, z-axes with Euler angles α, β, γ and Rω,q(θi), i ∈ {1..p} denotes the ro-
tation around the known axis with angle θi. The axis is described by the normal vector
ωi and a point qi on the axis.

Eq. 1 gives the position of a point p on a specific segment of the body (e.g. the hand)
with respect to joint angles θ and an initial body pose.

If the current pose is θt and only relative motion is estimated the resulting Jacobian
is:

J =
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∂mz
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∂θ1
·· ∂mz

∂θp

 (1)

The derivatives at zero are:

∂m(θ,p)
∂θj

∣∣∣∣
θ=0

= ωj × (p − qj) (2)

where j ∈ {1, .., p} and qj is an arbitrary point on the rotation axis. The simplified
derivative at zero is valid, if relative transforms in each iteration step of the Nonlinear
Least Squares are calculated and if all axes and corresponding point pairs are given in
world coordinates.

4 Gradient Enhanced Particle Filtering

Because our method combines the advantages of gradient based optimization methods
with particle filtering, we give now a brief overview of important aspects of both. Then,
we present the combined algorithm and discuss the main differences to particle filters.



4.1 Correspondence Based Pose Estimation

Correspondence based methods for pose estimation of articulated objects minimize an
error function with respect to motion parameters. The human body can be modeled as
an articulated object, consisting of multiple kinematic chains.

It is common to assume that the shape and size of the body model is known for
the observed person, such that the minimization is only with respect to joint angles and
the global transform. In that case, the kinematic chain simplifies to a chain of rota-
tions around arbitrary axes in space Given here is a short description of the estimation
algorithm, for more details see [10].

Estimating the motion of the human body from given 3D-3D correspondences (pi, p̃i)
is done here by solving a Nonlinear Least Squares Problem. The minimization yields
the joint angles and the global orientation and position. For n correspondences the min-
imization problem is given as:

min
θ

n∑
i

|m(θ,pi)− p̃i|2 . (3)

To find the minimizer with the iterative Gauss-Newton method the Jacobian of the resid-
ual functions, Eq. (1), is necessary.

The points pi and p̃i form a correspondence. For each observed point p̃i the closest
point pi on the model is sought. Therefore, different observed points can have the same
corresponding model point. This is shown in Fig. 1 right, where each correspondence
is shown as a small blue line and the model points are drawn as black boxes.

The minimization problem is solved with the dampened Gauss-Newton method[1],
which is similar to the Levenberg-Marquardt[1] method. Dampening ensures that the
parameter change does not increase infinitely, if the determinant of the Gram matrix
JT J is close to zero, which can happen when a body part is largely occluded. The
solution is found by solving iteratively:

θt+1 = θt − (JT J + λI)−1JT r(θt) (4)
where the Jacobian J is given in equation (1), I is the identity matrix, λ is the dampen-
ing value (set to 0.1) and r(θt) is the vector with current residuals. For each point there
are three residuals, one for each component (x, y, z):

ri(θt) = m(θ,pi)− p̃i (5)

and ri = (rix, riy, riz).
The optimization consists of two loops: The Gauss-Newton method (GN) loops un-

til it converges on the given set of point correspondences. Because the correspondences
are not always correct, new correspondences are calculated again after convergence of
the GN. Then, GN starts anew with the improved set of correspondences. This Iterative
Closest Point (ICP) method [1] can be repeated until convergence. However, the gain
in more then 3 ICP iterations is very small, therefore we usually apply only 2 or 3 ICP
optimizations. We will use in the following the term “gradient tracking” in order to refer
to this technique.

It is important to note, that the Gauss-Newton optimization is more efficient than a
standard Gradient Descent and requires less control parameters. However we will refer
to it as “gradient tracking”, because both methods rely on the gradient.



4.2 Particle Filter

The new method borrows some ideas from particle filter methods like CONDENSA-
TION [11]. Particle filter approaches aim at estimating the posterior probability dis-
tribution of a system state zt at time t, the person’s current pose in our case, from
observations I1, . . . , It:

p(zt|I1, I2, . . . , It) ≡ pt(zt)

=
∫

zt−1

p(It|zt)p(zt|zt−1)pt−1(zt−1) . (6)

In this equation the state space is randomly sampled according to pt−1(zt−1) and
propagated according to a motion/diffusion model p(zt|zt−1). A likelihood probability
p(It|zt) for each particle is calculated, which reflects how good the observations fit to
the hypothesis (the position of the particle in the state space). The posterior probability
is then approximated by the weight and density of particles within the state space.

The major problem with these approaches is, that the number of necessary particles
usually needs to reflect the dimensionality of the state space[15, 2]. If full body motion
with 30 DOF is to be estimated the particles can usually approximate the posterior
distribution only within a small region in the state space.

If depth data is the only input, calculation of the likelihood requires computation
of differences between observed points and model surface. One way to compute these
differences is a nearest neighbor search as described in the previous section. This search
is, however, expensive in terms of computation time. Therefore, methods are desirable,
which reduce the number of particles and allow to distribute the reduced set of particles
in the most important regions of the state space.

4.3 Combination

In order to get by with a smaller number of particles, we apply the gradient tracking
(section 4.1) to each particle. Since similar particles move to the same optimum, they
can be merged with an appropriate adaption of the particle weight. The state space pos-
terior probability is approximated in a particle filter by the particle weights and their
spatial density. A possible weight adaption is the average of merged particle weights.
However, all merged particles are nearly at the same position in the state space and
therefore have nearly the same weight (likelihood). As a result it is sufficient to assign
them the same weight. Another possible weight adaption is the addition of weights.
However, these would favor large flat valleys in the posterior probability surface, be-
cause all particles within in this valley will descent towards the same minimum. This
will also lead to a clustering of particles at specific positions, which is not desired,
because we want to track as many hypotheses as possible. If the merged particles are
redistributed in the next time step only according to a fixed motion model and diffu-
sion model, it is likely that they end up in the same locally convex region (valley) and
again merge at the same position in state space. Each valley can be understood as one
likely pose hypothesis. It is desirable to track as many hypotheses as possible with a
fixed amount of particles. To increase the number of tracked hypotheses and decrease



Fig. 2. Principle of the combined method. Particles whose position is within a specific area after
optimization (black dashed circle) are merged into one particle (red circle).

the amount of particles per valley, the particles need to be redistributed at the next time
step of Eq. (6) according tho the size and shape of their valley. This can be understood
as enhancing our rather simple motion model (fixed velocity) to include the shape of
the local probability surface.

In order to achieve this, we merge all particles after optimization, which are close
to each other according to some distance d. In detail, if we use N particles zt−

1 , . . . zt−
N

in our particle filter, then we have after the merging M < N meaningful particles
zt

1, . . . z
t
M left, and N −M particles were merged into the remaining M particles.

Then, in order to distribute the particles in the next time step optimally, we estimate
the size of the locally convex region by computing the covariance Σi of all those par-
ticles. Let zt−

i1
, . . . zt−

ik
be the particles that merged together into the particle zt

i. The
− at the top denotes the particles before their gradient descent and merging, t denotes
the time step. The final particle zt

i (without the −) after gradient descent and merging
(red circle in Fig.2) is the one with highest likelihood and is used as the mean for the
covariance:

Σi =
1
K

K∑
j

(zt−
j − zt

i)(z
t−
j − zt

i)
T (7)

where K is the amount of particles, which merged into zt
i. It is important to note that the

covariance is calculated from the particles before the gradient descent and merging. Fig.
2 illustrates the merging. The blue lines show a few steps of the gradient descent for five
particles. They are within a certain region (the black dashed circle) after optimization
and therefore merged. The idea is to distribute particles in the next frame outside that
locally convex region (valley), because otherwise they would end up again at the same
position and give no additional information about the state space. Thus, at the next
time step t + 1 N new particles are drawn from the remaining M particles of time
step t according to the prior pt+1. Then, each particle is propagated according to some
motion model f(zt+1−) with added Gaussian noise. Let the particle zt+1− be spawned
off from the particle zt

i. The covariance of the above Gaussian is given by the covariance
Σi of the original particle zt

i.



Our gradient enhanced particle filter can be summarized as follows: Input to our
algorithm are the depth points for the current image frame and an initial pose in the
beginning. The steps of the algorithm are for each frame similar to a particle filter
method except for the gradient descent and the merging of particles.

1. Only at the first frame: Distribute particles according to an initial distribution in the
vicinity of the given initial pose.

2. Draw new particles zt−
1 , . . . zt−

N according to pt(zt).
3. Distribute and propagate each particle according to the covariance Σi of the original

particle and propagate according to a diffusion/propagation model: p(zt+1−|zt−, Σ) =
Gauss(f(zt−), Σ). Here, the motion model consists of a deterministic motion
model f plus Gaussian noise, and Σi defines the Gaussian covariance matrix.

4. Gradient Descent for each particle zt+1−
i with 2 or 3 ICP optimizations:

(a) Render model in current pose
(b) Calculate visible model points
(c) For each observed point find the closest model point, which makes a corre-

spondence
(d) Calculate a new pose by minimizing the differences of the correspondences

5. Assign the likelihood, calculated from the residual error.
6. Merge particles zt+1−

i1
, . . . zt+1−

ik
, which are within a certain distance d to each

other into one particle zt+1
i .

7. For each particle zt+1
i : calculate the covariance matrix Σi from all the particles

zt+1−
i1

, . . . zt+1−
ik

which merged into zt+1
i .

The motion model f(zt−1) predicts the new pose of the human. In our experiments, we
assume constant velocity. The distance d was chosen to be 4 degrees, such that particles
are merged only if each single joint angle differs less than 4 degrees to a neighboring
particle. The distance check is only applied on joint angles, not on the position of the
body model in the world, because it is highly unlikely, that the same pose is estimated
at different positions. This way additional control parameters are avoided.

The initial covariance for each particle is chosen to equal the distance d, such that
particles are definitely distributed outside the merge area. The covariance is also re-
duced by 10% each frame. Without this reduction the covariance can increase indef-
initely. Especially if only one particle is left in a valley, it is desirable to reduce the
covariance, such that it is ensured, that nearby poses are tested.

5 Synthetic data with noise

In order to show the robustness of the new method to noisy measurements we conduct
an experiment on depth data generated with openGL on a synthetic sequence. The mo-
tion involves four DOF, the elbow flexion and the shoulder flexion abduct and twisting.
Three example images out of the 176 frame sequence are shown in Fig. 3. The depth
data is calculated from the z-buffer values after rendering the model.

For testing, Gaussian noise with different standard deviations is added to the original
depth data. Fig. 4 shows two views on the depth data and the model in starting pose.



Fig. 3. First frame (left). Frame 60 and frame 176 of the synthetic sequence.

Fig. 4. Two views on the depth point cloud with Gaussian noise (deviation 15cm). Right: The
standard tracking method loses track after a few frames and gets stuck in the pose shown.

The z-buffer image was sub-sampled in order to generate approximately 10000 depth
points. Approximately 750 points are visible on the right arm each frame.

At a deviation rate of 15cm in depth and 1cm in the other directions the normal
tracking methods loses track after a few frames and gets stuck in an arbitrary pose as
shown in the right of Fig. 4.

The multi-hypotheses tracking with 20 particles is able to track the motion correctly
in spite of the heavy noise. The difference to the ground truth is shown in Fig. 5. In
the beginning the estimate is far off with 50 degrees however the plot shows, that the
tracking recovers from the wrong local minimum. For all hypotheses the minimum
difference to the ground truth is taken, because the particle with the largest likelihood
does not always give the correct pose. Plotted is the absolute error in degree over the
whole sequence. The elbow difference is high around frames where the arm is close to
the body as at frame 60 and 105, because the correspondences established with nearest
neighbor are then most ambiguous. Where the arm is far away from the body the noise
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Fig. 6. Difference of the shoulder abduct angle to ground truth without noise.

on the data does not result in so many wrong correspondences. Therefore, the error is
decreased. Though the error is still large for most frames, because of the heavy noise,
the results show, that the new method can track the motion over the whole sequence.

Without noise the gradient tracking estimates joint angles, whose difference to the
ground truth is close to zero error as shown in Fig. 6 for the abduction angle of the
shoulder. The error is not zero, because the model surface is approximated by the ver-
tices of the model’s triangles. Therefore, the nearest neighbor correspondences are not
perfect.

6 Real Data

In order to show the possibilities with our new method, we give further results for a
video sequence, which was recorded in a motion capture lab with 8 cameras at 25fps.
Two of the cameras were arranged approx. 25 cm next to each other, such that stereo
depth estimation can be performed. The stereo algorithm[8] produces dense accurate



Fig. 7. Two views on the input data. Approx 10000 points are shown as white boxes.

results in non-homogenous regions within approx. one minute computation time per
frame. The used effective image size is 512x512. Fig. 7 shows the depth data that is used
as input. The only assumption made here is, that no scene objects are within 80cm range
of the person. Also knowledge about the floor position was incorporated from camera
calibration, which was conducted for the internal parameters with a small checkerboard
pattern according to [21]. This calibration also yields the orientation and distance of the
stereo cameras. The external parameters (orientation of the floor) were then estimated
with a large checkerboard pattern lying on the floor.

The initial pose of the person is provided manually. Estimated are 24 DOF, these
are in detail 3 at each shoulder, one elbow angle, 3 at each hip, one angle for each knee,
one angle at the ankle and 6 parameters for the global orientation and position.

The estimation time on a 2Ghz intel Core2 Duo (1 CPU) was about 2 seconds per
particle and approximately 10000 data points. For 1000 data points and 14 DOF the
computation time is about 200ms per particle.

Fig. 8 shows a few frames from the resulting estimation. The multi-hypotheses
tracking with 100 particles is able to track the whole sequence of 180 frames (first 3
rows in the Fig.), even though one arm and one leg are almost completely occluded
temporarily. Approximately 10000 data points from the complete set of 40000 reliable
data points are used per frame, resulting in a Jacobian of size 30000× 24.

The gradient tracking method (row 4) is able to track correctly up to 130 frames, but
loses track when the person turns and the body parts become occluded (second image
last row). The gradient tracking method is lost in that case and is unable to recover.

7 Conclusions

We presented a new method for motion tracking, that combines gradient based opti-
mization from correspondences and motion tracking with particle filters. The combined
approach allows to track arm motion in spite of heavy noise, where a normal gradient



Fig. 8. Estimation results of the new combined method with 24 DOF (first 3 rows). The figure
shows the original images together with the projected model in the estimated pose (overlayed
in white). The last row shows the estimation results for the ”gradient tracking” for the same
images as in the third row. The ”gradient tracking” loses track, because the right arm gets largely
occluded, and is unable to recover.



descent method fails. Further results on stereo video sequences showed that motion with
24 DOF can be tracked from a single viewpoint. At frames where the normal tracking
gets stuck in local minima and thus loses track, the new method recovers and estimates
correct poses.

The main contribution of the new method is the enhanced motion model, which
includes the shape of the locally convex regions of the probability surface by estimation
of the covariance matrix from merged particles. In that way the number of particles is
used more efficiently and allows to track a higher number of hypotheses.

We will exploit in the future further aspects of the new method: (1) the likelihood
probability of the particle filter allows to easily include image information into the
tracking, as for example motion areas from temporal image differences, (2) increase
speed by parallel processing of particles and (3) include motion recognition probabili-
ties into the motion model.
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Abstract— Extraction and tracking of hand contours repre-
sents an important part of sign language and gesture recog-
nition systems. In robotics, recent developments in imitation
learning show the need for complete hand pose estimation such
that recognition and evaluation of grasps applied to object
can be performed. It has been demonstrated that the use of
stereo information improves the depth extraction and provides
robustness to occlusion. Once hand contours are identified in
each of the stereo images, the points along the contours have
to be matched in order to compute their 3D position. The goal
of our work is to show how matching and reconstruction of
contour points can be performed using Dynamic Time Warping
(DTW) for the purpose of 3D hand contour tracking while
performing various object manipulation activities. We evalu-
ate the performance of the proposed algorithm and perform
comparison with the Iterative Closest Point (ICP) algorithm in
situations with a different degree of complexity.

I. I NTRODUCTION

In a learning by demonstration context, a robot observes
a human performing a task, after which it is supposed
to perform the action and thus learn through an imitation
process. In order to imitate a human action, the robot needs
to retrieve information about of how a specific task was
performed – it needs to register the movement of the whole
or parts of a human body and an object, and the sequence of
different actions performed on the object. Many of the human
actions involve object handling, which involves principally
the movement of the hands and the arms. The goal of our
current work is to develop a real-time stereo based hand
tracking system that can be used for full 3D hand pose
estimation.

Tracking and reconstructing hands in 3D requires solutions
to a number of different problems: hand modeling and
detection, temporal association, representation and extrac-
tion of 2D data, data association, and matching for 3D
reconstruction. Most of the approaches of 3D hand tracking
are either model-based or view-based [4]. The former rely
on articulated 3D hand models, used to minimize an error
function between the model and the observed image data
in a sequence of images. This approach requires a model
initialization in the first frame which is commonly performed
manually. View-based approaches perform pose estimation
and classification using a limited number of selected hand
poses collected in the training stage [6]. Systems using a
combination of the above methods have also been demon-
strated [20]. Related to the number of cameras used, both
monocular [7] and stereo systems [3] have been used. In
the case of the former, assumptions about the size of the

hand have to be made to facilitate the 3D reconstruction
problem. The stereo-based approaches, on the other hand,
require a data association and matching step prior to the
reconstruction. Matching can be performed in several ways,
depending on whether the reconstruction of the whole surface
of the hand is necessary [1], [2].

This work is based on further developments of a system
presented in our previous work [3]. In the tracking system,
the hands are first identified separately in each of the stereo
images and their contours are extracted. This is followed by
stereo-based blob matching techniques and shape matching
through contour alignment. The particular objective of the
work presented here is the development and evaluation of the
shape matching and contour alignment step. In the original
work [3], Iterative Closest Point (ICP) algorithm and an
assumption of the affine motion model were used. However,
this approach is not suitable for cases where the inherent
assumption of planarity of the hand due to the affine motion
model is not valid. This is commonly the case in object
grasping and manipulation activities or when a full 3D
pose estimation of the hand is required. This paper presents
a new approach for contour alignment based on dynamic
programming, considered in this paper in the Dynamic Time
Warping (DTW) context. The approach is not dependent on
the validity of the planarity assumption and an extensive
experimental evaluation shows that the performance of the
new approach is clearly superior, increasing the robustness
to occlusions and relaxing the planarity assumptions. While
dynamic programming approaches have been widely used in
dense stereo matching, we are not aware of applications in
closed contour based matching in stereo.

This paper is organized as follows. In Section II, a short
review of related work is given. In Section III, the proposed
methods are described. The results of the experimental
evaluation are presented in Section IV and the conclusions
drawn in Section V.

II. RELATED WORK

Pose tracking and 3D reconstruction of hands is a difficult
problem: hands are textureless objects, with many degrees
of freedom, usually self-occluded or occluded by other
objects when object manipulation actions are considered.
Since full 3D reconstruction based only on the hand depth
estimation is a complex and time-consuming process, view-
based approaches have been extensively used in the liter-
ature [6]. The tracking problem is then solved through a



classification framework, relating image information directly
to the pose space of the hand. Approaches that make use
of databases and deformable templates fall in this group
[12], [13], [14]. Model-based approaches [6] are based on
building an articulated hand model. This model is then used
in the tracking process where the incremental change in pose
between consecutive images is estimated by minimizing an
error function between the model and the observed image
data.

For robotic imitation scenarios, where it is expected that
a human demonstrates to a robot of how to manipulate
a certain object in its workspace, model-based approaches
offer a better solution. Apart from not having the need for
extensive training, database generation and storage, model-
based methods offer a more flexible framework once the
mapping between different kinematic chains is needed. Even
if a considerable amount of work has been put on the
development of humanoid robots during the past few years,
robot hands are still simple and do not offer the full com-
plexity of human hands. The simplest form of mapping from
a human to a robot hand may then be to just disregard
those degrees of freedom that are not articulated on the
robot hand. Model-based trackers also offer the capability
of continuous pose estimation while view-based methods,
if they are not extended with some local fitting step, only
provide classification to the nearest dictionary pose.

Within the model-based approaches, we can differentiate
the systems based on the extracted features and the methods
used to reconstruct the hand model based on these features.
Regarding the features, we can differentiate between low
level and high level (semantic) features [17]. High level
features are desirable since they compress a lot of informa-
tion about the hand pose in few parameters, and they allow
high processing speed for the fitting process. The drawback
of high level features is that it is difficult to extract them
from images in a general and robust way. One of the most
common examples of a high level feature is the position of
the fingertips [10], [18].

There are some important differences between monocular
and multi-camera systems. The main difference between
those systems is that while the monocular systems usually
use some predefined hand parameters, such as the length of
phalanxes and the size of the palm, to reconstruct the hand in
3D [7], [10], [11], the stereo systems can extract depth infor-
mation from the 2D data directly, without assumptions about
the hand parameters. This makes the multi-camera methods
less constrained than the monocular ones at the computing
cost of the matching procedure and reconstruction. Multi-
camera methods have another important advantage: They are
more robust to occlusions. Stereo ”humanoid” heads like
the one we use, see Figure 1, can effectively avoid some
of the occlusions. If the camera baseline is large and/or the
number of cameras is more than two as in [16], even some
significant occlusions can be tolerated. This is important in
hand tracking since the self-occlusion is a common problem.

The extraction of depth information can be done in many

Fig. 1. Stereo Head used in our system

different ways. There are approaches such as [1] where
correlation methods are applied to extract dense depth maps
of the hand, but the lack of texture usually makes the use of
correlation matching difficult. Sometimes, special hardware
is used in order to extract a dense depth map [8], [9]. As we
said before, in [3] a different approach is applied since only
the hand contour is reconstructed. This makes the matching
process easier and the reconstruction faster. In the original
system this paper is based on, the ICP algorithm was used to
match the points along the contours, and then the 3D posi-
tions were reconstructed by classical triangulation. However,
this approach has an important drawback: It assumes that the
contour points lie on a single plane. This can be avoided
using a more complex transformation in the ICP process
(affine transformations were used in the original system),
or using another matching process. This paper proposes an
improved method for matching the contour points based
on the dynamic time warping algorithm [15]. The main
advantage of the proposed approach is that it does not make
any assumptions about the the hand contour geometry as only
the epipolar constraint is used.

III. C ONTOUR MATCHING

In this section, we briefly introduce the algorithms used.
First, an introduction to ICP and its application to hand
contour matching is given. This algorithm was used in our
previous work presented in and more details can be found in
[3]. After that, we introduce the use of dynamic time warping
for hand contour matching.

A. ICP

ICP algorithm computes a motion which transforms one
set of points into another one according to a model, for
example, an affine transformation is assumed in our original
work. The algorithm is iterative: At each iteration, it first
computes a motion which minimizes the current matching
error and then applies the estimated motion to update the
point correspondences. Two strong assumptions are made:

• An initial approximation for the point correspondences
is available in order to compute the initial motion.



• A suitable motion model is available to perform the
contour alignment.

The procedure followed in [3] is shortly outlined below.
The initial approximation performed in order to compute
the initial error measure is based on the first and second
moments of the contours. This means that the hand contours
are approximated by ellipses and their centroids and principal
axes are matched. This approximation is fast, but it has some
problems: the more circular this ellipse approximation of the
contour is, the more uncertain is the alignment of the axes.

The motion model chosen in [3] is an affine transforma-
tion. This means that in the alignment process, six parameters
have to be estimated. In terms of stereo matching, this works
fine as long as the contour points lie in a plane which also
restricts the algorithm to work only for some hand poses. The
problem can be solved by choosing a more general trans-
formation. However, more general transformations require
more parameters to be optimized. For this reason, the number
of iterations until the convergence is achieved may increase
drastically. Finally, ICP needs a measure of the error during
the matching process. In the original work, the 2D squared
distance between a point and the transformed point was used
to measure the similarity between points. This algorithm is
relatively fast, since it computes a motion that is applied
to all the points at the same time. On the other hand, it is
iterative and sometimes the number of iterations required to
reach the convergence may be high.

B. DTW

Another approach adopted here, dynamic time warping,
is conceptually quite different. It is not iterative, and it
computes the point correspondences without any assumption
of the underlying motion model. The algorithm consists of
four steps:

1) Compute the pairwise distances from each point in one
set to all the points in the other set.

2) Select a pair of points that are supposed to be a good
match, in order to initiate the matching process.

3) For each possible pair of points, compute the ac-
cumulated cost of reaching this pair, based on the
accumulated cost of previous points and the cost of the
jump from the previous pair (the pair with minimum
accumulated cost previously computed).

4) The optimal path corresponding to the minimum total
cost of matches can be extracted by tracing back from
the end point.

The algorithm has time complexityO(n2) where n is the
number of points to be matched. In the remaining part of
the section, we present the principal details of the proposed
approach: the building of the distance matrix and the choice
of the starting point. More information about DTW can be
found in [15].

1) Distance Matrix: DTW algorithm finds the set of cor-
respondences with the least total cost (or distance) between
the matched points. For this reason, it is very important to
choose a distance measure that in a good way represents the
similarity of two hand contours in a stereo pair of images.

From a geometric point of view, the relation between
points in a calibrated stereo pair is given by the essential
matrix. For a given point, this matrix provides the epipolar
line on where the corresponding point must lie in the other
image. This matrix depends on the extrinsic calibration of
the cameras: the translation vector and the rotation matrix
between them:

PT
R R[t]xPL = 0 ⇔ PT

R EPL = 0 (1)

[t]x =

 0 −tz ty
tz 0 −tx
−ty tx 0
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The relations are applied to pointsPR and PL in the
normalized camera coordinate systems, and are also valid
for their normalized image plane projectionspR and pL.
We are interested in this relation expressed in the image
coordinate system in order to determine the correspondence
between the left and right camera images. Considering the
camera intrinsic parametersK−1, we obtain the well known
fundamental geometry relationship:

pL = K−1
L pL pR = K−1

R pR (3)
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uR = FpL (7)

The pointspR and pL represent pixel coordinates and
uR represents the epipolar line wherepR must lie. The
fundamental matrixF can be computed from the intrinsic
and extrinsic parameters of the camera or estimated directly
from a set of calibration images. The calibration of the stereo
rig was performed with the tool available from [19].

The distance from a point to the epipolar line generated
by another point can be used in order to build the distance
matrix. The main advantage of this measure compared to
other measures such as the coordinates of the points or the
coordinates with the origin in the hand centroid is that the
measure is not based on any assumption except the epipolar
geometry: if the camera calibration is correct (and there are
no occlusions), the corresponding point lies on the epipolar
line. The main disadvantage is that this measure might be
ambiguous: in the case of point denoted 0 in Figure 2, it
will perfectly match both points denoted 0 and 8 in another
image.

However, this problem is solved by the DTW algorithm.
Although two points would have similar distances to each
other, the subsequent ones will probably have very different
distances (as points 1 and 9 in Figure 2). This means that
despite the distance in the first pair will be low, the following
matches will increase a lot the total cost of this matching,
rejecting finally this set of correspondences. When there are
points with similar distances close to each other, the system
has errors. This can be seen in Figure 13, where the wrist
segment of the contour has a lot of noise since this segment
is almost parallel to epipolar lines.



Fig. 2. Point 8 has distance 0 to point 0 since it is based on the distance
between the epipolar lines the points lie on.

Another problem solved by the DTW algorithm are the
occlusions. If some points are occluded just in one of the
images from the stereo pair, the number of contour points
will be different in each image. When the algorithm reaches
the point when the partial occlusion begins, it detects that the
distance between the next pairs increases until the occlusion
finishes. If a suitable distance measure is chosen, DTW
will drop those points, that is, it will leave them without
any correspondence in the other image. The matching will
continue normally when contour points are visible in both
images, see Figure 3.

Fig. 3. Only point 2 is wrongly matched due to the occlusion.

2) Starting Point Selection:Matching cyclic sets of points
with DTW has one prerequisite: the beginning and end
matching pair have to be chosen and it should be the
same point pair. Although DTW can align sequences with
disaligned starting points, the points that are dropped while
aligning the sets are lost. In Figure 4 we show an example
of that: the real starting point pair should be the pair(5, 0)
instead of(0, 0). As the consequence, only the central point
pairs of the contours, from(5, 0) to (14, 9), are well matched.
There are solutions to this problem ([5]), but they usually
require at least two times the computations required by the

original DTW algorithm. For this reason, having a good
starting point pair selection is important.

Fig. 4. Green cells corresponds to the ideal correspondences, bordered
cells are the real correspondences

It seems reasonable to use the distance matrix built with
distances to epipolar lines in order to use the point pairs with
lowest distance as starting points. Unfortunately, as said, this
measure is ambiguous, so we have many pairs with very
low distances which do not represent good matches. One
can think about applying another measures such as using
the coordinates centered in the middle of the hand to fix
this ambiguity. However, there is another problem: since the
distance to an epipolar line is a continuous real value, a
threshold should be applied to consider a point “close” or
“far” to the epipolar line and it may be difficult to find such
a threshold.

For this reason a different approach was taken. If we
assume that the hand pose does not change too much between
the consecutive frames, a good match from the current
frame after applying the DTW algorithm, which avoids the
ambiguity of the distance measure, can be used as a starting
point. In the first frame, the starting point is selected based
on the distance matrix. Although the matching can be wrong
in some points, there is a region between the alignment
portion in the beginning and the end, see Figure 4, where the
points are well matched. With this procedure, the selection
of starting point is fast and accurate and the problems may
occur only in the first frame.

C. Accumulated distance computation

Once the starting point pair has been selected, we can
begin the computation of the accumulated cost until each
possible point pair in the matrix has been visited. The
allowed transitions and their related costsJ have to be de-
fined. There are different possibilities related to the allowed
transitions in a DTW system. It is interesting to discuss what
each of the possible transitions means, for example:

• From pair (m,n) to pair (m + 1, n): we advance one
point in the first contour but stay in the original point
on the second contour. We denote this an “alignment”
jump.



• From pair (m,n) to pair (m + 1, n + 1): we advance
one point on both contours. We denote this a “matching”
jump.

• From pair(m,n) to pair (m + 2, n): we advance two
points in the first contour but stay in the original point
on the second contour.

• From pair (m,n) to pair (m + 2, n + 2): we advance
two points on both contours.

In our system, we only allow the transitions from(m,n)
to (m,n + 1), (m + 1, n) (alignment) and(m + 1, n + 1)
(matching). We have tested the performance of the system
by allowing longer transitions and we concluded that the
improvement was not significant.

In the proposed approach, the cost associated to a transi-
tion serves as a multiplier of the distance associated with a
point pair. It can be used to favor shorter transitions, or to
favor ”matching” transitions, for example. For example, if
there are no occlusions, we would want to favor matching
transitions where we advance one point in both contours,
and not transitions for alignment, where only one contour
advances for one point. However, we experienced that the
behavior with this approach is worse in cases of partial
occlusions, where a lot of alignment transitions are required
to match the contours properly. A good balance in our system
was a factor of1.5 for alignment, and a factor of1 for
matching, meaning that alignment has an additional cost.
This improved considerably the matching process in the
fingertips, where there are points with similar distances very
close.

The accumulated costC for a pair(i, j) if the last matched
point was(m,n) can then be expressed as:

C(i, j) = C(m,n) + (8)

+minallowed jumps(J(m− i, n− j)× c(i, j)) (9)

(10)

An example with constant cost for the different transitions
J is shown in Figure 5. In order to compute the accumulated
cost in the white bordered cell(4, 4), we add the intrinsic
cost of the pairc(4, 4) = 1 and the minimum accumulated
cost for the possible predecessors, that in this case is an
alignment transition from(4, 3). J is set to one in this case
for simplicity. This accumulated cost is calculated for all the
point pairs until the end point pair is reached.

Fig. 5. Distance matrix with accumulated costs.

D. Backtracking

Once all the accumulated distances have been calculated,
the backtracking process begins. The set of best correspon-
dences is extracted by backtracking the ”best predecessor”

from the end point pair and repeating the process until the
starting point pair is reached.

Fig. 6. Two frames of each sequence used in evaluation: moving, pushing
and rotating and object and simple hand waving.

Fig. 7. Results for the waving sequence: ICP(thick/circle line) and DTW
(thin line).



Fig. 8. Results for the pushing sequence: ICP(thick/circles line) and DTW
(thin line).

Fig. 9. Results for the moving sequence: ICP(thick/circles line) and DTW
(thin line).

Fig. 10. Results for the rotating sequence: ICP(thick/circles line) and DTW
(thin line); Rotating sequence

IV. EXPERIMENTAL EVALUATION

We compared the performance of the ICP algorithm de-
veloped in [3] and the DTW algorithm developed proposed
here in a number of hand gesture and object manipulation
sequences. For the ICP algorithm, we allow the maximum
number of iterations to be 50. The sequences on which
the performance of the algorithms was evaluated included

moving, pushing and rotating an object, and simple hand
waving, see Figure 6. Ground truth was provided by manu-
ally marking the matched pairs in all frames. The results are
represented by plotting the error probability density function.

The waving sequence is the simplest one. The hand
contour points lie in the same plane, facing the cameras and
without any object involved. These are the ideal conditions
of the ICP algorithm, and the performance of this algorithm
in this sequence is very good. The performance of DTW in
this sequence is slightly worse, see Figure 7.

The rest of the sequences consist on the manipulation
of an object, so there are occlusions. ICP is less robust to
occlusions than DTW, since usually the hand contour shape
is considerably different in stereo images when there are
occlusions present, see Figure 3. But the main advantage
of DTW is that it shows a good performance for the case
when the hand contour points do not lie on a plane, see
Figures 8, 9 and 10. Those figures represent the probability
density of the distance between the extracted fingertips and
the ground truth. As we can see, the distance error in DTW
is concentrated in lower values than in ICP.

We have also performed a qualitative evaluation of the
two methods. Some of the sample results are presented in
Figures 11-13. Here, the reconstruction of hand contours
performed with DTW and ICP is compared to the ground
truth which is represented as a line skeleton from the wrist
to the fingertips.

In Figure 11, it is visible that the performance of DTW is
better than ICP when the planar assumption is not satisfied
anymore. Even if the extracted contours are almost the same
in the image, the reconstructed 3D contour is clearly much
better in the case of DTW approach. Figures 13 and 12 also
show that the DTW approach not only outperforms ICP but
also performs well in cases of occlusions. While the thumb is
occluded by the rest of the fingers, it is partially visible in the
3D reconstruction since the right camera image (not present
in the figure) had a better angle to visualize the thumb.

V. CONCLUSIONS

Extraction and tracking of human hands is an important
part of various interaction and instruction systems. Many
systems have been proposed in literature, based both on
single and multiple cameras. However, most of them are
designed for a specific purpose such as extraction of the
hand contour without the full reconstruction of the hand’s
pose. The systems that can extract full pose of the hand are
mostly run off-line or require parallel processing on several
machines to achieve real-time performance.

Our current work aims at developing a full hand pose
tracking system that performs in real-time without any
special hardware. For this purpose, we use a stereo setup
and built upon our previous work on hand contour tracking
that assumed only cases where the hand was kept planar.
To allow for more complex cases of object manipulation,
we propose to replace the original ICP algorithm with a
DTW approach that clearly shows a better performance in the
considered sequences. Based on the contour extraction and



Fig. 11. ICP, DTW and ground truth reconstruction for the pushing sequence.

Fig. 12. ICP, DTW and ground truth reconstruction for the moving sequence.

Fig. 13. ICP, DTW and ground truth reconstruction for the rotating sequence.

fingertip detection in 2D, followed by the 3D matching and
reconstruction step, the system will be used together with an
articulated model of the hand to estimate the state of all the
joints of the hand with the use of inverse kinematics.
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Modeling and Recognition of Actions through Motor Primitives
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Abstract— We investigate modeling and recognition of object
manipulation actions for the purpose of imitation based learning
in robotics. To model the process, we are using a combination
of discriminative (support vector machines, conditional random
fields) and generative approaches (hidden Markov models). We
examine the hypothesis that complex actions can be represented
as a sequence of motion or action primitives. The experimental
evaluation performed with five object manipulation actions and
10 people, investigates the modeling approach of the primitive
action structure and compares the performance of the considered
generative and discriminative models.

I. INTRODUCTION

Imitation learning finds its applications in natural systems
regarding development of language and communication, learn-
ing and relearning skills for children, athletes, and those
recovering from injuries. In artificial systems, imitation has
been frequently used for automated programming and control
of robots, for finding more natural ways for interacting with
robots and task learning in general, [1]–[9].

Imitation has also been viewed as the capability to acquire
new skills by observation based on some existing behavioral
repertoire, [10]. In [11], it has been shown that an action
perceived by a human can be represented as a sequence of
clearly segmented action units. These action units can then
serve as the basis for building up the behavioral repertoire.
Thus, the action recognition process may be considered as an
interpretation of the continuous human behaviors which, in its
turn, consists of a sequence of action primitives [7] such as
reaching, picking up, putting down. The notion of actions and
action primitives is thus of significant importance for building
structures that directly link sensory and motor systems of
artificial systems since they define the necessary mapping for
the implementation of the perception-action mechanism.

In this work, we study the problem of modeling and recogni-
tion of actions and action primitives using Support Vector Ma-
chines (SVM), [12], Hidden Markov Models (HMM), [13] and
Conditional Random Fields (CRF), [14]. To start with, SVM
is used to model and recognize individual action primitives.
Actions, build from a set of action primitives, are then modeled
using HMMs and CRFs and their performance is evaluated and
compared. We also evaluate the plausibility of using CRFs for
recognition of composite actions. The measurements are based
on four magnetic sensors where each of the sensors provide a
complete pose estimate.

The contributions of this work are as follows:
• We investigate modeling strategies for object manipula-

tion actions that are very similar to each other (grasping,

pushing, moving). Most of the current work oh arm/hand
action recognition concentrates on actions that are easy
to discriminate (waving, pointing).

• We implement, evaluate and compare both generative
and discriminative approaches while most of the reported
work concentrates on one of the approaches.

• We consider the problem of recognition both on the
primitive and on the composite action level.

• Our measurements are based only on a four magnetic
sensors while most other systems use complex motion
capture systems providing full body joint data.

The paper is organized as follows. First, we review related
work in Section II. The theoretical basis for the work and
different approaches to activity modeling are presented in
Section III. Section IV describes data collection and the
implementation details of the system and Section V presents
experimental evaluation. The paper is concluded in Section VI.

II. RELATED WORK

There is a large body of work on the problem of human
action recognition from images or from 3D positions on the
human body; for a recent survey, see [15].

Examples from computer vision community include that of
Sullivan and Carlsson [16] where actions are represented as
a sequence of key postures. Segmentation is then performed
implicitly by searching the observation sequence for key
postures that then are used for recognition. The key postures
are represented as topological edge maps extracted from video
frames. With our simpler magnetic sensor observation space,
it would be possible to learn key postures directly from the
SVM classes described in the next section.

An alternative approach is to avoid the segmentation prob-
lem altogether by employing a discriminative action recog-
nition approach. For example, Sminchisescu et al. [17] use
conditional random fields (CRF) for recognition of full human
body actions. This method for modeling sequential data is
similar to HMM but has the advantage that no explicit model
of the sequence of observations has to be learned, thereby
rendering explicit data segmentation unnecessary as well. The
downside of CRF, as with any discriminative approach, is
however the inability to generalize to previously unseen action
examples when the detailed imitation of the pose is needed.

In the robotics area, the work presented in [4], [5], proposes
a framework for acquiring hand-action models by integrating
multiple observations based on gesture spotting. The work of
[6], presents a gesture imitation system where the focus is put
on the coordinate system transformation so that the gesture



induced by the teacher is transformed into the robot’s ego-
centric system. A system for deriving behavior vocabularies
or simple action models that can be used for more complex
task extraction and learning was presented in [7], while [9]
presents a learning system for one and two-hand motions
where the robot’s body constraints are considered as a part of
the optimal trajectory generation process. A common trend in
the above systems is that the studies are based on a single user
generating the motion. A natural question to pose here is how
the underlying modeling methods scale and apply for cases
when the robot is supposed to learn from multiple teachers
that have not been specifically trained prior to the training
process. The experimental evaluation conducted in our work
is based on 10 people.

In terms of the theoretical framework, support vector ma-
chine (SVM) has been applied to several different application
areas such as visual and speech data modeling and recognition,
[18]–[20]. One of the early works on SVMs, [18] presented
a drawback of the method when working with sequential
data, namely, that SVM lacks a way of handling the time
dependencies in the data. In order to use time dependent
sequences as SVM input, variable length time sequences can
be either normalized to same length before applying the SVM.
Another approach is to embed dynamic time warping (DTW)
directly into the SVM kernel function [21]. Third, probably
most common way to handle the “time problem” is to combine
a SVM with Hidden Markov Models (HMM) [18], [20], [22].
SVM is still used to classify single points or brief time
windows, but the output of the SVM is then used an input to a
HMM which then finds the most probable path or sequence in
consideration of time. It is also well known that the choice of
the SVM kernel function has a significant effect on the results
but unfortunately the best choice is application dependent.

From the point of view of imitation learning or “learning by
showing”, the primitives are an attractive option since they can
alleviate mapping motion from humans to robots which differ
in their embodiment. In addition, having a common vocabulary
of primitives can aid in task understanding and planning as the
task can be then described as a sequence of events. For this
reason, we now concentrate on this body of work. Vecchio et
al. [23] model two-dimensional drawing actions as dynamical
systems and classify and segment motions according to a priori
known motion classes. Representation and segmentation of
repetitive movements has been studied by Lu et al. [24] using
an auto-regressive model and detecting changes in the model
parameters. Finally, stochastic parsing has been proposed for
primitive-based action recognition and understanding, [25],
[26].

III. MODELING ACTIONS

In the work presented here, we consider five different object
manipulation actions: a) pick up an object from a table,
b) rotate an object on a table, c) push an object forward,
d) push an object to the side, and e) move an object to the
side by picking it up. To include variation in the actions,
each action is performed in 12 different conditions, namely

on two different heights, two different locations on the table,
and having the demonstrator stand in three different locations
(0, 30, 60 degrees), see Fig. 1. All actions are demonstrated
by 10 people.

o

o

o0 30

60

ReferenceThree 
demosntrator 
positions

Fig. 1. Glove with the sensors, the table and the three demonstrator locations.

The movement is measured using a Nest-of-Birds magnetic
tracker. The test subject is endowed with four sensors each
registering their full 3-dimensional pose with respect to a
reference, see Fig. 1. The sensors are located on: a) chest, b)
back of hand, c) thumb, and d) index finger. The chest sensor
is used to provide a reference to the demonstrator position
while the back of the hand can be used as a reference for the
thumb and index finger. The measured sequences have been
annotated by hand such that the current action primitive is
known for training.

Below, we present the theoretical basis on recognizing
individual primitives using SVMs and the time sequence
modeling using HMMs and CRFs. Different approaches of
primitive based modeling of actions are also described.

A. Support vector machines
Support vector classification aims at separating data classes,

mapped into a high dimensional feature space, by hyperplanes
with a maximal margin to the classes. A hyperplane represents
the decision boundary of the classifier with feature vectors on
one side belonging to one class and vectors on the other side
to another one. To represent complex decision boundaries, the
mapping (kernel) from the original feature space to the high
dimensional space is nonlinear. In this work, a standard SVM
with Gaussian kernel is used.

In our work, we apply SVM classification to multiple
classes each representing an action primitive class. For this
purpose, we adopt one-against-one approach. In other words,
by denoting the number of classes by k, k(k−1)/2 classifiers
are trained using all pairs of classes. To classify a sample from
an unknown class, it is classified by all classifiers, and each
result is a vote for the class. Majority voting is then used to
decide the class of the sample. The one-against-one approach
has been found very successful with SVMs but it suffers from
increased number of individual classifiers when the number of
classes is very high.
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Fig. 2. Example output of the SVM classifier.

The output of the SVM is then a sequence of classified
primitive actions at each time instant. In Fig. 2 we show an
example of two concatenated actions: grasping and rotating an
object. A grasping action is composed of three primitives (ap-
proach, grasp and remove), while the rotation is composed of
four primitives (approach, grasp, rotate and remove hand). In
terms of lengths, a real grasp ,am be composed of 30 approach,
20 grasp and 50 “remove hand with object” primitives.

Our SVM implementation uses 7 different classes, which
correspond to the 7 primitive actions: approach, grasp, rotate,
push forward, push side, remove and remove with object. It is
worth mentioning the difference between a primitive and an
action: a primitive is our basic unit, like a letter in a word,
while an action is a composite of primitives, like a word.

B. Markov chain and hidden Markov models
To model the temporal dependencies of actions, the first ap-

proach we adopt are time-homogeneous Markov chain models
where the state transition probabilities are invariant over time.
As a short reminder, denoting the state i by ωi, the time evo-
lution of states can then be described using the state transition
probabilities P (ωj(t + 1)|ωi(t)) = aij . The states themselves
are hidden, not directly observable. Instead, in each state, an
observation x(t) is made. The observation depends only on
the current state according to a selected probabilistic model,
that is, P (x(t)|ωi(t)) = P (x|ωi). If the set of observations
X is discrete and finite, X = {x1, . . . ,xM}, the observation
probabilities can be written more shortly as P (xj |ωi) = bij .
Finally, the probability of starting in state ωi can be defined
as πi = P (ωi(1)). Thus, the parameters can be collected to
matrices A and B and a vector π.

The objective of the work presented here is to model actions
based on motor primitives. Motor primitives correspond to
individual states of the HMM. A typical approach for using
HMMs in recognition is to build a single HMM for each class
to be recognized and then determine the class of an unknown
sample by using the maximum likelihood method. In our
work, we take another approach and represent the whole set of
actions with a single HMM, such that different paths through
the HMM correspond to different actions. This is because
many actions contain similar parts and since the HMMs are not
considering dependencies between the observations as such,
we believe that this model may account for some of the
problems caused by this. A simple example is shown in Fig. 3.
Here, both rotating and pushing an object both require first the
hand to approach the object.

As mentioned earlier, a hypothesis followed in this work is
also that more complex actions can be modeled using a set of
motor primitives. Thus, instead of making a choice between

several HMMs, the most probable path through the HMM is
sought. The path is found by the Viterbi algorithm [13], a
dynamic programming based algorithm for determining the
maximum likelihood path through a HMM given a sequence
of observations (x(1),x(2), . . .). It finds the state sequence
(ω(1), . . .) for which

P (x(1), . . . ,x(T )|ω(1), . . . , ω(T )) (1)

is maximal. We employ the computationally tractable solution
based on defining (1) recursively.

Fig. 3. Modeling two actions (rotate, push) using primitives.

For initial learning of the HMM parameters, an alternative
approach to the traditional Baum-Welch learning is adopted.
We assume that the training data is labeled, that is, for each
time step, the current motor primitive is known. Then, the
transition probability matrix A can be directly estimated from
the training data, as if in the case of a Markov chain model
instead of a HMM. We use the maximum likelihood estimate,
in other words, the transition probabilities are calculated
directly from the training data. The output of the SVM is used
as the observations of the HMM. The observation probabilities
need also be estimated as it is not expected that the classifier
will be able to classify all samples correctly. Maximum
likelihood estimation using the known correct classes is also
used to estimate the observation probabilities. Therefore, the
observation matrix B corresponds to the confusion matrix of
the classifier.

1) Action modeling using HMMs: The hypothesis in the
modeling is that each of the manipulation primitives is generic
and that their number is limited. However, the best applicable
set of primitives is not known and one of the goals of our
previous work was to study how the manipulation actions
can be considered in terms of primitives. In [27], we have
investigated two different models of action representation, see
Fig. 4. Approach 1 considered each of the manipulation actions
as a primitive. In addition to the manipulation actions, two
assisting actions, approach and remove are inherent in all
action sequences (see Fig. 4). The assisting actions alleviate
the segmentation of the manipulation part of the action.
Approach 2 considered therefore that the manipulation part of
the action can be composed of multiple primitives. The model
on the right in Fig. 4 can be chosen based on the knowledge
that the rotation and moving the object require grasping. Our
working hypothesis in [27] was that Approach 2 would be
more effective in recognizing actions compared to the first
approach. In addition it would allow learning of new actions
based on the known primitives. Considering both approaches,



an action was represented by a separate path through the left-
to-right Markov model. We have shown how the process of
embedding new actions given primitives can be formalized.

Fig. 4. (left) Approach 1: Actions as primitives; (right) Approach 2:
Composite actions.

C. Conditional Random Fields
A conditional random field, [14] is a stochastic process for

segmenting and labeling data; it is a discriminative framework
that describes the probability of having a set of labels S
given the set of observations O, P(S|O). It is modeled
as an undirected graph G = (V, E) where each vertex is
associated with a label Si. Only vertices connected by an
edge are conditionally dependent. Although the graph can
be as complex as desired, in this work we focus on linear
CRFs, where any vertex vi is connected to the previous and
the following ones (vi−1 and vi+1). Linear CRFs are adequate
when data is a sequence O = o1, . . . , on, and then the resulting
set of labels will be also a sequence S = s1, . . . , sn. Each si

is an element of a finite alphabet γ.
At the use stage, we need to obtain the labeled sequence

with the highest probability given the set of observations O.
That probability is defined as

Pλ(S|O) =
exp

(∑

i∈1..N
λi · f(s, O, i)

)

Zλ(O)
(2)

where Zλ(O) is a normalization factor of the form

Zλ(O) =
∑

s∈S

exp

(
∑

i∈1..N

λi · f(y, O, i)

)

(3)

Here, Λ = {λi, i ∈ 1..N} are the parameters that define the
CRF model (those that will we estimated at training), while
f(s, O, i) are feature functions. Those features are used to
describe the attributes of the data. The sequence of labels with
the highest probability is then found by

argmaxsPλ(S|O) (4)

Regarding training, we have a set T = {(O(i), S(i))}L
i=1.

Each S(i) is the correct labeling for the set of observations
O(i), and L is the number of training pairs. The goal of the
training algorithm is to estimate all the parameters Λ that
define the CRF model and there is one parameter per feature.

One way of determining these parameters is by maximizing
the log-likelihood function

L(λ) =

L∑

i=1

log Pλ(S(i)|O(i)) (5)

1) Data representation and action modeling using CRFs:
First, the training data has to be labeled for the estimation of
the CRF parameters. The easiest way is to have an alphabet
of labels γ = {g_,r_,pf,ps,m_}; where each member of γ
represents one of the 5 actions presented in Section III). All
the observations that belong to the same action receive then
the same label. Using this data labeling approach, denoted
as Format 1, we have compared the performance of the CRF
based approach with the HMM approach for action recognition
purposes.

In this work, we also perform recognition of continuous
actions. In other words, we assume that the observation
sequence is built of multiple actions which are not segmented.
This corresponds to having multiple words in a sentence but
with no process of segmentation of individual words being
applied prior to the classification process. The purpose of
this evaluation was to investigate if the CRF approach may
be used in cases where a robot observes a human in a, for
example, setting-a-dinner-table scenario and label individual
actions during the task execution process.

For this purpose, we use a second format to label the data,
denoted Format 2. As in the case of Format 1, we have first
compared the performance of the CRF based with the HMM
approach for action recognition purposes. Here, the label set is
denoted as γ = {1, 2, 3, 4, 5, 6, 7}; there are as many elements
in the alphabet as primitives have been considered in this work.
The label sequence given to a sequence of observations is
that sequence of observations without errors. Table I shows
an example of both formats for an input sequence consisting
of two actions, a grasping and a rotation.

Once the CRF returns the most probable labeling sequence,
we have to post-process it in order to obtain a sequence of
actions; with the first format this is trivial, since keeping the
label that received the majority of votes performs well in most
of the cases. For the second format, the approach is more
complex, as we still have a sequence of primitive labels. In this
case we could use a finite state machine to get the sequence
of actions, but we have taken another approach, the use of
regular expressions, as our results can be seen as text strings.
We match several regular expressions and make appropriate
substitutions; first we make substitutions of the kind 1546 →
r_ (full isolated actions); second, 154→ r_ (actions without
retreat); third, actions without approach, and finally, actions
without either approach or retreat primitives, like 54 → r_.
The order is important, because if we first substitute 154 in
the sequence 1546136, at the end we will have an isolated
6, which will be considered as a mistake while in fact it is
not. Table I shows the final solution after this post-processing
step.



Input sequence 1 2 5 5 5 7 7 1 1 5 5 7 4 4 6
CRF output, format 1 g_g_g_g_g_g_g_r_r_r_r_r_r_r_r_
CRF output, format 2 1 1 5 5 5 7 7 1 1 5 5 4 4 4 6
Final result g_ r_

TABLE I
FINAL RESULT FROM AN OUTPUT LABELED SEQUENCE

IV. SYSTEM DESIGN AND IMPLEMENTATION

The goal of an imitation system is to recognize a set of
continuous actions performed by a human and in this work
we focus on hand movements in particular. We start by pre-
processing the input data for noise removal and continue with
the SVM classification; the output is a sequence of primitives
that we use to feed a HMM and a CRF. Two cases considered
in the experimental evaluation are i) comparison of the HMM
and a linear CRF for action recognition, and ii) the use of CRF
for simultaneous segmentation and classification of continuous
action sequences. With the first approach, we also obtain a
baseline for evaluation of how good the CRF with continuous
sequences may perform, which is our main goal.

A. Pre-processing
The following sensor measurements are used:
• position of the hand relative to the chest: x, y and z
• position of the index relative to the hand: x, y and z
• position of the thumb relative to the hand: x, y and z
• velocity of the hand: vx, vy and vz .

We start by applying the median filter of length 7 twice to
the data so to eliminate the noise peaks. After filtering, the
hand and finger locations were transformed into the chest
reference frame. Next, the position of both the thumb and
index was calculated with respect to the back of the hand.
A Gaussian filter was then applied for the finger positions to
reduce the noise, which was found to be most apparent in the
finger position measurements. The velocity was estimated by
time differences between two consecutive time instants. It was
then filtered by a Gaussian filter to decrease the noise due to
the differential nature of the estimation process. Finally, every
dimension was linearly scaled to interval [0, 1].

B. Action recognition
The training data collected are representing ’isolated’ ac-

tions; we did not collect continuous sequences of actions. The
process of labeling complex continuous sequences of actions
for the purpose of using them as the input for the CRF training
would have to be done by hand, which is a time-consuming
task. Instead, we generate continuous action sequences by
concatenating primitive actions. While an action always begins
with an approaching an object, and ends with a retreating of
the hand in a movement involving two consecutive actions on
the same object, we do not move away the hand after the first
action and approach again to the object, as the hand is already
in the vicinity of the object. This adds more complexity to the

classification system, as now when we mix actions and action
primitives in a sequence, some of them are very short (there
are continuous grasping actions with 5 observations) while
others (mainly rotations) are very long (some of them have
more than 180 observations). We also anticipate that for the
future we will have to consider a hierarchical approach where
both actions and primitive actions are considered.

C. Classification of continuous action sequences
In order to evaluate the performance of the CRF based

approach, we compare it with the ground truth data using
Needleman-Wunsch algorithm [28] to align the sequences.
This algorithm is based on the dynamic programming ap-
proach and it is commonly used to find the most probable
global alignment between two sequences of data.

We need to measure differences in terms of the number of
inserted, deleted and misclassified actions. After running the
algorithm, it returns both sequences aligned in the optimal
way and a score, which gives us the similarity or dissimilarity
between both sequences, depending on a set of predefined
parameters. In Figure 5, we show an example of the best
alignment of two sample sequences; the three possible types
of errors are labeled as D (Deletion), I (Insertion) and M
(Misclassification).

g_r_g_pfr_pspfg_ r_r_g_r_g_ps

r_g_pfr_ pfg_pfr_r_g_r_pfps
↑

D
↑

I
↑

M

Fig. 5. Best alignment of two sequences.

Two parameters must be set, one called a gap, associated
with the weight given to an insertion or a deletion, and S, a
similarity matrix. Sij (and Sji) indicates how similar symbols
ti and tj are. Each ti belong to a finite alphabet T that contains
all the possible symbols that can be inside the sequences to
be compared; in our case T = {g_,r_,pf,ps,m_}.

The values for both parameters in this work are gap = 1
and

Sij =

{
1 if i 6= j
0 if i = j

With these parameters, the algorithm will return the sum of
insertions, deletions and misclassified actions found after the
alignment. After the alignment process has finished, different
metrics could be used to obtain a numerical measure of how
good the solution is; we have chosen the F1-score, [29]:

F1 =
2PR

P + R

where P denotes precision and R denotes recall.

V. EXPERIMENTAL EVALUATION

We gathered the training data with 10 people, performing
all actions in 12 different conditions. For each action, there are
thus 120 different samples. Based on these, we generated 240



mixed sequences consisting of actions and primitive actions.
Prior to executing the actions, the demonstrators were given
only an oral explanation of the task; for this reason, both the
inter- and cross-personal variance in the data is high. For SVM
learning the training sequences were segmented and labeled
manually.

A. HMMs and CRFs for isolated recognition
We start with a comparison of recognition rates for action

modeling using HMMs and CRFs. Although we use input
sequences with only one action, that action can be either with
or without the approach/remove part. In our previous work,
[27] we have evaluated different structures of HMMs for action
modeling. Based on that, we kept the composite action model
that performed best. We note that this model is applicable
for recognition of both composite and primitive actions since
parsing through the model and state change depends on the
probability of observations. We performed leave-one-out cross
validation for all ten cases and averaged the results.

Tables II– IV show the results in form of confusion matrices.
We added a sixth column, ’unrec’, used to count all the actions
that could not be classified. For instance, in some cases, the
CRF returns a sequence with two different labels having the
same probability; in that case, we assume that we cannot
disambiguate.

g_ r_ pf ps m_ unrec
g_ 63.8 7.5 2.5 1.7 19.1 5.4
r_ 0 98.7 0 0 1.3 0
pf 2.1 0 94.6 0.8 0.8 1.7
ps 0 1.7 4.1 56.3 37.5 0.4
m_ 0 3.4 0 5.8 90.8 0

TABLE II
HMM RESULTS FOR INDIVIDUAL ACTION RECOGNITION.

g_ r_ pf ps m_ unrec
g_ 95.9 0.5 0.5 2.2 0.9 0
r_ 0 98.3 0.4 0 1.3 0
pf 1.7 1.7 92.9 3.7 0 0
ps 2.1 0.8 5 59.2 32.9 0
m_ 1.7 1.3 0 19.5 77.1 0.4

TABLE III
CRF RESULTS FOR INDIVIDUAL ACTION RECOGNITION USING FORMAT 1.

The strength of the CRFs in being able to take several ob-
servations into account, significantly improves the recognition
of grasping actions (g_). On the other hand, CRFs experience
more difficulty in recognizing move-to-side actions(m_) which
is often confused with push-to-side. The explanation is that
the move-to-side action is explicitly embedded in the HMM
model and requires grasping primitive action to occur before
the actual side movement. When parsing through a HMM

g_ r_ pf ps m_ unrec
g_ 92.2 1.8 0.9 3.2 0.9 0.9
r_ 0 95 0.4 0 2.5 2.5
pf 2.1 0 91.9 3.4 0.9 1.7
ps 2.5 0 3.3 62.1 31.3 0.8
m_ 1.3 0.8 0 17.5 79.6 0.8

TABLE IV
CRF RESULTS FOR INDIVIDUAL ACTION RECOGNITION USING FORMAT 2.

model, the right route will be taken and the probability
of recognition move-to-side rather than push-to-side will be
higher. On the other hand, when training the CRF, inter-
and cross-personal variations in performing these two actions
affect the representation more significantly. We have also
performed the evaluation of the CRF based on the format 2
of the data. The results are shown in Table IV. A slightly
improved performance compared to format 1 can be seen.

B. CRFs for continuous recognition
The second evaluation consisted in testing CRFs with

continuous sequences of actions, once more using the mixed
training sequences of composite and primitive action samples.
For this purpose, we consider only the format 2 of the data,
as explained in Section III-C.1.

CRFs are able to learn a grammar if the training process is
modeled suitably and we can benefit from it in our case. For
instance, they can learn that having a grasping after a rotation
is very common, but that having two consecutive graspings
is not probable. Once this system is to be implemented and
used on a robot, designing action grammars for most typical
tasks will be of utmost importance. In our experiments, we
have followed this line of thinking and constructed a few
simple grammars or task models. Each task is composed of
10 sentences, and each sentence contains a random amount
of actions, always between 3 and 10 where the actions are
randomly chosen. For each task, training and testing datasets
have been made. We can see each sentence corresponding to a
specific tasks such as, for example, serving somebody a coffee
or setting up a dinner table. Training data contains 10 samples
of each task; for each sample we have only used actions from
the same person, as this is what we anticipate will happen in
realistic applications. Test data consist of 300 sequences, each
one following one of the tasks. For testing, actions inside the
task are chosen amongst all the people in the original dataset.
In short, we assume training with one person but test with
several. The overall averaged results are shown in Table V.

Since in the previous section we have observed that the
confusion between move to a side and push side is an
important problem, we attempted to analyze the system with
and without that specific action. Another feature analyzed is
what happens when two consecutive actions are equal; the
hypothesis is that if both actions are action primitives, they will
be mixed and then, the number of deletions when estimating
the final classification results will increase.



Test With m Repeat actions F1 score
1 No No 92.6
2 Yes No 84.8
3 No Yes 92.8
4 Yes Yes 85.2

TABLE V
CRF RESULTS FOR CONTINUOUS SEQUENCES

From the results in Table V, it can be seen that the
difference between having and omitting move-to-side action
is significant. The results also show that when we consider
repeated continuous actions results are worse which means
that the segmentation and recognition can be performed si-
multaneously. The fact that they are even a bit better in this
case is that the training and test data are different compared
to the previous experiment.

Although comparing results for individual and continuous
recognition is not completely fair, as data representation dif-
fers, we see that continuous recognition is still rather good.
Moreover, these results can be considered as a lower bound
of the results we would obtain in a real scenario. This is
due to the fact that many consecutive continuous actions are
mixed, and in the solution they appear as only one action. For
instance, a primitive grasping action followed by a primitive
rotation action on the same object can be considered as a single
composite rotation action. This suggests that, for future work,
a hierarchical model may be considered.

VI. CONCLUSION

We have presented a system for modeling and recogni-
tion of primitive and composite actions using generative and
discriminative machine learning approaches. We have started
by using support vector machines for primitive action clas-
sification and integrated this with models that can take care
of the temporal aspects of actions, namely hidden Markov
models and conditional random fields. We have built upon
our previous work where only hidden Markov models where
considered for isolated action recognition - apart from using
the conditional random fields we are also investigating their
use in a continuous action recognition scenario. We follow the
assumption that we can build a system consisting of different
sensory primitives from which a more complex actions can be
built. These sensory primitives should be natural and easily
used in programming motor primitives for robots.

The experimental evaluation performed with 7 primitive and
5 composite actions is based on the training data obtained with
10 people in 12 different conditions. The recognition rates
on isolated actions show similar performance between hidden
Markov models and conditional random fields, with latter hav-
ing the capability of classifying very short activities due to the
ability of modeling the dependence between the observations.
In the case of the continuous action recognition, conditional
random fields show high recognition rates. Currently, we are

evaluating the system considering typical imitation scenarios
and tasks in a humanoid robot framework.
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