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1 Introduction  

A Scenario for Integrating Low-Level Robot/Vision, Mid-Level Affordance Memory, and Grounded 
High-Level Conditional Planning:  

The PACO-PLUS project aims at developing and implementing a biologically plausible, intelligent cognitive 
architecture for a humanoid robot, with an emphasis on integrating perception and action into Object-Action 
Complexes (OACs). This paper will summarize the current state concerning the cognitive architecture for 
PACO-PLUS and how planning and acting can be performed in a simple scenario based on this architecture. 

 

1.1 The architecture  

Figure 1 Overview of the proposed cognitive control architecture 

 

The basic architecture of the aimed-at cognitive system consists of three communicating processing levels. 
As shown in Figure 1, the lowest processing level is responsible for sensorimotor processing, that is, for the 
registration and preprocessing of sensory (mainly visual, auditory, and tactile) information and for driving 
the available motor systems (head, eyes, hands, fingers, and body movement) —see Figure 2A. Perception 
and action interact in a cyclic fashion, in the sense that sensory processing informs and partially controls 
motor actions, which again provide further sensory information about the environment and the agent-
environment relationship. 
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Figure 2 Detailed schemata of the three levels 

 

 

The low level sends information to the mid level 
for further processing, integration into episodic 
event representations, encoding into memory, and 
eventual action selection if necessary (see Figure 
2B). The mid level provides top-down information 
for the low level to facilitate object recognition 
and specifies abstract action plans developed by 
the high level. 

 

 

 

 

 

 

The mid level provides top-down information for 
the low level to facilitate object recognition and is 
responsible for refining abstract action plans 
developed by the high level. The high level 
constructs sequential action plans or more complex 
conditional plans with branches. It interacts with 
the mid level to access updated information about 
particular world properties, and passes plans to the 
mid level for further specification. 

 

 

The mid level provides top-down information for 
the low level to facilitate object recognition and is 
responsible for refining abstract action plans 
developed by the high level. The high level 
constructs sequential action plans or more complex 
conditional plans with branches. It interacts with 
the mid level to access updated information about 
particular world properties, and passes plans to the 
mid level for further specification. 
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The object stacking scenario  

Here we provide an overview of a proposed scenario for integrating SDU's robot/vision system, Leiden's 
mid-level memory/reasoning component, and Edinburgh's high-level planner and plan execution monitor1. 
We describe both the proposed functional architecture and the progress made towards realizing it. The 
domain we have chosen for our integration task is a simple object manipulation scenario that builds on the 
integration scenario involving SDU and Edinburgh (see the Edinburgh document A Scenario for Integrating 
Low-Level Robot/Vision and High-Level Planning for details). We assume a table with a number of objects 
that are graspable by the robot. We consider situations with no more than 5 objects and, initially, only 1-2 
objects. For simplicity we assume that objects are generally cylindrical in shape but not necessarily identical. 
In particular, each object can have a different radius which determines its size. Objects may or may not be 
open containers, which determines whether or not we can stack objects inside other objects, provided the 
object sizes permit such stacking. The objects can vary in colour and the system is prepared to process this 
feature dimension in principle (e.g., to guide top-down identification or visual search), but at this point 
colour is ignored. 

In principle, our system is equipped to represent and control multiple categories of actions (such as grasping, 
pointing, moving, etc.) and several types of actions defined within these categories. At this point, however, 
we have agreed to restrict the possibilities to four types of grasping actions, as illustrated in Figure 3:  

Grasp Type A 

This action can only be used to grasp objects at the top of a stack, or an empty object on the table. 
Objects must also satisfy a minimum and maximum radius restriction. Note that successful 
performance of this action on a given object implies that this object is “pokeable” and, hence, open. 

 

Grasp Type B 

This action can only be used to grasp objects on the table that are not part of a stack. Objects must 
also satisfy a minimum radius restriction. Note that successful performance of this action on a given 
object implies that this object is “pokeable” and, hence, open. 

 

Grasp Type C 

This action can only be used to grasp objects that aren't contained in other objects, i.e., the 
“outermost” object which must be on the table. Objects must also satisfy a maximum radius 
restriction. Note that successful performance of this action on a given object does not imply that this 
object is “pokeable” or open. 

 

Grasp Type D 

This action can only be used to grasp objects that aren't contained in other objects, i.e., objects that 
are on the table. Objects must also satisfy a maximum radius restriction. For simplicity, we will 
assume that objects stacked within the object being grasped will not affect the grasp. Note that 
successful performance of this action on a given object does not imply that this object is “pokeable” 
or open. 

 

                                                      
1  For the purposes of distinguishing between the three levels in this document we will use the terms “robot” and “low 

level”, “memory” and “mid level”, and “planner” and “high level” to denote the components developed by SDU, 
Leiden, and Edinburgh respectively. 
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The goal of the scenario is to clear all open objects from the table, by removing them to some designated 
location (e.g., a box, a shelf, a hole, a corner of the table, etc.). The location may furthermore be restricted in 
such a way as to force object stacking in order to successfully complete the task. For instance, there might 
only be room for 2 objects to sit side by side on a shelf, meaning all other objects would have to be 
appropriately stacked.  

 

a) Grasp Type A 

 

b) Grasp Type B 

 

 

c) Grasp Type C 

 

 

d) Grasp Type D 

 
Figure 3 Robot grasps available for the planner 

The high-level planning system will typically have only incomplete information concerning the openness of 
objects and must therefore construct conditional plans that contain explicit knowledge-producing actions. 
Such actions are used by the planner to interact with the mid-level memory in order to obtain the information 
it requires about the state of the world. The mid-level, in response, can gather the requested state information 
by either (a) retrieving the information from existing episodic memory traces that the given object is 
“pokeable”, or (b) triggering the exploration of the object to create such traces ad hoc (affordance learning). 
Object openness plays two important roles in this scenario: (i) as a goal condition that determines which 
objects should be removed from the table, and (ii) as a prerequisite for stacking operations.  

The planner will also construct plans that contain object-manipulation operations in the form of grasp 
actions, in order to stack objects or remove them from the table. At the high level, such actions are described 
in an abstract fashion, without reference to primitive grasp types, gripper orientation, object location, etc. It 
is the job of the mid level to refine such actions for execution at the robot level, for instance by choosing the 
appropriate primitive grasp type given an object’s location and the position of the gripper. (We will only 
focus on grasp type initially.) 

This scenario is meant to provide a basis for integrating the robot/vision, mid-level memory, and high-level 
planning components of the system. The planner is responsible for constructing a plan that achieves the goal 
of clearing open objects from the table, by working with a high-level representation of the scenario. The job 
of the mid-level component is to extend such plans by providing information about object features and 
affordances, and by selecting the concrete action needed, before passing the augmented plan to the 
robot/vision system. Ultimately, the robot/vision system must be able to translate the plans generated and 
refined by the upper levels into concrete motor actions. 

Given that we have described the robot/vision front end of the proposed architecture in some detail 
elsewhere [Kraft et al., 2008], in this document we will mainly focus on the interface between the low-level 
and the mid-level, and the top-down generation of goal-directed actions, including a description of how a 
high-level plan is passed to the mid-level memory system, and the message passing protocol that supports the 
exchange of messages between the levels. 

2 Mid-level memory representation  

In our first scenario, we directly linked the low level to the high level. This provides many advantages by 
being able to directly ground symbols in sensory data and translate them into concrete motor action. At the 
same time, however, it requires all predicates being predefined, which necessarily restricts the systems’ 
flexibility. It also means that the flow of information is rather unidirectional, so that sensory processing does 
not yet receive any top-down support. To overcome these restrictions, we introduced a biologically plausible 
mid-level representational system that is motivated by the Theory of Event coding [Hommel, Müsseler, 
Aschersleben & Prinz, 2001] and that intervenes between the low, sensorimotor level and the high-level 



Page 7 of 27 

IST-FP6- IP-027657 / PACO-PLUS Confidential 

  

 

 
 

planner. Four functionalities of the mid-level are of particular importance for input processing (see Figure 4) 
and one for output generation:  

 

 

 

2.1 Feature coding  
Preprocessed visual input is coded by multiple self organizing Kohonen-like maps of nodes. Nodes in these 
maps encode objects in a distributed fashion and the maps can grow new nodes when a novel perceptual 
feature (e.g., a novel colour) is presented. At this point, we have adapted the system to the characteristics of 
the SDU camera and gripper and simplified feature coding in the following ways: 

As there is only one cup attended to at a time, we need to represent only one object in the feature maps. This 
allows us to effectively disable the 3D colour map (corresponding to the RGB value of the global cup colour) 
and restrict coding to 

• a 1D shape map corresponding to the circle radius 
• a 1D gripper map, corresponding to the distance of the gripper fingers 
• the set of four grasp types introduced above projected onto a 1D motor action map 

2.2 Working memory 
The eventual system contains a working memory that provides pointers to all the sensory and action-related 
aspects of an event (event files). This structure is updated every time a change is registered, whether it is 
brought about by a voluntary action of the robot or by other, external forces. Event files can be activated both 
bottom up (by current perceptual input) and top down (by the episodic memory traces). This allows for 
interaction effects such as selecting motor actions (e.g., type of grasping) that seem possible with current 
input (e.g., a large red cup) and that have previously led to desired effects (e.g., having a gripper sensation of 
holding this cup). Event files will also help address the problem of object constancy/consistency: Due to 
changes (e.g., lighting conditions) in the environment and sensor inaccuracy, the continuous sensor input can 
fluctuate. Working memory representations maintain an (abstracted) active representation of the input, 
yielding a more consistent object representation. Even though this functionality is not yet implemented, 
working memory representations will also facilitate sensory preprocessing by providing top-down 
information. 

At this point, the working memory contains only one unit or event file: pointers to the current object (cup) 
and the actions it affords (i.e., the actions that have been successfully performed on this object). In later 
versions, we intend to extend the capacity of the working memory to multiple events and to include context 
information. 

 

 

Color Shape 

 

Gripper

 

Motor action

  

Episodic 
Memory 

 
 
 
 
 

Event File 

Figure 4 Representation of perceptual input and episodic memory 
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2.3 Episodic memory (iOACs) 
The episodic memory contains enduring traces of previous working memory units (instantiated Object-
Action Complexes or iOACs). iOACs link object-feature information to types of motor actions in a 
bidirectional fashion. These bidirectional links are particularly important for informing the high-level 
planner. Importantly for the present scenario, iOACs will provide information whether a given cup has ever 
been successfully poked in previous exploration or planned action (i.e., whether it is linked to any instance of 
Grasp A or Grasp B), which implies that this cup must be open. Only if no relevant episodic information is 
available would it be necessary to engage in ad hoc exploration to test whether the current cup is pokeable 
(and thus “open”) or not (and thus “closed”). (Once this information has been obtained―by either 
means―the mid level can successfully respond to plan-level requests for information about this object’s 
openness.) At this point, the episodic memory is restricted to integrating the few feature dimensions that are 
perceptually coded and the four action types. Future versions will be extended to include more feature 
dimensions from multiple sensory modalities and multiple actions from several categories. This will 
introduce capacity problems in terms of search time and storage space, as the complexity and number of 
episodic traces this will grow rapidly. We will encounter this problem by introducing recency- and 
interference-based forgetting and thus eliminate episodic traces depending on their lifetime and the number 
of more recent traces. Given that episodic traces will be read out by semantic memory (see below) and 
transformed into rule-like representations, this will not lead to a loss of important information however. 

2.4 Semantic memory (aOACs) 
The introduction of an episodic memory makes it possible to collect multiple data sets related to the same 
object and object-action relationship. This introduces both variability and consistency: features that are not 
essential for a given object, affordance, or action will vary (such as the colour of cups in the context of 
grasping or the speed of the grasping movement) and features that are essential (such as openness that 
indicates pokeability, and vice versa, or the radius of a cup). In principle, it would seem more parsimonious 
to store only relevant object and action characteristics and immediately “forget” inessential aspects. But there 
is an interesting trade-off between parsimony and robustness of knowledge [cf., O’Reilly & Rudy, 2001]. 
Extracting only relevant information presupposes that it is known which features are relevant, which 
however is impossible without extensive testing. Building an episodic database provides an alternative, as 
simple regression techniques suffice to isolate essential object and action features from inessential 
characteristics: essential object features should reliably predict (i.e., be significantly correlated with) 
essential action features, and vice versa. Once isolated, these features can be taken to construct rule-based 
knowledge (abstracted Object Action Complexes or aOACs) that will strongly facilitate the interaction 
between the high-level planner and the mid-level memory. Particularly attractive is the fact that episodic 
memory traces outlive the availability of sensory information. Thus, if a rule turns out to be invalid, the 
system does not need to await another encounter with the respective object but can construct alternative rules 
by considering other features laid down in the episodic traces. At this point, the semantic memory is not yet 
implemented.  

 

2.5 Action selection 
In our earlier scenario we directly linked the low-level motor programs realizing the four considered types of 
grasps to their symbolic representations at the high level. Introducing the mid-level and an episodic memory 
that includes action-relevant information provides the opportunity to make the planning more abstract. 
Hence, the planner no longer needs to specify the particular grasp type needed to grasp a particular object but 
can leave this specification to the interaction between the low-level and the mid-level.  

At the mid-level, this is realized as follows: if the high-level planner issues a command to grasp a particular 
object, this primes all iOACs that include a grasping action. Given that we currently restrict our modeling to 
the mentioned four types of grasps anyway, this means that all available iOACs are primed. (Hence, this step 
does not yet help in the action selection process but it will do so as more types of actions are considered.) 
Further priming is received from the currently activated event file(s) in working memory, so that both types 
of priming (top-down and bottom-up) will converge onto those iOACs that match the currently available 
object(s). At this point, this can only be a single cup, so that episodic traces related to this cup will be primed 
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the strongest, and so will be the action-related information they include. In the present system, this means 
that priming will be strongest for those of the four actions that have been successfully carried out on this 
object and for the grasp-relevant shape information—sufficient information to select the appropriate grasp 
type and parameterize the end posture of the gripper or hand.  

3 High-level planning representation  

Given the above scenario, we define a set of high-level actions and properties that allows the planner to 
operate in this domain. We also provide some insights as to how such actions and properties relate to the 
memory and robot/vision levels. 

3.1 Actions 
Although the robot has four primitive grasp types available to it at the lower levels (grasp types A, B, C, and 
D), from the planner’s perspective grasping is treated as a single abstract operation. Plans that include 
grasping actions therefore need to be refined by the mid level before execution, in order to determine the 
actual grasp type that will be used at the motor program level by the robot. Actions at the planning level are 
modelled as STRIPS-style actions. As a result, the effects of the single grasping operation are subdivided 
into two plan-level actions that account for different world contexts where the action could be applied (i.e., 
grasping an object from the table versus grasping an object from the top of a stack). Each grasping action 
takes a single argument, ?x, denoting the label of an object in the world. Such labels are designated by 
strings of the form objN, where N is a non-negative integer, e.g., obj42. Although we assume the existence 
of particular object labels for the purpose of our examples, in practice such information must be provided to 
the planner by the lower levels. Our representation includes the following two high-level grasp actions: 
grasp-fromTable(?x) 

Grasp object ?x from the table. 

grasp-fromTopOfStack(?x) 

Grasp object ?x from the top of a stack of objects. 

We have also encoded four actions for moving and manipulating objects when successfully grasped:  

putInto-objectOnTable(?x,?y) 

Put object ?x into object ?y, which is on the table.  

putInto-stack(?x,?y) 

Put object ?x into object ?y, which is at the top of a stack on the table.  

putOnTable(?x) 

Put object ?x onto the table.  

putAway(?x) 

Put object ?x away.  

 

Each manipulation action is object centric and modelled with a high degree of abstraction. For instance, we 
do not provide plan-level actions that specify 3D spatial coordinates, joint angles, or similar real-valued 
parameters. The putAway action is particularly generic and should be considered a placeholder for a more 
complex (possibly, predefined) operation that clears an object from the table to its final destination location. 
For the purpose of this document we will assume that objects are being put away onto a shelf. We also note 
that both putInto-objectOnTable and putInto-stack actions denote stacking operations which 
will have as a prerequisite the property that objects can only be stacked into open objects. 

The high-level planning representation also includes a single knowledge-producing action: 
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findout-open(?x) 
Determine whether object ?x is open or not.  

 

At the planning level, this action is modelled as a type of information gathering operation that provides the 
planner with additional information about an object’s state. In practice, this operation must interact with the 
mid level: the planner has no direct access to the world state and, thus, must request information from the 
lower levels of the system. The mid level is therefore responsible for gathering the information required by 
the planner to satisfy such requests (e.g., by accessing existing episodic memory traces, or initiating 
exploratory actions), and must return this information to the upper level in a form that can be understood by 
the planner. 

 

3.2 Properties  
Our planning-level domain encoding makes use of a set of predicates and functions which we have agreed 
could reasonably be provided to the planner as a result of sensor information from the robot/vision level. 
(These properties are still subject to change as the domain model is refined through further discussions.) We 
have the following properties in our high-level domain representation: 
clear(?x) 

A predicate indicating that no object is stacked in ?x. 

gripperempty 

A predicate describing whether the robot's gripper is empty or not.  

ingripper(?x) 

A predicate indicating that the robot is holding object ?x in its gripper.  

instack(?x,?y) 

A predicate indicating that object ?x is in a stack with object ?y at its base.  

isin(?x,?y) 

A predicate indicating that object ?x is stacked in object ?y.  

onshelf(?x) 

A predicate indicating that object ?x is on the shelf.  

ontable(?x) 

A predicate indicating that object ?x is on the table.  

open(?x)  

A predicate indicating that object ?x is open.  

radius(?x) = ?y 

A function indicating that the radius of object ?x is ?y.  

reachable(?x) 

 A predicate indicating that object ?x is reachable by the gripper. 

shelfspace = ?x 

A function indicating that there are ?x empty shelf spaces.  

graspable(?x) 

A function indicating that object ?x is capable of being grasped. 

(This is a generic property that may be replaced by more specific 

properties at a later time.) 
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3.3 Domain encoding  
Using the above properties we can write planning operators for the actions we require. Our target planner in 
this case is the PKS (Planning with Knowledge and Sensing) planning system [Petrick & Bacchus, 2002, 
2004]. For simplicity, we have made the following restrictions in our domain encodings: (i) all objects are 
initially assumed to be on the table, and (ii) the putOnTable action will initially be omitted (since there are 
no initial stacks).  

Our current domain encoding is given in Table 1. (These actions have been formalized for use with PKS, 
however, we have simplified the syntax here.) Although most of the details of the actual action encodings 
can be ignored, we mention two important points. First, each action operator is parameterized with a set of 
arguments that can denote any object in the world. Thus, all of our actions are object centric. Second, our 
encoding takes advantage of PKS's ability to work with functions and simple numerical expressions, which 
we include as part of the action preconditions and effects. (E.g., the radius of an object plays a role in 
determining whether or not it can be stacked inside another object.) Our domain encoding can be extended as 
needed to accommodate new actions or properties that may arise from future discussions.  

PKS action description notation: The domain encoding in Table 1 is very much like a standard STRIPS 
encoding except that PKS, unlike STRIPS, uses multiple databases as the basis for its representation. Thus, 
references to Kf and Kw in the “effects” section of an action denote two of PKS's databases. (Kf is very much 
like a standard STRIPS database that stores the planner's knowledge of facts, and Kw is a specialized database 
for storing the plan-time effects of knowledge-producing actions.) References to expressions like 
¬Kw(open(?x)) denote knowledge preconditions that ensure the planner does not unnecessarily include a 
knowledge-producing action in a plan if it already knows the information that would be provided by such an 
action. (I.e., if the planner already knows whether an object is open or not then it shouldn’t include a 
findout-open action for that object.) 
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Table 1: PKS-style action descriptions 

Action Preconditions Effects 
findout-open ¬Kw(open(?x)) 

ontable(?x) 

add(Kw,open(?x)) 

grasp-fromTable graspable(?x) 

reachable(?x) 

clear(?x) 

gripperempty 

ontable(?x) 

add(Kf,ingripper(?x)) 

add(Kf,¬gripperempty) 

add(Kf,¬ontable(?x)) 

grasp-fromTopOfStack(?x) graspable(?x) 

reachable(?x) 

clear(?x) 

gripperempty 

exists(?z). 

     instack(?x,?z) 

     ontable(?z) 

add(Kf,ingripper(?x)) 

add(Kf,¬gripperempty) 

forall(?y).isin(?x,?y)→ 

     del(Kf,isin(?x, ?y)) 

     add(Kf,clear(?y)) 

forall(?z).instack(?x,?z)→ 

     del(Kf,instack(?x,?z)) 

putInto-objectOnTable(?x,?y) ?x ≠ ?y 

ingripper(?x) 

open(?y) 

clear(?y) 

ontable(?y) 

radius(?y) > 
radius(?x) 

add(Kf,gripperempty) 

add(Kf,isin(?x,?y)) 

add(Kf,instack(?x,?y)) 

del(Kf,clear(?y)) 

del(Kf,ingripper(?x)) 

forall(?w).instack(?w,?x)→ 

     del(Kf,instack(?w,?x)) 

     add(Kf,instack(?w,?y)) 

putInto-stack(?x,?y) ?x ≠ ?y 

ingripper(?x) 

open(?y) 

clear(?y) 

radius(?y) > 
radius(?x) 

exists(?z). 

     instack(?y,?z) 

     ontable(?z) 

add(Kf,gripperempty) 

add(Kf,isin(?x,?y)) 

add(Kf,clear(?y)) 

del(Kf,ingripper(?x)) 

forall(?z).instack(?y,?z)→ 

  add(Kf,instack(?x,?z)) 

  forall(?w).instack(?w,?x)→ 

     del(Kf,instack(?w,?x)) 

     add(Kf,instack(?w,?z)) 

putAway(?x) ingripper(?x) 

shelfspace > 0 

add(Kf,onshelf(?x)) 

add(Kf,gripperempty) 

del(Kf,ingripper(?x)) 

shelfspace = shelfspace - 1 
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4 Example plans  

In this section we give three examples of planning problems we can solve using PKS and the above action 
descriptions. In each example we consider a scenario with 2 objects initially on the table. Each object also 
has a size as indicated by its radius. (For simplicity we use integer values in our examples however we also 
permit real-valued quantities.) In each example we assume the following initial conditions:  

• Objects: obj1, obj2  
• radius(obj1) = 1, radius(obj2) = 4  
• shelfspace = 1  
• All objects are on the table (no initial stacks)  

The goal in each example is to clear the open objects from the table by placing the objects on a shelf which 
has limited space. In Example 1, the planner initially knows that both objects are open and, thus, does not 
need to include knowledge-producing actions in the plan. In Examples 2 and 3, knowledge-producing actions 
are required: in the second example, the planner knows that one object is not open but does not know 
whether the second object is open or not; in the third example, the planner does not know whether either 
object is open or not.  

When PKS constructs a plan that includes knowledge-producing actions, it can build into the plan a set of 
conditional branches for reasoning about the possible outcomes of such an operation. In particular, one 
branch is constructed for each possible value the operation might return. The resulting plans in this case are 
structured as trees rather than simple linear sequence of actions. In our examples, branch points are denoted 
by expressions like “branch(open(objX)),” meaning “branch on the truth value of open(objX).” In 
this scenario, we will only consider branches on binary properties, i.e., properties that can be either true or 
false. A branch point is followed by two plan sections, labelled as “K+” and “K-,” denoting two disjoint plan 
branches. The K+ branch indicates the “knowledge positive” branch where open(objX) is assumed to be 
true. The K- branch indicates the “knowledge negative” branch where open(objX) is assumed to be false. 
Each branch can contain a sequence of actions and possibly other branch points. A nil tag along a branch 
indicates that no further operation takes place along that branch. At execution time, the information returned 
from a knowledge-producing action (i.e., information gathered by the mid level and passed to the high level 
in response to such an action) lets the high-level plan execution monitor decide which branch of the plan it 
should follow at a branch point. The planner ensures that when conditional plans are constructed, the goals 
are achieved along every branch of the plan.  

 

4.1 Example 1  

The planner initially knows that open(obj1) and open(obj2) are both true. 

Plan: 
 
 grasp-fromTable(obj1) 
 putInto-objectOnTable(obj1,obj2) 
 grasp-fromTable(obj2) 
 putAway(obj2) 
 
Since obj1 and obj2 are both initially known to be open the planner does not need to include any knowledge-
producing actions in the plan. The two objects can simply be stacked and removed from the table.  

 



Page 14 of 27 

IST-FP6- IP-027657 / PACO-PLUS Confidential 

  

 

 
 

4.2 Example 2  
The planner initially knows that open(obj1) is true but does not know the state of open(obj2). 

Plan: 
  
 findout-open(obj2) 
 branch(open(obj2)) 
 K+: 
     grasp-fromTable(obj2) 
     putAway(obj2) 
 K-: 
     Nil 
 
Since the planner does not initially know whether obj2 is open or not it includes a knowledge-producing 
findout-open action in the plan. The plan then branches on the two possible outcomes of 
open(obj2). If open(obj2) is true (the K+ branch) then obj2 is grasped and removed from the table; 
if open(obj2) is false (the K- branch) then no further action is taken. Since the planner initially knows 
that obj1 is not open, this object does not need to be removed from the table.  

4.3 Example 3  
The planner does not initially know the state of open(obj1) and open(obj2). 

Plan: 
     
 findout-open(obj1) 
 findout-open(obj2) 
 branch(open(obj2)) 
 K+: 
     branch(open(obj1)) 
     K+: 
         grasp-fromTable(obj1) 
         putInto-objectOnTable(obj1,obj2) 
         grasp-fromTable(obj2) 
         putAway(obj2) 
     K-: 
         grasp-fromTable(obj2) 
         putAway(obj2) 
 K-: 
     branch(open(obj1)) 
     K+: 
         grasp-fromTable(obj1) 
         putAway(obj1) 
     K-: 
         nil 
 
Since the planner does not initially know whether obj1 or obj2 is open, it includes two findout-open 
actions in the plan. It then considers each possible outcome of these actions by constructing a plan with four 
branches (an initial branch point, followed by a second branch point along each of the top-level branches):  

(1) Along the K+/K+ branch where open(obj2) and open(obj1) are true, both objects are grasped 
and put away as in Example 1.  

(2) Along the K+/K- branch where open(obj2) and ¬open(obj1) are true, object obj2 is 
grasped and put away.  

(3) Along the K-/K+ branch where ¬open(obj2) and open(obj1) are true, object obj1 is 
grasped and put away.  
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(4) Along the K-/K- branch where ¬open(obj2) and ¬open(obj1) are true, no further action is 
taken.  

 

We note that in the above examples we only describe the high-level structure of the plans. During plan 
execution, the mid level must refine certain actions like grasp-fromTable and grasp-
fromTopOfStack (by choosing an appropriate grasp types), and satisfy findout-open requests for 
information, which can result in changes to the plan content. 

5 Message passing protocol  

In this section we describe a simple message passing protocol for exchanging information between the low-
level robot/vision, mid-level memory, and high-level planning levels. We begin by defining the kinds of 
messages that can be passed between the system levels. We then describe a simple control architecture that is 
sufficient for our proposed integration task, and provide some details of a communication library (supplied 
by Edinburgh) that implements this protocol.  

5.1 Message definitions  
We define a set of 10 messages that capture the interactions between the three levels of the system. Each 
message is defined by its type and its content. A message's type is simply its name or label. Depending on the 
message type, a message may also contain specific content or data to be sent. The message passing protocol 
we have defined is currently based on a point-to-point model, where each message is sent by a particular 
system component to another component. Moreover, the message set is designed in such a way that 
messages are (generally) defined in send/receive pairs so that only certain messages can be initiated by a 
“sending” level, with an appropriate response being sent by the “receiving” level. The complete set of 
messages is given in Table 2 and the send/receive message pairs are given in Table 3. (This message set is 
subject to change and may be expanded or streamlined in the future.).  
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Table 2: Available message types in the message passing protocol 
MSG_STATE_UPDATE ― Provide updated state information 

          Sender/Destination: Robot to Memory, or Memory to Planner 

          Content: World state specification 
ACK_STATE_UPDATE ― Acknowledge state update message 

          Sender/Destination: Planner to Memory, or Memory to Robot 

          Content: NONE 
MSG_ACTION_REQUEST ― Request a new action 

          Sender/Destination: Robot to Memory, or Memory to Planner 

          Content: NONE 
ACK_ACTION_REQUEST ― Acknowledge new action request for execution 

          Sender/Destination: Planner to Memory, or Memory to Robot 

          Content: NONE 
MSG_ACTION_SUBMIT ― Submit a new action for execution 

          Sender/Destination: Planner to Memory, or Memory to Robot 

          Content: Action specification 
ACK_ACTION_SUBMIT ― Acknowledge receipt of new action and start of action execution 

          Sender/Destination: Robot to Memory, or Memory to Planner 

          Content: NONE 
MSG_ACTION_STOPPED ― Provide alert that execution of last submitted action has stopped 

          Sender/Destination: Robot to Memory, or Memory to Planner 

          Content: Action execution return value (1 = success or 0 = failure) 
ACK_ACTION_STOPPED ― Acknowledge termination of last submitted action 

          Sender/Destination: Planner to Memory, or Memory to Robot 

          Content: NONE 
MSG_PLAN_REQUEST ― Request entire plan from planner 

          Sender/Destination: Memory to Planner 

          Content: NONE 
MSG_PLAN_SUBMIT ― Submit a complete plan 

          Sender/Destination: Planner to Memory 

          Content: Plan specification 
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Table 3: Send/receive message pairs 

Message type sent Expected response 

MSG_STATE_UPDATE ACK_STATE_UPDATE 

MSG_ACTION_REQUEST ACK_ACTION_REQUEST 

MSG_ACTION_SUBMIT ACK_ACTION_SUBMIT 

MSG_ACTION_STOPPED ACK_ACTION_STOPPED 

MSG_PLAN_REQUEST MSG_PLAN_SUBMIT 

 

5.2 Message passing control loop  
The message passing protocol is initially driven by the robot/vision level of the system. Because of the 
paired send/receive nature of our message set, the upper system levels are forced to coordinate their 
operations in order to respond appropriately to lower-level messages. Currently, communication only takes 
place between two “adjacent” levels of the system, i.e., the robot and memory, or the memory and planner 
(see Figure 5). This means that all communication between the robot and planner must flow through the 
memory level, which typically acts as a forwarding service, but may also observe or refine the flow of 
messages (see below). Because the message passing protocol is mainly driven by the robot level, the memory 
and planning levels operate as message servers that respond to message queries. This protocol also permits 
certain message exchanges between the planner and memory levels, however, that can interrupt the standard 
robot-driven process. It is also worth noting that nothing in the implementation of the communication 
architecture prevents us from expanding this protocol in the future to permit direct point-to-point 
communication between any two components of the system.  

 

Figure 5 Flow of messages between the three system levels 

 

 

5.2.1 Robot-level control loop  
At the robot level, the message-processing control loop follows a relatively simple repeating pattern where 
the robot essentially drives the message-passing process and the upper levels of the system respond to 
queries. The robot-level control loop defines a very simple synchronous cycle wherein a message is sent and 
its acknowledgement is received before the next message can be sent. As a result, the robot only executes 
one action at a time and provides updates on the state of the world before the next action begins.  

At an abstract level, we see the interaction between the robot and the higher levels follow the 
RobotLevelControlLoop pseudo code given in Figure 6(a). After an initial report on the world state, the main 
communication cycle consists of an action request by the robot, which is fulfilled by the upper levels 
(ultimately the planner), an indication from the robot when the action has finished executing, followed by an 
update on the new state of the world. Messages to and from the robot level all pass through the memory 
level. Thus, a request made by the robot for a planning-level service (e.g., requesting a new action) will 
ultimately reach the planner after being forwarded through the memory.  

MemoryRobot/Vision Planner
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5.2.2 Memory-level control loop  

Unlike the more tightly-regulated control loop of the robot level, communication at the memory level is more 
loosely structured using a client-server architecture. In particular, the memory is able to respond to requests 
from both the robot and the planner, as well as initiate certain messages of its own.  

In most cases, the memory will initially act as a forwarding service that delivers messages from the robot to 
the planner, and from the planner to the robot. One notable exception is the receipt of 
MSG_ACTION_SUBMIT messages from the planner. In order to properly process such messages, the 
memory level must first examine the message contents. In the case of a findout-open action, the 
memory must decide how to best satisfy the request for information (by examining semantic memory or 
initiating object exploration), before reporting the results to the planner. Reporting is done in the high level’s 
language, ensuring that it will be understood by the planner. If object information is readily available in the 
semantic memory, then this information can be communicated directly from the mid level to the high level. 
If the mid level has to initiate object exploration, then additional message exchanges between the robot and 
mid level may be required before the final results are returned to the high level. (This protocol also supports 
a future bottom-up role for the memory, where the middle level “abstracts” sub-symbolic robot-level 
information into a symbolic form understandable by the planner, using the transfer from episodic to semantic 
memory.) In the case of grasp-fromTable and grasp-fromTopOfStack actions, the memory must 
refine the message contents to specify a particular grasp type before forwarding the message to the robot 
level.  

The memory is also able to directly request information about the structure of a plan from the planner. The 
planner will respond with a complete description of the current plan, which may be a conditional plan with 
branches. The memory can then use this information as needed, for instance to help in its decision making 
concerning refinement activities.  

The pseudo code for the memory-level control algorithm is given in Figure 6(b).  

 

5.2.3 Planning-level control loop  
The planning level control loop also operates in a client-server fashion, responding to messages sent from the 
memory level (but typically originating from the robot level). The planning level is responsible for 
constructing high-level plans and feeding the actions, one at a time, to the robot level through the memory 
level. The planner also receives world state updates from the robot (again, through the memory) as well as 
status reports as to the success or failure of performed actions.  

The memory level is also able to interact with the planner to request a complete description of the current 
plan. This part of the protocol provides the memory level with greater information about a plan's structure, 
which could be analysed in order to help direct future operations of the memory level, or refine future actions 
sent to the robot. Future versions of the communication protocol may also allow the planner to directly 
“push” such plan information to the memory, for instance as a result of re-planning operations. The general 
planning-level control algorithm is given in Figure 6(c).  

The message passing architecture we have outlined has a number of advantages. First, the protocol clearly 
separates the operations of the three system levels and the interactions between the levels, with the memory 
level acting as a form of mediator or interpreter. For instance, this protocol allows for the possibility of 
different content formats for messages flowing between the lower and upper levels of the system (e.g., 
messages with sub-symbolic information between the robot and memory, and messages with symbolic 
information between the memory and planner). The only proviso is that the contents of all message 
exchanges be understood by the receiving level. Also, future changes to the communication protocol 
involving one pair of levels need not force changes to the interaction of another pair of levels. Finally, we 
have designed our message set to support much more complex and flexible control architectures, which 
might arise in the future. For our initial integration tasks, however, the existing process we have outlined is 
more than sufficient.  
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Direct link between low level and high level: In terms of the initial integration efforts between SDU and 
Edinburgh, the above protocol does not specify any major changes to existing work. Instead, the memory 
level can be viewed as a message-forwarding module that holds the place of the full mid-level memory 
component, in order to bring the previous SDU/Edinburgh architecture in line with the protocol described 
here. Although this module will simply pass messages to the other system levels, its addition should facilitate 
the inclusion of a more fully-featured module into current integration efforts at a later date when a memory 
system is made available. The necessary code for the message-forwarding module is provided as part of 
Edinburgh's supplied communication library. 

 

Proc RobotLevelControlLoop 

     Send: MSG_STATE_UPDATE; Receive: ACK_STATE_UPDATE; 

     while !termination loop 

          Send: MSG_ACTION_REQUEST; Receive: ACK_ACTION_REQUEST; 

          Receive: MSG_ACTION_SUBMIT; Send: ACK_ACTION_SUBMIT; 

          Send: MSG_ACTION_STOPPED; Receive: ACK_ACTION_STOPPED; 

          Send: MSG_STATE_UPDATE; Receive: ACK_STATE_UPDATE; 

     endLoop 

endProc 

a) 

 

 
Proc MemoryLevelControlLoop 

     while !termination loop 

          choose 

               Send: MSG_PLAN_REQUEST; 

          or 

               Wait for message receive; 

               case MSG_ACTION_SUBMIT: 

                    Process action (action refinement/information gathering,  forwarding and response); 

               case MSG_PLAN_SUBMIT: 

                    Update memory with received plan; 

               case all other message types: 

                    Forward message; 

          endChoose 

     endLoop 

endProc 

b) 

Proc PlannerLevelControlLoop 

     while !termination loop 

          Wait for message receive; 
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          case MSG_STATE_UPDATE: 

               Update world model; 

               Send: ACK_STATE_UPDATE; 

          case MSG_ACTION_UPDATE: 

               Send: ACK_ACTION_REQUEST; 

               Construct plan/get next action in plan; 

               Send: MSG_ACTION_SUBMIT; Receive: ACK_ACTION_SUBMIT; 

          case MSG_ACTION_STOPPED: 

               Process action success/failure; 

               Send: MSG_ACTION_SUBMIT; 

          case MSG_PLAN_REQUEST: 

               Construct plan/get entire plan; 

               Send: MSG_PLAN_SUBMIT; 

     endLoop 

endProc 

c) 

Figure 6: Message passing control algorithms 

 

5.3 Socket communication library and sample code  
For ease of implementation Edinburgh has defined a set of C++ classes for manipulating message types and 
message contents. These classes work in conjunction with a lightweight socket library (also written in C++) 
that has been developed for Linux, to facilitate communication between system components.  

At the code level, message types are chosen from a list of predefined enum types, and message contents are 
simple C++ strings.2 3 Currently, the content of the MSG_STATE_UPDATE message must be a list of 
instantiated high-level properties that form the world state. Similarly, the action specification content of the 
MSG_ACTION_SUBMIT message is a single instantiated high-level action. The content of the 
MSG_PLAN_SUBMIT message will be a plan similar to those in the example plans, but encoded as a Prolog-
style list (see below for an example). A plan iterator class is provided for inspecting the structure of 
conditional plans in this format. (For more details, refer to the sample code provided with the socket library, 
available from Edinburgh.)  

For initial testing purposes we terminate a plan by having the planner send a MSG_ACTION_SUBMIT 
message to the memory level in response to an action request, with the string "EOP" as its content. The 
memory level will then pass this message on to the robot. Both the memory and robot levels must then send a 
final ACK_ACTION_SUBMIT message to the level above, at which point all system levels are free to 
terminate communication. In the future, plan termination will force the suspension of the main control loop 
(i.e., the planner will not send an action) until a new goal is given to the planner and a new plan is 
constructed.  

The communication library is distributed with a set of sample programs that implement the basic message 
passing protocol described in this document for the robot, memory, and planner components. These 
                                                      
2  The current version of the communication library also defines messages for introducing new objects, new properties, 

and new actions into the planning-level domain description. We are still in the process of extending the message 
passing protocol to include these new message types and, thus, we have not included a discussion of these messages 
at this time.  
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programs focus solely on the communication interface, with little additional functionality. (For instance, the 
memory level program currently forwards messages without refining actions and always requests a complete 
plan after the first robot level request for an action.) It is hoped that these programs can serve as the basis for 
the development of more sophisticated modules that can simply be “plugged” into the communication 
architecture. A series of pregenerated plans are included with this software, however, to test the message 
exchanges between the three levels.  

 

5.4 Message passing example  
To better understand the flow of messages between the three system levels, we consider the scenario in 
Example 2, where the robot is tasked with the goal of clearing the open objects from a table. Figure 7 shows 
the messages sent by the three levels during the execution of the first action, findout-open(obj2), in 
the conditional plan constructed for Example 2 (i.e., one complete cycle of the robot-level control loop).  

We note that the first message sent by the robot, MSG_STATE_UPDATE, provides the planner with its initial 
description of the world. We assume that on initialization the robot/vision system will sent such an 
“unusually complete” world description, as a bootstrapping action. From the perspective of the planning 
system such a message is no more than a particularly large state update, and requires no extra machinery.  

Given an initial state description, the planner can construct a plan to achieve a given high-level goal. The 
planner sends the actions in this plan to the robot/vision system one step at a time, through the memory, in 
response to action requests. After the execution of each action the robot/vision system reports an update of 
the world state back to the planner, again, through the memory. In Figure 7 these updates are described in 
terms of state changes, however, we have agreed that state updates will initially include a complete (or as 
near as possible to complete) description of the new world state.  

For many of the messages sent in the system, the memory level acts as a forwarding service between the 
robot and the planner. (In the future the memory will take on a more active role as a mediator or translator 
between the robot and planner.) The first notable exception is the occurrence of the MSG_ACTION_SUBMIT 
message. Since the action specified in this message is a knowledge-producing action, findout-
open(obj2), the memory must retrieve particular state information about obj2 for the planner. In this 
case, we assume that the mid level does not possess this information in its semantic memory and must direct 
the robot level to try “poking” the object using grasp type A. (We use graspA-poke(obj2) to denote the 
modified exploratory action sent to the robot.) The results of this action are ultimately sent to the planner as a 
state update, from the robot level through the memory level, returning the predicate open(obj2)to the 
planner. (In the example the robot generates the result open(obj2) which is sent to the mid level and then 
to the planner. In practice the mid level may have to infer this conclusion from low-level sensory/visual 
information.) 

Figure 7 also illustrates the results of a MSG_PLAN_REQUEST message from the memory to the planner. In 
this case, the planner responds with a plan of the form:  

[findout-open(obj2), branch(open(obj2),  

[grasp-fromTable(obj2), putAway(obj2)],[])] 

This plan corresponds to the complete conditional plan given in Example 2, encoded in a Prolog-style list 
format for transmission using the communication library. (The communication library provides a helper class 
for processing plans in the compact list format.) Note that if we continued the execution of this plan, the 
planner would follow the branch that includes the actions grasp-fromTable(obj2) and 
putAway(obj2), since open(obj2) was true. Furthermore, the mid level would have to refine the 
grasp-fromTable(obj2) action by choosing an appropriate grasp type, before forwarding this action 
to the robot. 
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 ROBOT MEMORY PLANNER 

1. MSG_STATE_UPDATE: 

“ontable(obj1),...,!clear(obj1)” 

  

2.  (Forward to planner) MSG_STATE_UPDATE: 

“ontable(obj1),...,!clear(obj1)” 

 

3.   ACK_STATE_UPDATE 

4.  (Forward to robot) ACK_STATE_UPDATE  

5. MSG_ACTION_REQUEST   

6.  (Forward to planner) MSG_ACTION_REQUEST  

7.   ACK_ACTION_REQUEST 

8.  (Forward to robot) ACK_ACTION_REQUEST  

9.   MSG_ACTION_SUBMIT: 

“findout-open(obj2)” 

10.  Refine findout-open(obj2) to graspA-poke(obj2) 

(Forward to robot) MSG_ACTION_SUBMIT 

“graspA-poke(obj2)” 

 

 

11.  (Send to planner) MSG_PLAN_REQUEST  

12.   MSG_PLAN_SUBMIT: 

“[findout-open(obj2), 

  branch(open(obj2)), 

   [grasp-fromTable(obj2), 

    putAway(obj2)], [])]” 

13. ACK_ACTION_SUBMIT   

14.  (Forward to planner) ACK_ACTION_SUBMIT  

15. MSG_ACTION_STOPPED: 

“1” 

  

16.  (Forward to planner) MSG_ACTION_STOPPED: 

“1” 

 

17.   ACK_ACTION_STOPPED 

18.  (Forward to robot) ACK_ACTION_STOPPED  

19. MSG_STATE_UPDATE: 

“open(obj2)” 

  

20.  (Forward to planner) MSG_STATE_UPDATE: 

“open(obj2)” 

 

21.   ACK_STATE_UPDATE 

22.  (Forward to robot) ACK_STATE_UPDATE  

23. ... ... ... 

Figure 7: Example of messages sent during the execution of findout-open(obj2) in Example 2. 

 

We note that according to the message passing protocol, MSG_PLAN_REQUEST messages could be sent by 
the memory at other times during its control loop, or not at all, producing slightly different message 
orderings than those shown in Figure 7. (In the sample code the memory sends a MSG_PLAN_REQUEST 
after receipt of the first MSG_ACTION_SUBMIT message from the planner.) Similarly, different message 
orderings (and additional messages) could be produced if the mid level immediately returned a response to 
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the planner’s findout-open action without initiating an exploration operation. Alternate message 
orderings ― including messages sent in parallel from different levels ― could also arise since the robot, 
memory, and planner all run as independent processes. The implementation of our message passing protocol 
ensures that such ordering differences do not lead to problems like deadlock, however. 

 

5.5 High-level plan execution and monitoring  
Although the high level is able to construct plans for the proposed object manipulation scenario, and 
communicate those plans to the other system levels using the message passing protocol, we must still be 
concerned with how plan failure information should be exchanged between the planner and the other system 
levels.  

In discussions with SDU we have identified the need for a high-level mechanism that would operate closely 
with the planner in order to monitor plan execution and control re-planning activities. A plan execution 
monitor, currently being built by Edinburgh, will be responsible for assessing both action failure and 
unexpected state information that result from feedback provided to the planner from the execution of planned 
actions at the robot level. The difference between predicted and actual state information will be used to 
decide between (i) continuing the execution of an existing plan, (ii) requesting a more detailed state report 
about particular properties of the world, and (iii) re-planning from new/unexpected states.  

In terms of the integration scenario described in this document, the plan execution monitor will have the 
added task of managing the execution of plans with conditional branches (resulting from the inclusion of 
knowledge-producing actions like findout-open). When a knowledge-producing action is resolved by 
the lower levels, the results will be returned to the planner through the memory level, as part of the standard 
state update cycle. When faced with a conditional branch point in a plan, the plan execution monitor must 
then make a decision as to the correct plan branch it should execute, based on current state information. If 
such information is unavailable, for instance due to a failure at the robot/vision level, re-planning activities 
or requests for additional state information will be triggered as above. It is important to note that the 
robot/vision system will never be aware of the conditional nature of a plan, and will never receive a “branch” 
operation like those shown in the example plans above. From the point of view of the robot, it will only 
receive a sequential stream of actions. This will also be the case for the memory level, except when a 
complete plan is requested. In such situations a fully-specified conditional plan will be transmitted to the 
memory level.  

Initially, we expect that most plans will fail early, and often, and that most monitoring operations will trigger 
re-planning activities. Our goal is to implement the basic framework for the plan monitor in the short term, in 
order to evaluate its effectiveness on plans being executed in the actual robot environment.  

6 Towards an implementation on ARMAR-III  

An ongoing task throughout the project is the integration of the control architecture as proposed in the 
previous sections on the humanoid platform ARMAR-III at UniKarl. Within this task, the different modules 
of the proposed architecture are adapted to match the requirements which follow from the low-level control 
mechanisms, the kinematic structure and the perceptual abilities of ARMAR-III.  The software architecture 
of the ARMAR-III interface is adapted to provide mechanisms which allow integrating modules of the 
different partners in a flexible manner. Furthermore the perceptual and manipulative abilities of ARMAR-III 
are continuously extended in order to perform complex tasks on the humanoid platform.  

 

6.1 Software and control architecture of ARMAR-III 
The software and control architecture of the humanoid robot ARMAR-III consists of three layers. On the 
lowest level, digital signal processors (DSP) perform low-level sensorimotor control realized as cascaded 
velocity-position control loops. On the same level, hardware such as microphones, loudspeakers, and 
cameras are available. All these elements are connected to the PCs in the mid-level, either directly or via 
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CAN bus. The software in the mid-level is realized using the Modular Controller Architecture (MCA2, 
www.mca2.org). The PCs in the mid-level are responsible for higher-level control (forward and inverse 
kinematics), the holonomic platform, or speech processing. 

The first two levels can be regarded as stable i.e. the implemented modules remain unchanged. The 
programming of the robot, in particular for the partners, takes place on the highest level only. Here, the so-
called robot interface (see also Deliverable D1.2, month 6) allows convenient access to the robot’s sensors 
and actors via C++ variables and method calls. As an example, the robot’s head can be moved by different 
variants of the method MoveHead, e.g. using an inverse kinematics algorithm or setting all joint angles 
directly. At the same time, the sensor values for the current joint positions and velocities are available via 
variables. Access to the arms, the hip, and the platform are offered in the same manner. 

 

 
Figure 8 Software and control architecture of ARMAR-III 

 

To allow effective and efficient programming of the robot, in addition to direct access to the robot’s sensors 
and actors, two abstraction levels are defined: tasks and skills. While so far tasks have been implemented 
manually by hard coded combination of several skills for a specific purpose, the next step is to automatically 
generate tasks at run-time based on the output of the planning module. In contrast, skills are implemented 
capabilities of the robot that can be regarded as atomic. Currently, on ARMAR-III the following skills are 
available: 
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1. SearchForObjectSkill: Searching for known objects using the active head. 

This skill scans the space in front of the robot by moving the head and performing a full scene analysis at 
each target position. The skill can be parameterized to either search for a specific object or include all object 
representations currently available in the database. 

2. VisualGraspSkill: Grasping of objects. 

This skill makes use of a visual servoing approach including one arm and the hip to grasp an object that has 
been previously recognized and localized. It controls the position closed-loop while continuously updating 
the position of the robot’s hand and the target object. The hand is tracked by using a marker.  

3. PlaceSkill: Placing objects on even surfaces 

With this skill, it is possible to place a previously grasped object on an even surface, such as a table. Force 
information acquired from a 6D force sensor in the wrist is evaluated to determine the contact forces with the 
surface while placing the object. 

4. HandOverSkill: Handing over objects to or from the robot 

With this skill, objects can be either handed over to the robot or received from the robot. In both cases, 
information acquired from a 6D force sensor is evaluated to determine when to close respectively open the 
hand. 

5. OpenDoorSkill: Opening various doors 

This skill can be regarded as a more complex respectively higher-level skill compared to the previously 
introduced ones, since it makes use of other skills. It first uses a module that can recognize and localize 
handles of doors, which are then grasped making use of the VisualGraspSkill. Once the handle has been 
grasped, this skill opens the door using a force-control approach. 

6. CloseDoorSkill: Closing various doors 

Using this skill, open doors can be closed, given an initial target position to touch the door of interest. Again, 
a force-control approach is used to perform the action. 

All skills have in common a continuously called run method, in which they perform their action and sensing. 
The return value of this method signalized its state, i.e. whether the skill is still operating, finished with 
success, or finished with failure. After success or failure, a skill switches to the state waiting. Each skill can 
be parameterized and has its own specific configuration data structure for this purpose. In the same way, the 
result of a skill is communicated. 

 

6.2 Connecting High-Level Planning 
The software and control architecture introduced in 6.1 provides the basic interfaces for connecting the high-
level planning module to ARMAR-III. In order to plan and execute complex tasks, the planning module 
requires a set of atomic actions which are executable on the robot. Together with required action 
preconditions and effects a plan towards the desired target can be constructed using these atomic actions. The 
skills introduced with the ARMAR-III programming interface provide a flexible mechanism to implement 
such atomic actions on the robot. The skills build the basis for mapping plan-level actions to the robot. The 
perceptual abilities of the ARMAR-III vision system (IVT) are available on the skill level. With the vision 
methods provided in IVT, the necessary properties required in the planning level can be evaluated and 
deployed for plan execution monitoring.  
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The scenario for implementing high-level planning on ARMAR-III is an extension to the scenario described 
in Section 1. The extension focuses on action failure and recovery. Initially only two objects are considered 
for the stacking task. In order to accomplish object stacking on the humanoid platform in a robust manner, 
the set of actions and properties was adapted. Execution of actions with the five finger hand and the 7 DOF 
anthropomorphic arm of ARMAR-III, in comparison to the demonstrator at SDU, is more complex and as a 
consequence will fail more likely. The required properties and actions were extended by taking into account 
the failures that can occur during perception and action execution on ARMAR-III while performing the 
object stacking task. Failures will lead to an unexpected state which can be assessed in the plan execution 
monitor introduced in Section 5.5. The plan execution monitor can decide to re-plan from unexpected states. 

The following sections give an overview of the properties and actions which extend the high-level planning 
representation introduced earlier in order to achieve robust execution on ARMAR-III. 

 

6.2.1 Additional Properties 

The following properties are introduced in order to take into account failures during action execution and 
perception. 

toppled(?x) 

A predicate indicating that object ?x is lying toppled on the table.  

An object can be toppled when a manipulation task failed, e.g. object was dropped due to an 
inaccurate grasp, object was knocked over during arm movements.  

blocked(?x,?y) 

A predicate indicating that object ?x is physically blocked by object ?y.  

This predicate indicates a configuration of objects, where the kinematics of the arm and the structure 
of the  manipulator  do not allow to grasp object ?x, because access is blocked by object ?y. 

occluded(?x) 

A predicate indicating that object ?x is occluded. 

Visual occlusion can result from the initial positioning of objects or from execution failure.  

 

6.2.2 Additional Actions 

The following actions are introduced in order to resolve states resulting from action failures or 
disadvantageous initial setups. 

graspC-placeUpright(?x)  

Grasp a toppled object ?x from the table using Grasp Type C and place it upright. 

This action resolves failures which result in a toppled object.  

 
moveAway(?x)  

Move object ?x to a new position on the table. 

Position will be chosen in a way that blocking and occlusion states are resolved.  

 

UniKarl and UEDIN are currently in the process of implementing these extensions as part of ongoing 
integration activities. The additional properties and actions described above are being incorporated into the 
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existing planning-level domain model (see p.12), and sample plans are being generated for a series of failure 
scenarios. 
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