

Monday, 29 January 2007 Page 1 o f 11

IST-FP6 -027657 / PACO-PLUS

Last saved by Tamim Asfour Public

Project no.: 027657

Project full title: Perception, Action & Cognition through
 Learning of Object-Action Complexes

Project Acronym: PACO-PLUS

Deliverable no.: D8.2.1
Title of the deliverable: Augmented Human Action

Contractual Date of Delivery to the CEC: 31. January 2007
Actual Date of Delivery to the CEC: 31. January 2007

Organisation name of lead contractor for this deliverable: UniKarl

Author(s): Rüdiger Dillmann, Tamim Asfour, Pedram Azad, Aleš Ude, Gordon Cheng, Danica
Kragic, Volker Krüger, Jan-Olof Eklundh, Florentin Wörgötter, Norbert Krüger, Bernhard
Hommel, Carme Torras, and Mark Steedman.
Participants(s): UniKarl, KTH, JSI, AAU, BCCN, CSIC, UEDIN, UL

Work package contributing to the deliverable: WP8.2

Nature: R

Version: 1.0

Total number of pages: 66

Start date of project: 1st Feb. 2006 Duration: 48 month

Projectco-funded by the European Commission within the Sixth Framework Programme (2002-2006)

Dissemination Level
PU Public X
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Abstract:
The goal of WP8.2 is to develop an artificial cognitive system acting in a human like environment and
capable of learning objects and the actions it can apply to them. This report summarizes the work in WP8.2
in the first twelve months. It reports on the development and implementation of human motion capture and
motion mapping techniques necessary for the realisation of a cognitive system acting in a human like
environment and capable of learning objects and the actions it can apply to them. The report presents result
related to human motion tracking, representation, and recognition of 3D human motion as well as imitation
learning of human actions and coaching. Furthermore, mapping strategies between the human hand and
different hands are described. To support easy design of manipulation and exploration tasks, an integrated
approach that includes an offline grasp planning system with a visual object recognition system is presented.

Keyword list: Human motion tracking, imitation learning, coaching and grasp mapping.

Page 2 of 11

IST-FP6-IP-027657 / PACO-PLUS Public

Table of Contents
1. INTRODUCTION ... 3
2. MARKERLESS HUMAN MOTION CAPTURE .. 3
3. MASTER MOTOR MAP (MMM) .. 5
4. IMITATION LEARNING.. 6
5. COACHING... 7
6. APPLYING ACTIONS TO OBJECTS ... 7

6.1 GRASP MAPPING... 8
6.2 GRASP PLANNING AND VISUAL OBJECT LOCALIZATION .. 9

7. LINKS TO OTHER WORKPACKAGES .. 10
ATTACHED PAPERS.. 10
REFERENCES .. 10

Page 3 of 11

IST-FP6-IP-027657 / PACO-PLUS Public

1. Introduction

Using artificial cognitive systems to enhance or substitute human actions is and will become even
more an important field in an ageing society and generally in a “high-tech” society. However, it
requires truly cognitive capabilities of the artificial agent including learning of scenarios, objects,
and actions as well as communication and interaction with humans. The goal of WP8.2
“Augmenting Human Action” is to develop an artificial cognitive system acting in a human like
environment capable of learning objects and the actions it can apply to them. The focus is on
structuring actions by learning, imitating, and understanding actions of humans, in contrast to the
emphasis on exploration in WP8.1. The system should be able to perform learned actions over
categories of objects and joint actions with other agents, such as reaching. In the longer term it
should be able to communicate with other agents and perform actions as communicated.

WP8.2 and Demo 2 deal with the representation, recognition, and adaptation of OACs in an
imitation and interaction based framework. Main scientific issues are the capturing of human
motion, the modelling and representation of human motion (both arm movements and hand grasps),
the generating of early sensory and motor representations of actions by imitation and coaching as
well as action representation, understanding and imitation of actions.

2. Markerless Human Motion Capture

For the purpose of acquiring human motion data for imitation learning in real world scenarios, we
have developed a purely image-based markerless human motion capture system with a particle filter
in its core, as done in ([1], [2]). The problem is that the number of required particles grows
exponentially with the dimensionality of the search space, which reduces the processing rate of the
system drastically. For example, in [1], processing an input image tuple requires 15 seconds on a 1
GHz CPU. Other problems arise from the restriction of using the cameras incorporated in the robot
head only, resulting in a relatively small stereo baseline and the occurrence of occlusions, since the
person can be seen from essentially one viewpoint only. Furthermore, the system has to initialize
itself automatically. Therefore, we have adapted and extended the existing particle filter approach
for real-time application on a humanoid robot head.

The input of the system is a stereo colour image pair captured at 30 Hz, with two calibrated
Dragonfly cameras built-in into the head of the humanoid robot ARMAR III. The input images are
pre-processed, generating output for the gradient cue, the distance cue, and an optional region cue,
as described in [A]. Based on the output of the image-processing pipeline, a particle filter is used
for tracking the movements in configuration space. The overall likelihood function to compute the
a-posterior probabilities is formulated as:

where s is the configuration to be evaluated, z is a general denotation for the current observations
i.e. the current input image pair, and ci ∈ R3 with i ∈ {1, 2, 3} denotes the triangulated 3D position
of the hands and the head. The function di(s, c) is defined as:

Page 4 of 11

IST-FP6-IP-027657 / PACO-PLUS Public

where the transformation fi : Rn → R3 transforms the n-dimensional configuration of the human
model into the 3D position of the left hand, right hand, or head respectively, using the forward
kinematics of the human model, and n = dim(s) denotes the number of DoF of the human model.

The gm with m ∈ {1, 2, ..., Mg} denote the intensity values in the gradient image (which are derived
from the input images z) at the Mg pixel coordinates of the projected contour of the human model
for a given configuration s. This process is performed for both input images using the calibration
parameters of each camera.

For each image pair of the input sequence the output of the system is the estimation of the particle
filter, given by the weighted mean over all particles. A detailed description is given in [A]. In
contrast to the acquisition method based on the magnetic tracking system, the joint angle values θ1,
θ2, θ3, and θ4 are calculated directly and therefore the position of the elbow does not have to be
approximated on the base of empirical studies but is determined explicitly.

The system can process a stereo image sequence with a resolution of 320×240 at 15 Hz. We have
also run successful experiments on videos captured with a resolution of 640×480 at a frame rate of
60 Hz. With such a frame rate, the system can capture much faster movements. To allow real-time
application, the particle filter will be distributed on a Distributed Vision Cluster, as done in [4] in
the case of hand motion tracking.

Figure 1: Example snapshots of a tracked image sequence. Top: Left input image with projection of the
calculated configuration of the human model. Bottom: 3D visualization of the calculated configuration.

Based on the algorithms described above, a hnad motion capture system has been developed in [4].
Several adaptations had to be performed, such as the implementation of a z-buffer approach to
handle self-occlusions, and the partitioning of the search space by tracking the hand pose and the
finger poses independently. The results of the two particle sets are fused at the end of one particle
filter run in one particle set before resampling the new particle set.

An effective way to constrain the search space and thus to limit the number of particles is to employ
an action model: Given already observed poses, an action model allows to compute the likelihood
for a particular new pose. Such an action model is subject of investigation in work package WP3
and will be built-in into the human motion capture in the near future.

We are planning to evaluate the visual tracking system with a video database of seven individuals
showing different actions. The data has been captured with four synchronized video cameras,
running at 30 Hz. Ground-truth information for the movements is provided through electro-
magnetic devices that were attached to the joints of each volunteer. A comparison between the
ground-truth data and the visually captured data will allow a) an evaluation of the visual tracking
system and b) give us a valuable estimation of the noise our motion models (WP3) will have to deal

Page 5 of 11

IST-FP6-IP-027657 / PACO-PLUS Public

with when applied to visual tracking. Furthermore, the marker data will serve as an additional
source for the training and evaluation of the action recognition system which is under development.
By having several sources of human motion capture data (VICON, magnetic tracking, markerless
visual tracking), together with the exchange format defined by the Master Motor Map (Section 3),
we will be able to develop and evaluate an action recognition system, which is independent from
the data source.

The dataset is available at the Aalborg University under the link http:cvmi.aau.dk/~pradeep/motion
(login: “pacoplus”, passwd: “pacoaccess”). For a detailed description, please see Deliverable
D3.1.2.

3. Master Motor Map (MMM)

Within the consortium not only one human motion capture system and one action recognition
system exist, but several approaches are available, each of those feasible for another case, having its
own strengths and drawbacks. Moreover, although the main demonstrator is ARMAR III (see [3]) at
the University of Karlsruhe, other partners have to be able to use data and run experiments on their
own demonstrator. To overcome the data compatibility problems arising form this circumstance, we
have specified the so-called Master Motor Map (MMM) (see [B]).

The MMM is a full specification of a high dimensional but yet simplified kinematics model of a
human, having 52 DoF. The names and the sequence of the joints have been chosen according to
the H-ANIM 1.1 specification. The MMM adds a detailed specification of the rotation matrices and
their orientation with respect to each other. In [B], we have shown that motion capture data from
various systems can be converted to the MMM. Among these are the markerless human motion
capture system, which has been explained above, and a marker-based motion capture system using
the VICON system [5]. Any action recognition system can derive its desired data format from the
MMM format, using forward kinematics if needed. Also, we have shown how the MMM format can
be transformed to the kinematics of a humanoid robot, using the example of ARMAR III. An
application for 3D visualization of the MMM and an archive containing over 400 captured
trajectories is available on: http://wwwiaim.ira.uka.de/users/asfour/mmm/.

Figure 2: Framework for an unified action representation, recognition and imitation. Each component
(HMC, robot, action recognizer, ...) has a converter module, either converting from or to the MMM format.

http://cvmi.aau.dk/~pradeep/motion
http://wwwiaim.ira.uka.de/users/asfour/mmm/

Page 6 of 11

IST-FP6-IP-027657 / PACO-PLUS Public

Figure 3: Specification of the kinematics model of the human body (MMM)

4. Imitation learning

Imitation Learning facilitates teaching a robot new tasks and at the same time make the robot move
like a human. Imitation learning is basically the concept of having a robot observe a human
instructor performing a task and imitating it when needed. Robot learning by imitation, also referred
to as programming by demonstration, has been dealt with in the literature as a promising way to
teach humanoid robots. Several imitation learning systems and architectures based on the
perception and analysis of human demonstrations have been proposed ([6]-[12]). In most
architectures, the imitation process proceeds through three stages: perception/analysis, recognition,
and reproduction [13]. An overview of the basic ideas of imitation learning in robots as well as
humans is given by Schaal in [14].

In [C], we presented an HMM-based approach for imitation learning of arm movements in
humanoid robots. HMMs are used to generalize movements demonstrated to a robot multiple times.
Characteristic features of the perceived movement, so-called key points, are detected in a pre-
processing stage and used to train the HMMs. By doing so, we avoid having a high number of states
and facilitate the matching of (or between) multiple demonstrations. We use continuous HMMs and
model the observations in each state with multivariate Gaussian density functions. Each HMM is
trained with the key points of all demonstrations using the Baum-Welch algorithm for multiple

Page 7 of 11

IST-FP6-IP-027657 / PACO-PLUS Public

observations. Each training sequence consists of the key points of the respective demonstration. For
a given observation sequence, the Viterbi algorithm returns the optimal state sequence of the HMM
with respect to that observation sequence, i.e. the sequence of states most likely to generate that
observation sequence. For the reproduction of a perceived movement, key points that are common
to all (or almost all) demonstrations, so-called common key points, are used. To determine the
common key points across d = 1,…,D key point sequences Kd,1, …, Kd,n(d), where n(d) denotes the
number of key points for a demonstration d, we use the Viterbi algorithm D times to find sequences
of HMM states that correspond best to these key point sequences. The common key points are
determined by comparing these state sequences and selecting only those states that appear in every
sequence. Common key points are used for the reproduction of movements on the MMM
kinematics model (see Section 2).

The actions that were considered initially in [C] are simple actions. In general, it is not possible to
learn an HMM for all possible action imaginable. To treat a large set of complex actions, we will
need to brake down the actions into very simple ones. These simple actions would define an
alphabet based on which complex actions can be defined by concatenation. This is an important part
in Demo 2 and is investigated in WP3.

5. Coaching

Beyond imitation and the associated observation of human motion, we are interested in other means
of transferring human knowledge to a humanoid robot. Not surprisingly, most approaches for
creating or modifying behaviours for complex humanoids require specialized knowledge and a large
amount of work. Our aim is to provide an alternative, intuitive way to program humanoid
behaviour. To do this, we examine human-to-human skill transfer, specifically coaching, and adapt
it to the humanoid setting. We enable a real-time scenario where a person, acting as a coach,
interactively directs humanoid behaviours to a desired outcome. This tightly coupled interaction
between a person and a humanoid allows efficient, directed learning of new behaviours, where
behaviour characteristics can be modified on demand. Communication is realized through
demonstration and a coaching vocabulary, and changes are effected by transformation functions
acting in the behaviour domain. In [D], we introduce a method with potential to improve the time
and ease of creating behaviours for complex humanoid robots and describe the use of high-level
vocabulary to initiate transformation functions to change the behaviours. A transformation function
is typically comprised of a label, which is the coaching command that invokes it, and a set of
criteria that serves to define the high level command in terms of low level behavioural criteria.
Label and criteria are wrapped together in a function that ultimately effects changes to the
appropriate behavioural parameters in accordance with the transformation function’s definition.

6. Applying actions to Objects

Most of the robot tasks involve object manipulation. Hence, the robot has to learn how objects
should be grasped and manipulated. The proper grasp type depends both on the target object and the
current task. As an example, let us assume that the task is to pick up a cup to fill it with coffee.
Generating suitable grasps based solely on the object shape provides three possible grasps: a
circular sphere grasp, a power wrap grasp, and a two-finger-thumb precision grasp as seen in
Figure 4: . However, the task knowledge introduces additional constraints because, in order to fill
the cup, the opening should not be covered. In this case, only two grasps remain feasible.

Page 8 of 11

IST-FP6-IP-027657 / PACO-PLUS Public

Figure 4: Different grasps are possible for picking up a cup (left) and the glove used for measuring human
grasps.

6.1 Grasp mapping
The human and robot hand cannot, in general, perform the same types of grasps. Consequently, a
mapping between human hand and robot hand is necessary in order to control a robot hand with a
human hand. For grasp mapping we have used an Artificial Neural Network(ANN), which can learn
the mapping of the human hand space into the robot hand space. To obtain the measurements, we
have used the Nest of Birds. It is a magnetic tracker that consists of an electronics unit, a
transmitter, and four pose measuring sensors. Nest of Birds calculates the position and orientation
of each sensor providing six degrees of freedom. The sensors are mounted on a glove, as illustrated
in Figure 4: The centre sensor, mounted on the back side of the glove, serves as a reference sensor.
It measures the position and orientation of the hand. The remaining three sensors are mounted on
the thumb, index finger, and little finger, and provide fingertip position measurements. A two-
layered ANN was used to learn the mapping from the human hand to the robot hand. The input
values are the position coordinates of each of the fingers. There are three fingers and their positions
are in 3D which gives us nine input values. Note here that the coordinates are provided relative to
the reference sensor on the back of the hand. The output layer has as many neurons as the number
of DoFs of the robot hand, and each neuron corresponds to a joint angle.

We have evaluated the grasp mapping on three different robot hands in order to study the mapping
with respect to various levels of kinematics complexity. We first evaluated how good mapping we
could obtain, using just seven training postures: open hand, each individual finger closed, and each
half-closed. In the evaluation presented in [16], we have first concentrated only on posture
mapping. While this mapping allows the user to form any posture with the robot hand, its accuracy
may not be sufficient to grasp objects in an imitation scenario. In order to cope with this problem,
we have also evaluated a system where, in the input layer of the ANN, we introduce an additional
neuron representing the size of the object. At this point, we assume the object to consist of a basic
shape with the form of a cylinder or a cube. The size indicates the object radius for a cylindrical
object, or the side of a cubic object. Thus, we need separate networks for grasping cylinders and
cubes.

The mapping system has also been used for automatic grasp generation for robotic hands, which is
presented in detail in Deliverable D2.1. Here, experience and shape primitives are used in synergy
and provide a basis not only for grasp generation but also for a grasp evaluation process when the
exact pose of the object is not available. The entire grasp sequence is thoroughly evaluated in a
simulated environment, from learning a grasp to actually reaching it, including dynamic simulation
of the grasp execution and modelling of corrective movements. Details are given in reference [E].

Page 9 of 11

IST-FP6-IP-027657 / PACO-PLUS Public

6.2 Grasp Planning and Visual Object Localization
To enable starting of manipulation and exploration tasks on a humanoid robot with five-fingered hands, we
presented in [F] an integrated approach for grasp planning and visual object recognition and localisation. The
central idea of this system is the existence of a database with the models of all the objects present in the robot
workspace. From this central fact we developed two necessary modules: a visual system able to recognize
and localize objects in real-time using stereo vision, and an offline grasp analyzer that provides the most
feasible grasps configuration for each object.

The results provided by these modules are stored and used by the control system of the humanoid to decide
and execute the grasp of a particular object. The offline grasp analysis system determines the best grasp for
the objects by employing a simulation system, together with CAD models of the objects and the hand. The
results of this analysis are added to the object database using a description suited for the requirements of the
grasp execution modules.

A stereo camera system is used for a real-time object localization using a combination of appearance-based
and model-based methods. Given an object, a grasp of that object will be described by the following features
(Figure 5): Grasp type, grasp starting point (GSP), approaching direction, and hand orientation.

Figure 5: The used five-fingered anthropomorphic hand with eight independent joints (left) and a schematics
with the grasp descriptors.

We perform an extensive analysis for each object that consists of testing a wide variety of hand preshapes
and approach directions. This analysis is carried out on the simulation environment GraspIt! [17], where each
tested grasp is evaluated according to a quality criterion. The resulting best grasps for each object are stored
in order to be used during online execution on the robot. We considered five grasp types: precision pinch and
tripod, power hook, cylindrical, and spherical. They are depicted in Figure 6.

Figure 6: Hand preshapes for five grasp types.

(c) Spherical (e) Tripod (d) Pinch (b) Cylindrical (a) Hook

We want to emphasize that our approach in [F] describes a first step towards a complete humanoid grasping
system. At this stage, the use of object and hand models allows the fast development and testing of multiple

Page 10 of 11

IST-FP6-IP-027657 / PACO-PLUS Public

interactive manipulation and grasping skills. In the long-term, it is our purpose to develop grasping and
manipulation strategies allowing to deal with unmodelled and unknown objects.

7. Links to other Workpackages

The work on human motion capture presented here relates to the ideas presented in WP3. As the
part of WP8, we have mainly concentrated on vision based, markerless human tracking for the goal
of action understanding and imitation. In WP3, we concentrate primarily on the definition of action
representation as well as modelling and evaluation of different methodologies for action recognition
and understanding through motor primitives.

A part of the work on grasping relates partially to WP2. However, in WP8 we are mostly interested
in the issue of posture mapping from a human to robot hand, while WP2 concentrates on the
modelling and evaluation of closed-loop grasp control and corrective movements.

Attached Papers

[A] P. Azad, A. Ude, T. Asfour, G. Cheng, and R. Dillmann. Stereo-based Markerless 3D Human

Motion Capture using Multiple Cues. In International Workshop on Vision Based Human-Robot
Interaction, Palermo, Italy, 2006.

[B] P. Azad, T. Asfour, and R. Dillmann. Toward an Unified Representation for Imitation of Human
Motion on Humanoids. In International Conference on Robotics and Automation (ICRA),
Roma, Italy, 2007 (accepted to).

[C] T. Asfour, F. Gyarfas, P. Azad and R. Dillmann. Imitation Learning of Dual-Arm Manipulation
Tasks in Humanoid Robots. In IEEE-RAS International Conference on Humanoid Robots
(Humanoids 2006), Genoa, Italy, December 2006.

[D] M. Riley, A. Ude, C. G. Atkeson, and G. Cheng. Coaching: An Approach to Efficiently and
Intuitively Create Humanoid Robot Behaviors. In International Conference on Humanoid
Robots (Humanoids 2006), Genova, Italy, 2006.

[E] J. Tegin, J. Wikander, S. Ekvall, D. Kragic, B. Illev. Experience based Learning and Control of
Robotic Grasping In IEEE-RAS International Conference on Humanoid Robots (Humanoids
2006) - Workshop 'Towards Cognitive Humanoid Robots, Genova, Italy, 2006.

[F] A. Morales, T. Asfour, P. Azad, S. Knoop and R. Dillmann. Integrated Grasp Planning and
Visual Object Localization For a Humanoid Robot with Five-Fingered Hands. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Beijing, China, 2006.

References

[1] J. Deutscher, A. Blake, and I. Reid, “Articulated Body Motion Capture by Annealed Particle
Filtering. In Computer Vision and Pattern Recognition (CVPR), Hilton Head, USA, 2000, pp.
2126–2133.

Page 11 of 11

IST-FP6-IP-027657 / PACO-PLUS Public

[2] H. Sidenbladh, Probabilistic Tracking and Reconstruction of 3D Human Motion in Monocular

Video Sequences. Ph.D. dissertation, Royal Institute of Technology, Stockholm, Sweden,
2001.

[3] T. Asfour, K. Regenstein, P. Azad, J. Schröder, A. Bierbaum, N. Vahrenkamp, and R.
Dillmann. ARMAR-III: An Integrated Humanoid Platform for Sensory-Motor Control. In
IEEE-RAS International Conference on Humanoid Robots (Humanoids 2006), Genoa, Italy,
December 2006

[4] T. Gumpp, P. Azad, K. Welke, E. Oztop, R. Dillmann, and G. Cheng. Unconstrained Real-time
Markerless Hand Tracking for Humanoid Interaction. In International Conference on Humanoid
Robots (Humanoids 2006), Genova, Italy, 2006.

[5] Vicon Peak. http://www.vicon.com.

[6] Y. Kuniyoshi, M. Inaba, and H. Inoue, Learning by watching: Extracting reusable task
knowledge from visual observation of human performance. In IEEE Transactions on Robotics
and Automation, vol. 10, pp. 799–822, 1994.

[7] R. Dillmann, “Teaching and learning of robot tasks via observation of human performance. In
Robotics and Autonomous Systems, vol. 47, no. 2-3, pp. 109–116, 2004.

[8] A. Billard and R. Siegwart, “Robot learning from demonstration. In Robotics and Autonomous
Systems, vol. 47, no. 2-3, pp. 65–67, 2004.

[9] A. Billard, Y. Epars, S. Calinon, S. Schaal, and G. Cheng. Discovering optimal imitation
strategies. In Robotics and autonomous systems, vol. 47, pp. 69–77, 2004.

[10] S. Calinon, F. Guenter, and A. Billard, “Goal-directed imitation in a humanoid robot. In
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2005),
2005.

[11] C. G. Atkeson and S. Schaal, “Robot learning from demonstration. In Machine Learning:
Proceedings of the Fourteenth International Conference (ICML 1997), 1997, pp. 1040–1046.

[12] S. Schaal, A. Ijspeert, and A. Billard. Computational approaches to motor learning by
imitation. In Philosophical Transactions of the Royal Society of London: Series B, Biological
Science, vol. 358, no. 1431, pp. 537–547, 2003.

[13] Y. Demiris and G. Hayes. Imitation as a dual-route process featuring predictive learning
components: a biologically-plausible computational model. In Imitation in animals and
artifacts, pp. 327–361, 2002.

[14] S. Schaal. Is imitation learning the route to humanoid robots? In Trends in Cognitive Sciences,
vol. 3, no. 6, pp. 233–242, 1999.

[15] S. Calinon and A. Billard. Stochastic gesture production and recognition model for a humanoid
robot. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2005), 2005, pp. 2769–2774.

[16] J. M. C. Jorda. Intelligent task-level grasp mapping for robot control'. Master thesis TRITA-
CSC-CV 2006:3, CVAP304, ISRN-KTH/CSC/CV--06/03--SE, Sept. 2006
http://www.nada.kth.se/cvap/cvaplop/lop-cvap.html

[17] A. Miller and P. Allen. Graspit!: A versatile simulator for robotic grasping. In IEEE Robotics
an Automation Magazine, vol. 11, no. 4, pp. 110-122, Dec. 2004.

http://www.nada.kth.se/cvap/cvaplop/lop-cvap.html

Image-based Markerless 3D Human Motion
Capture using Multiple Cues

Pedram Azad1, Ales Ude2, Tamim Asfour1, Gordon Cheng3, and Ruediger
Dillmann1

1 Institute for Computer Science and Engineering, University of Karlsruhe,
Germany
azad|asfour|dillmann@ira.uka.de

2 Jozef Stefan Institute, Ljubljana, Slowenia
ales.ude@ijs.si

3 Computational Neuroscience Laboratories, ATR, Kyoto, Japan
gordon@atr.jp

1 Introduction

The idea of markerless human motion capture is to capture human motion
without any additional arrangements required, by operating on image se-
quences only. Implementing such a system on a humanoid robot and thus
giving the robot the ability to perceive human motion would be valuable for
various reasons. Captured trajectories, which are calculated in joint angle
space, can serve as a solid base for learning human-like movements. Commer-
cial human motion capture systems such as the VICON system, which are
popular both in the film industry and in the biological research field, require
reflective markers and time consuming manual post-processing of captured se-
quences. Therefore, such systems can only provide data for highly supervised
offline learning algorithms. In contrast, a real-time human motion capture
system using the image data acquired by the robot’s head would make one
big step toward autonomous online learning of movements. Another applica-
tion for the data computed by such a system is the recognition of actions
and activities, serving as a perceptive component for human-robot interac-
tion. However, providing data for learning of movements – often referred to
as learning-by-imitation – is the more challenging goal, since transforming
captured movements in configuration space into the robot’s kinematics and
reproducing them on the robot sets the higher demands to smoothness and
accuracy.

For application on an active head of a humanoid robot, a number of re-
strictions has to be coped with. In addition to the limitation to two cameras
positioned at approximately eye distance, one has to take into account that
an active head can potentially move. Furthermore, computations have to be

2 Pedram Azad et al.

performed in real-time, preferably at a frame rate of 30 Hz or higher, in order
to achieve optimal results.

The general problem definition is to find the correct configuration of the
underlying articulated 3d human model for each input image respectively
image tuple. The main problem is that search space increases exponentionally
with the number of Degrees Of Freedom (DOF). A realistic model of the
human body has at least 25 DOF, or 17 DOF if only modeling the upper
body, leading in both cases to a very high-dimensional search space.

There are several approaches to solve the general problem of markerless
human motion capture, differing in the sensors incorporated and the intended
application. When using multiple cameras, i.e. three or more cameras located
around the area of interest, two different systems have shown very good re-
sults. The one class of approaches is based on the calculation of 3d voxel data,
as done by [5, 13]. The other approach is based on particle filtering and be-
came popular by the work of Deutscher et al. [6]. Recently, we have started to
adapt and extend this system for real-time application on a humanoid robot
head [3], presenting the newest results in the following. Other approaches de-
pend on incorporation of an additional 3d sensor and the Iterative Closest
Point (ICP) algorithm, such as the Swiss Ranger, as presented by [10]. How-
ever, for this system, the goal is not to acquire smooth trajectories but to
classify the activities of a human into categories, such as walking, waving,
bowing, etc. Other approaches concentrate on deriving as much information
as possible from monocular image sequences [15], and reducing the size of
the search space by applying restrictions to the range of possible movements,
e.g. by incorporating a task-specific dynamic model [14]. Our experience is
that it is not possible to build a general 3d human motion capture system,
since in many cases a single camera is not sufficient to determine accurate 3d
information, based on the principle depth through scaling. A further strategy
to reduce search space is search space decomposition i.e. performing a hierar-
chical search, as done by [8]. However, by doing this, the power of the system
is limited, since in many cases the global view is needed to determine the
correct configuration, e.g. for rotations around the body axis, the information
provided by the positions of the arms is very helpful.

We use the Bayesian framework Particle Filtering to compute the prob-
ability distribution of the current configuration, as described in detail in [3].
Particle filtering, also known as the Condensation Algorithm in the context
of visual tracking, as introduced in [9], has proven to be an applicable and
robust technique for contour tracking in general [4] [11] [12], and for human
motion capture in particular, as shown in [6] [15].

In particle filters, a larger search space requires a greater number of parti-
cles. One strategy to cope with this problem is to reduce the dimensionality of
configuration space by restricting the range of the subject’s potential move-
ments, as already mentioned, or to approach a linear relationship between the
dimension of configuration space and the size of the search space by perform-
ing a hierarchical search. A general but yet effective way to reduce the number

Image-based Markerless 3D Human Motion Capture using Multiple Cues 3

of particles is based on the idea of Simulated Annealing, presented in [6, 7].
However, the final system, which uses three cameras at fixed positions in the
corners of a room, requires on average 15 seconds to process one frame on a
1 GHz PIII CPU [7].

Theoretically, an edge based cue would be already sufficient to track the
movements of a human – if using an adequate number of particles. To span
the search space with a sufficient resolution when using an edge based cue
only, millions of particles would be necessary for a successful tracker. There-
fore, the common approach using particle filters for human motion capture is
to combine edge and region information within the likelihood function, which
evaluates a given configuration matching the current observation. Although
this is a powerful approach, the computational effort is relatively high. Espe-
cially the evaluation of the region based cue is computationally expensive.

Our strategy is to combine as many cues derivable from the input images
as possible to reduce search space implicitly by achieving a higher convergence
of the probability distribution. We present a running system on our humanoid
robot ARMAR using the benefits of a stereo setup and combining edge, region
and skin color information. The initial configuration is found automatically – a
necessity for any perceptive component of a vision system. The system is able
to capture real 3d motion with a high smoothness and accuracy for a purely
vision based algorithm, without using markers or manual post-processing. The
processing rate of our algorithm is 15 Hz on a 3 GHz CPU.

2 Using Particle Filters for Human Motion Capture

Particle filtering has become popular for various visual tracking applications
– often also referred to as the Condensation Algorithm. The benefits of a
particle filter compared to a Kalman filter are the ability to track non-linear
movements and the property to store multiple hypotheses simultaneously. The
price one has to pay for these advantages is the higher computational effort.
The probability distribution representing the likelihood of the configurations
in configuration space matching the observations is modeled by a finite set
of N particles S = {(s1, π1), ..., (sN, πN)}, where si denotes one configuration
and πi the likelihood associated with it. The core of a particle filter is the
likelihood function p(z|s) computing the probabilities πi, where s denotes a
given configuration and z the current observations i.e. the current image pair.
This likelihood function must be evaluated for each particle for each frame
i.e. N · f times per second. As an example this means for N = 1000 particles
and f = 30 Hz N · f = 30000 evaluations per second. A detailed description
of using particle filters for human motion capture can be found in [3].

2.1 Edge Cue

Given the projected edges of a configuration s of the human model and the
current input image z, the likelihood function p(z|s) for the edge cue calculates

4 Pedram Azad et al.

the likelihood that the configuration leading to the set of projected edges is
the proper configuration i.e. matching the gradient image the most. The basic

Fig. 1. Illustration of the search of edges

technique is to traverse the projected edges and search at fixed distances ∆
for high-contrast features perpendicular to the projected edge within a fixed
search distance δ (in each direction) i.e. finding edge pixels in the camera
image, as illustrated in figure 1 [9]. For this purpose, usually the camera
image is preprocessed to generate an edge image using a gradient based edge
detector. The likelihood is calculated on the base of the Sum of Squared
Differences (SSD). For convenience of notation, it is assumed that all edges
are contained in one contiguous spline with M = L/∆ discretizations, where
L denotes the sum of the length of all projected edges in the current image.
The distance at which an edge feature has been found for the mth point is
denoted as dm and µ denotes a constant maximum error which is applied
in case no edge feature could be found. The likelihood function can then be
formulated as:

p(z|s) ∝ exp

{
− 1

2σ2M

M∑
m=1

f(dm, µ)

}
(1)

where f(ν, µ) = min(ν2, µ2). Another approach is to spread the gradients
in the gradient image with a Gaussian Filter or any other suitable operator
and to sum the gradient values along a projected edge, as done in [6], rather
than performing a search perpendicular to each pixel of the projected edge.
By doing this, the computational effort is reduced significantly, even when
picking the highest possible discretization of ∆ = 1 pixel. Furthermore, one
does not have to make the non-trivial decision which gradient pixel to take
for each pixel of the projected edge. Assuming that the spread gradient map
has been remapped between 0 and 1, the modified likelihood function can be
formulated as:

pg(z|s) ∝ exp

− 1
2σ2

gMg

Mg∑
m=1

(1− gm)2

 (2)

where gm denotes the remapped gradient value for the mth point.

Image-based Markerless 3D Human Motion Capture using Multiple Cues 5

2.2 Region Cue

The second cue commonly used is region-based, for which a foreground seg-
mentation technique has to be applied. The segmentation algorithm to be
picked is independent from the likelihood function itself. The most common
approach is background subtraction. However, this segmentation method as-
sumes a static camera setup and is therefore not suitable for application on
a potentially moving robot head. Another option is to segment motion by
using difference images or optical flow. Both methods also assume a static
camera setup. It has to be mentioned that there are extensions of the ba-
sic optical flow algorithm that allow to distinguish real motion in the scene
and ego-motion [16]. However, the problem with all motion based methods –
which does not include background subtraction – is that the quality of the
segmentation result is not sufficient for a region-based cue. Only those parts of
the image that contain edges or any other kind of texture can be segmented,
and the silhouette of segmented moving objects often contains parts of the
background, resulting in a relatively blurred segmentation result.

Having segmented the foreground in the input image, where foreground
pixels are set to 1 and background pixels are set to 0, the likelihood function
commonly used can be formulated as [6]:

pr(z|s) ∝ exp

{
− 1

2σ2
rMr

Mr∑
m=1

(1− rm)2
}

(3)

where rm denotes the segmentation value of the mth pixel from the set of
pixels of all projected body part regions. Although this function can be opti-
mized further, using the fact that rm ∈ {0, 1}, its computation is still rather
inefficient. The bottleneck is the computation of the set of all M projected
pixels together with reading the corresponding values from the segmentation
map.

2.3 Fusion of Multiple Cues

The both introduced cues are fused by simply multiplying the two likelihood
functions resulting in:

pg,r(z|s) ∝ exp

{
−1

2

(∑Mg

m=1(1− gm)2

σ2
gMg

+
∑Mr

m=1(1− rm)2

σ2
rMr

)}
(4)

Any other cue can be fused within the particle filter with the same rule.
One way of combining the information provided by multiple cameras is to
incorporate the likelihoods for each image in the exact same manner [6]. In our
system, we additionally use 3d information which can be computed explicitly
by knowing the stereo calibration. This separate cue is then combined with
the other likelihoods with the same method, as will be described in Section 3.

6 Pedram Azad et al.

3 Multiple Cues in the proposed System

In this section, we want to introduce the cues our system is based on. Instead
of the commonly used region-based likelihood function pr, as introduced in
Equation (3), we incorporate the result of foreground segmentation in a more
efficient way, as will be introduced in Section 3.1. In Section 3.2 we will present
the results of studies regarding the effectivity of the introduced cues, leading
to a new likelihood function. As already mentioned, we use the benefits of a
stereo system in an additional explicit way, as will be introduced in 3.3. The
final combined likelihood function is presented in Section 3.4.

3.1 Edge Filtering using Foreground Segmentation

When looking deeper into the region-based likelihood function pr, one can
state two separate abilities:

• Leading to a faster convergence of the particle filter
• Compensating the failure of the edge-based likelihood function in cluttered

backgrounds

The first property is discussed in detail in Section 3.2, and an efficient alterna-
tive is presented. The second property can be implemented explicitly by using
the result of foreground segmentation directly to generate a filtered edge map,
containing only foreground edge pixels. In general, there are two possibilities:

• Filtering the gradient image by masking out background pixels with the
segmentation result

• Calculating gradients on the segmentation result

While the first alternative preserves more details in the image, the second
alternative computes a sharper silhouette. Furthermore, in the second case
gradient computation can be optimized for binarized input images, which
is why we currently use this approach. As explained in Section 2.2, the only
commonly used foreground segmentation technique is background subtraction,
which we cannot use, since the robot head can potentially move. It has to be
mentioned that taking into account that the robot head can move is not a
burden, but there are several benefits of using an active head, which will be
discussed in Section 7. As an alternative to using background subtraction, we
are using a solid colored shirt, which allows us to perform tests practically
anywhere in our lab. Since foreground segmentation is performed in almost
any markerless human motion capture system, we do not restrict ourselves
compared to other approaches, but only trade in the restriction of wearing
a colored shirt for the need of having a completely static setup. We want to
point out that the proposed generation of a filtered edge map does not depend
on the segmentation technique.

Image-based Markerless 3D Human Motion Capture using Multiple Cues 7

3.2 Cue Studies and Distance Likelihood Function

In order to understand which are the benefits and drawbacks of each likeli-
hood function and thus getting a feeling of what a likelihood function can do
and what not, it is helpful to take a look at the corresponding probability
distributions in a simple one-dimensional example. The experiment we use in
simulation is tracking a square of fixed size in 2d, which can be simplified
furthermore to tracking the intersection of a square with a straight line along
the straight line i.e. in one dimension. The model of the square to be tracked
is defined by the midpoint (x, y) and the edge length k, where y and k are
constant and x is the one dimensional configuration to be predicted. In the
following, we want to compare three different likelihood functions separately:
the gradient-based cue pg, the region-based cue pr, and a third cue pd, which
is based on the euclidian distance:

pd(z|s) ∝ exp
{
− 1

2σ2
d

|f(s)− c|2
}

(5)

where c is an arbitrary dimensional vector which has been calculated previ-
ously on the base of the observations z, and f : Rdim(s) → Rdim(c) is a transfor-
mation mapping a configuration s to the vector space of c. In our example, c
denotes the midpoint of the square in the observation z, dim(s) = dim(c) = 1,
and f(s) = s. For efficiency considerations, we have used the squared euclid-
ian distance, practically resulting in the SSD. Evidently, in this simple case,
there is no need to use a particle filter for tracking, if the configuration to be
predicted c can be determined directly. However, in this example, we want
to show the characteristic properties of the likelihood function pd, in order to
describe the performance in the final likelihood function of the human motion
capture system, presented in the sections 3.3 and 3.4. For the experiments, we
used N = 15 particles and picked σg = σr =

√
5 and σd = 0.1. In the update

step of the particle filter we applied gaussian noise only, with an amplification
factor of ω = 3. The task was to find a static square with k = 70, based on
the pixel data at the intersection of the square with the x-axis. As one can see
in Figure 2, the gradient-based likelihood function pg produces the narrowest
distribution. The probability distributions produced by pr and pd are rela-
tively similar; their narrowness can be adjusted by varying σr respectively σd.
The effect of each distribution can be seen in Figure 3. While with starting
points in a close neighborhood of the goal the gradient cue leads to the fastest
convergence, the region cue and the distance cue converge faster the farther
the starting point is away from the goal. In the figures 4-6, the initial dis-
tance from the goal ∆x0 was varied. As expected, pg leads to the fastest and
smoothest convergence for ∆x0 = 5. ∆x0 = 15 is already close to the border
of the convergence radius for pg; the particle filter first tends to the wrong
direction and then finally converges to the goal position. With ∆x0 = 80, it
is by far impossible for pg to find the global maximum, it converges to the
(wrong) local maximum, matching the right edge of the model with the left

8 Pedram Azad et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 130 140 150 160 170 180 190

P
ro

ba
bi

lit
y

Object Position X

Gradient Cue
Region Cue

Distance Cue

Fig. 2. Comparison of Probablity Distributions

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80

Ite
ra

tio
ns

 N
ee

de
d

Initial X Distance

Gradient Cue
Region Cue

Distance Cue

Fig. 3. Comparison of iteration numbers: an iteration number of 100 indicates that
the goal was not found

edge of the square in the image. For ∆x0 = 5 and ∆x0 = 15, pr and pd behave
quite similar. However, for ∆x0 = 80, pd converges significantly faster, since
it has the global view at any time. In contrast, pr has to approach the goal
slowly to reach the area, in which it can converge fast. As a conclusion, one
can state that whenever possible to determine a discrete point directly, it is
the best choice to use the likelihood function pd rather than pr. While it is not
possible to do a successful tracking without the edge cue – especially when
scaling has to be taken into account – it is also not possible to rely on the
edge cue only. The higher the dimensionality of search space is, the more dras-
tic the lack of a sufficient number of particles becomes. Thus, in the case of
human motion capture with dimensions of 17 and greater, the configurations
will never perfectly match the image observations. Note, that the simulated
experiment examined a static case. In the dynamic case, the robustness of the

Image-based Markerless 3D Human Motion Capture using Multiple Cues 9

 0

 1

 2

 3

 4

 5

 0 5 10 15 20

P
re

di
ct

io
n

E
rr

or

Iteration

Gradient Cue
Region Cue

Distance Cue

Fig. 4. Comparison of convergence for ∆x0 = 5

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25

P
re

di
ct

io
n

E
rr

or

Iteration

Gradient Cue
Region Cue

Distance Cue

Fig. 5. Comparison of convergence for ∆x0 = 15

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90

P
re

di
ct

io
n

E
rr

or

Iteration

Gradient Cue
Region Cue

Distance Cue

Fig. 6. Comparison of convergence for ∆x0 = 80

tracker is always related to the frame rate at which images are captured and
processed, and to the speed of the subject’s movements. In the next section,
we show how the likelihood function pd is incorporated in our system in 3d,
leading to a significant implicit reduction of the search space.

10 Pedram Azad et al.

3.3 Using Stereo Information

There are various ways to use stereo information in a vision system. One
possibility is to calculate depth maps, however, the quality of depth maps is
in general not sufficient and only rather rough information can be derived from
them. Another option in a particle filter framework is to project the model
into both the left and the right image and evaluate the likelihood function for
both images and multiply the the resulting likelihoods, as already mentioned
in Section 2.3. This approach can be described as implicit stereo. A third
alternative is to determine correspondences for specific features in the image
pair and calculate the 3d position for each match explicitly by triangulation.

In the proposed system, we use both implicit stereo and stereo triangu-
lation. As features we use the hands and the head, which are segmented by
color and matched in a preprocessing step. Thus, the hands and the head
can be understood as three natural markers. The image processing line for
determining the positions of the hands and the head in the input image is
described in Section 4.

In principal, there are two alternatives to use the likelihood function pd

together with skin color blobs: apply pd in 2d for each image separately and
let the 3d position be calculated implicitly by the particle filter, or apply pd in
3d to the triangulated 3d positions of the matched skin color blobs. We have
experienced that the first approach does not lead to a robust acquisition of 3d
information. This circumstance is not surprising, since in a high dimensional
space the mismatch between the number of particles used and the size of the
search space is more drastic. This leads, together with the fact the in Figure
4 the prediction result of the likelihood function pd is noisy within an area of
1-2 pixels in a very simple experiment, to a considerable error of the implicit
stereo calculation in the real scenario. The accuracy of stereo triangulation
decreases with the distance from the camera in a squared relationship. In
order to observe the complete upper body of a human, the subject has to
be located at a distance of at least 2-3 meters from the camera head. Thus,
a potential error of two or more pixels in each camera image can lead to a
significant error of the triangulation result. For this reason, in the proposed
system, we apply pd in 3d to the triangulation result of matched skin color
blobs. By doing this, the particle filter is forced to always move the peak of
the probability distribution toward configurations in which the positions of
the hands and the head from the model are very close to the real 3d positions,
which have been determined on the base of the image observations.

3.4 Final Likelihood Function

In the final likelihood function, we use two different components: the edge
cue based on the likelihood function pg, and the distance cue based on the
likelihood function pd, as explained in the sections 3.2 and 3.3. We have expe-
rienced that when leaving out the square in Equation (2), i.e. calculating the

Image-based Markerless 3D Human Motion Capture using Multiple Cues 11

Sum of Absolute Differences (SAD) instead of the Sum Of Squared Differences
(SSD), the quality of the results remains the same for our application. In this
special case one can optimize pg further, resulting in:

p′
g(z|s) ∝ exp

− 1
2σ2

g

(1− 1
Mg

Mg∑
m=1

gm)

 (6)

For a system capable of real-time application, we have decided to replace the
region-based cue based on pr completely by the distance cue based on pd. As
our experimental results show, and as expected by the studies from Section
3.2, by doing this, a relatively small set of particles is sufficient for a successful
system. The distance cue drags the peak of the distribution into a subspace in
which the hands and the head are located at the true positions. Thus, search
space is reduced implicitly, practically leaving the choice in this subspace to
the cooperating gradient cue, based on the likelihood function p′

g. In order to
formulate the distance cue, first the function di(s, c) is defined as:

di(s, c) :=
{
|fi(s)− c|2 : c 6= 0

0 : otherwise (7)

where n := dim(s) is the number of DOF of the human modal, dim(c) = 3,
i ∈ {1, 2, 3} to indicate the function for the left hand, right hand or the head.
The transformation fi : Rn → R3 transforms the n-dimensional configuration
of the human model into the 3d position of the left hand, right hand or head
respectively, using the forward kinematics of the human model. Furthermore:

g(c) :=
{

1 : c 6= 0
0 : otherwise (8)

The likelihood function for the distance cue is then formulated as:

p′
d(z|s) ∝ exp

{
− 1

2σ2
d

d1(s, c1) + d2(s, c2) + d3(s, c3)
g(c1) + g(c2) + g(c3)

}
(9)

where the vector ci are computed on the base of the image observations z using
skin color segmentation and stereo triangulation, as explained in Section 3.3. If
the position of a hand or the head can not be determined because of occlusions
or any other disturbance, the corresponding vector ci is set to the zero vector.
Note that this does not falsify the resulting probability distribution in any way.
Since all likelihoods of a generation k are independent from the likelihoods
calculated for any previous generation, the distribution for each generation
is also independent. Thus, it does not make any difference that in the last
image pair one ci was present, and in the next image pair it is not. The final
likelihood function is the product of p′

g and p′
d:

p(z|s) ∝ exp

−1
2

 1
σ2

d

3∑
i=1

di(s, ci)
g(ci)

+
1
σ2

g

(1− 1
Mg

Mg∑
m=1

gm)

 (10)

12 Pedram Azad et al.

4 Image Processing Line

The image processing line is a pipeline, transforming the input image pair into
a skin color map and a gradient map, which are then used by the likelihood
function presented in Section 3.4. In Figure 7, the image processing line for
one image is shown; in the system the pipeline is applied twice: once for the
left and once for the right input image. After the input images are smoothed
with a 3 × 3 Gaussian kernel, the HSI image is computed. The HSI image is
then filtered twice, once for skin color segmentation and once for foreground
segmentation by segmenting the shirt color. A simple 1× 2 gradient operator
is applied to the segmented foreground image, which is sufficient and the most
efficient for a binarized image. Finally, a gradient pixel map is generated by
applying a 3× 3 or 5× 5 Gaussian kernel, as done in [6]. Currently, the hands

Smooth HSI

Skin Color
Segmentation

Shirt Segmentation

Gradients

Eroded Skin Color MapGradient Pixel Map

Fig. 7. Visualization of the image processing line

and the head are segmented using a fixed interval color model in HSI color
space. The resulting color blobs are matched, taking into account their size,
the ratio between the height and width of the bounding box, and the epipolar
geometry. By doing this, false regions in the background can be discarded
easily. Finally, the centroids of matched regions are triangulated using the
parameters of the calibrated stereo setup. As will be discussed in Section 7,
we are currently working on implementing a more sophisticated hand-/head-
tracking system, which allows to deal with occlusions of skin colored regions.

5 Integrating Vision Toolkit

The complete system has been implemented using the Integrating Vision
Toolkit (IVT) extensively [2]. With the IVT, the complete image processing

Image-based Markerless 3D Human Motion Capture using Multiple Cues 13

line presented in Section 4 could be implemented in less than 50 lines of code.
The IVT provides a clean interface to capture devices of any kind, providing
a convenient application for stereo camera calibration based on the OpenCV.
For implementing Graphical User Interfaces, QT is integrated optionally, as
well as the OpenCV library for image processing routines which are not yet
available. The library is implemented in an easy-to-use software architecture,
hiding all dependencies behind clean interfaces. The IVT fully supports the
operating systems Linux, Mac OS and Windows. The project is available on
Sourceforge; the link is included in the References.

6 Experimental Results

The experiments being presented in this section were performed on the hu-
manoid robot ARMAR. In the robot head, two Dragonfly cameras are po-
sitioned at a distance of approximately eleven centimeters. As input for the
image processing line, we used a resolution of 320× 240, captured at a frame
rate of 25 Hz. The particle filter was run with a set of N = 1000 particles.
The computation times for one image pair, processed on a 3 GHz CPU, are
listed in Table 1. As one can see, the processing rate of the system is 15
Hz, which is not yet real-time for an image sequence captured at 25 Hz,
but very close. Of course, if moving more slowly, a processing rate of 15
Hz is sufficient. The relationship between the speed of the movements to
be tracked and the frame rate at which the images are captured (and for
real-time application processed) is briefly discussed in Section 7. In Figure

Time [ms]

Image Processing Line 14

1000 Forward Kinematics and Projection 23

1000 Evaluations of Likelihood Function 29

Total 66

Table 1. Processing times with N = 1000 particles on a 3 GHz CPU

8, six screenshots are shown which show how the system automatically ini-
tializes itself. No configuration is told the system; it autonomously finds the
only possible configuration matching the observations. Figure 9 shows four
screenshots of the same video sequence, showing the performance of the hu-
man motion capture system tracking a punch with the left hand. The cor-
responding video and videos of other sequences can be downloaded from
http://i61www.ira.uka.de/users/azad/videos.

14 Pedram Azad et al.

Fig. 8. Screenshots showing automatic initialization

Fig. 9. Screenshots showing tracking performance

7 Discussion

We have presented an image-based markerless human motion capture system
for real-time application. The system is capable of computing very smooth and
accurate trajectories in configuration space for such a system. We presented
our strategy of multi-cue fusion within the particle filter, and showed the
results of studies examining the properties of the cues commonly used and
a further distance cue. We showed that by using this distance cue combined
with stereo vision, which has not yet been used in markerless human motion
capture, we could reduce the size of the search space implicitly. This reduction
of search space allows us to capture human motion with a particle filter using
as few as 1000 particles with a processing rate of 15 Hz on a 3 GHz CPU. We
plan to investigate and implement several improvements of the system:

• Currently, the subsystem for detection of the hands and the head in the
images is not powerful enough to deal with occlusions of skin-colored re-
gions in the image. To overcome this problem, we are currently working
on implementing a more sophisticated hand and head tracking system, as
presented by Argyros et al. [1]. By doing this, we expect the system to be

Image-based Markerless 3D Human Motion Capture using Multiple Cues 15

able to robustly track long and complicated sequences, since it will not be
required to try to avoid occlusions between the hands and the hand.

• For any kind of tracking, the effective size of the search space increases
exponentially with the potential speed of the movements respectively de-
creases exponentially with the frame rate at which images are captured.
For this reason, the human motion capture systems with the most convinc-
ing results use a framerate of 60 Hz or higher, as done by [6]. Commercial
marker-based tracking systems use a frame rate of 100 Hz up to 400 Hz
and higher, to acquire smooth trajectories. For this reason, we want to
perform further tests with the new Dragonfly2 camera, which is capable
of providing the same image data as the Dragonfly camera, but at a frame
rate of 60 Hz instead of 30 Hz.

• In the theory of particle filters, there exist several methods to decrease
the effectively needed number of particles by modification of the standard
filtering algorithm. For this purpose, we want to investigate the work on
Partitioned Sampling [12] and Annealed Particle Filtering [6].

• We plan to extend the human model by incorporating the legs and feet
into the human model. Especially for this purpose, we want to use the
benefits of an active head, since with a static head it is hardly possible to
have the complete human in the field of vision of the robot at one time
step.

To our best knowledge, the proposed system is the first purely image-based
markerless human motion capture system designed for a robot head which
can track human movements with such accuracy and smoothness, and being
suitable for real-time application at the same time. The system does not as-
sume a static camera in any way; future work will also concentrate on running
experiments using this benefit of being able to capture human motion while
tracking the subject actively.

Acknowledgment

The work described in this paper was partially conducted within the EU
Cognitive Systems project PACO-PLUS (FP6-2004-IST-4-027657) and funded
by the European Commission and the German Humanoid Research project
SFB588 funded by the German Research Foundation (DFG: Deutsche For-
schungsgemeinschaft).

References

1. A. A. Argyros and M. I.A. Lourakis. Real-time tracking of multiple skin-colored
objects with a possibly moving camera. In European Conference on Computer
Vision (ECCV), volume 3, pages 368–379, Prague, Czech Republic, 2004.

2. P. Azad. Integrating Vision Toolkit. http://ivt.sourceforge.net.

16 Pedram Azad et al.

3. P. Azad, A. Ude, R. Dillmann, and G. Cheng. A full body human motion capture
system using particle filtering and on-the-fly edge detection. In International
Conference on Humanoid Robots (Humanoids), Santa Monica, USA, 2004.

4. A. Blake and M. Isard. Active Contours. Springer, 1998.
5. F. Caillette and T. Howard. Real-time markerless human body tracking with

multi-view 3-d voxel reconstruction. In British Machine Vision Conference,
volume 2, pages 597–606, Kingston, UK, 2004.

6. J. Deutscher, A. Blake, and I. Reid. Articulated body motion capture by an-
nealed particle filtering. In Computer Vision and Pattern Recognition (CVPR),
pages 2126–2133, Hilton Head, USA, 2000.

7. J. Deutscher, A. Davison, and I. Reid. Automatic partitioning of high dimen-
sional search spaces associated with articulated body motion capture. In Com-
puter Vision and Pattern Recognition (CVPR), pages 669–676, Kauai, USA,
2001.

8. D. Gavrila and L. Davis. 3-d model-based tracking of humans in action: a multi-
view approach. In International Conference on Computer Vision and Pattern
Recognition (CVPR), pages pp. 73–80, San Francisco, USA, 1996.

9. M. Isard and A. Blake. Condensation - conditional density propagation for
visual tracking. International Journal of Computer Vision, 29(1):5–28, 1998.

10. S. Knoop, S. Vacek, and R. Dillmann. Modeling joint constraints for an articu-
lated 3d human body model with artificial correspondences in icp. In Interna-
tional Conference on Humanoid Robots (Humanoids), Tsukuba, Japan, 2005.

11. J. MacCormick. Probabilistic models and stochastic algorithms for visual track-
ing. PhD thesis, University of Oxford, UK, 2000.

12. J. MacCormick and M. Isard. Partitioned sampling, articulated objects, and
interface-quality hand tracking. In European Conference Computer Vision
(ECCV), pages 3–19, Dublin, Ireland, 2000.

13. I. Mikic, M. Trivedi, E. Hunter, and P. Cosman. Human body model acquisi-
tion and tracking using voxel data. International Journal of Computer Vision,
53(3):199–223, 2003.

14. K. Rohr. Human movement analysis based on explicit motion models. Motion-
Based Recognition, pages 171–198, 1997.

15. H. Sidenbladh. Probabilistic Tracking and Reconstruction of 3D Human Mo-
tion in Monocular Video Sequences. PhD thesis, Royal Institute of Technology,
Stockholm, Sweden, 2001.

16. K. Wong and M. Spetsakis. Motion segmentation and tracking. In International
Conference on Vision Interface, pages 80–87, Calgary, Canada, 2002.

Toward an Unified Representation for Imitation of
Human Motion on Humanoids

Pedram Azad, Tamim Asfour and Rüdiger Dillmann
Institute for Computer Science and Engineering

University of Karlsruhe,
Haid-und-Neu-Strasse 7, 76131 Karlsruhe, Germany

Email: azad|asfour|dillmann@ira.uka.de

Abstract— In this paper, we present a framework for per-
ception, visualization, reproduction and recognition of human
motion. On the perception side, various human motion capture
systems exist, all of them having in common to calculate a
sequence of configuration vectors for the human model in the
core of the system. These human models may be 2D or 3D
kinematic models, or on a lower level, 2D or 3D positions of
markers. However, for appropriate visualization in terms of a 3D
animation, and for reproduction on an actual robot, the acquired
motion must be mapped to the target 3D kinematic model. On
the understanding side, various action and activity recognition
systems exist, which assume input of different kinds. However,
given human motion capture data in terms of a high-dimensional
3D kinematic model, it is possible to transform the configurations
into the appropriate representation which is specific to the recog-
nition module. We will propose a complete architecture, allowing
the replacement of any perception, visualization, reproduction
module, or target platform. In the core of our architecture,
we define a reference 3D kinematic model, which we intend
to become a common standard in the robotics community, to
allow sharing different software modules and having common
benchmarks.

I. I NTRODUCTION

In the recent past, research on visual perception and un-
derstanding of human motion has become of high interest.
On the one hand, a large number of various approaches
on the perception side exists, resulting in different human
motion capture systems, producing output in terms of different
models and stored in different formats. On the other hand,
many action recognition and activity recognition systems exist,
expecting input data specific to their own internal represen-
tation. Furthermore, any target platform for the reproduction
of human motion, namely 3D models for animation and
simulation purposes, and humanoid robots, expects human
motion capture data in terms of its own 3D kinematic model.
Because of this fact, currently it is not possible to exchange
single modules in an overall infrastructure for a humanoid
robot, including perception, visualization, reproduction, and
recognition of human motion. Furthermore, having common
benchmarks is only feasible when a common representation
for human motion is shared.

Methods for modeling, generating of human motion and
its reproduction on humanoid robots have been proposed in
robotics and computer graphics ([1], [2], [3], [4]). These
methods involve capturing full body motion of a human

performer using human motion capture systems and the trans-
formation of the motion to the kinematics of a humanoid
robot or human figures. To answer the question of how to
generate and represent motor primitives in imitation learning
architectures, several approaches have been proposed. In most
related researches, continuous Hidden Markov Models (HMM)
are used, where the Viterbi algorithm plays an important
role to generate a close motion to the observation. In [5], a
stochastic model has been proposed that abstracts the whole
body motion as symbols and integrates motion recognition,
generation and symbolization of motion patterns. Nakamura
presents in [6] a stochastic mimesis model for the imitation
of new observed motions without learning the motion and for
the online acquisition of motion patterns.

Human motion capture systems can be generally divided
into marker-based and markerless systems. Marker-based sys-
tems are widely used in the film and animation industry, and in
the research field of human motion analysis. One of the most
popular marker-based motion capture systems is the VICON
system [7], which can track a set of reflective markers that
are attached to the person to be tracked. Such systems can
acquire a very high accuracy and a high temporal resolution;
their output is a set of 3D positions of markers over time
in first place. This output data has then to be post-processed
manually, and if necessary translated into the configuration
space of a given 3D human model by determining rotations
on the base of adjacent markers, as done in [8].

Markerless systems are often used in the context of vi-
sual perception for humanoid robot systems. Recently, many
approaches have been proposed, differing in the number,
type, and arrangement of the sensors incorporated, real-time
applicability, the ability to perceive 2D or real 3D motion, and
the smoothness of the output trajectories. When using multiple
cameras, i.e. three or more cameras located around the area of
interest, two different systems have shown very good results.
The one class of approaches is based on the calculation of
3D voxel data, as done by [9], [10]. The other approach is
based on particle filtering and became popular by the work
of Deutscher et al. [11] for multi-camera systems, and later
by [12] for the specific case of monocular image sequences.
Recently, we have started to adapt and extend this system for
real-time application on a humanoid robot head ([13], [14]).
Other approaches depend on incorporation of an additional 3D

sensor and theIterative Closest Point(ICP) algorithm, such
as the Swiss Ranger, as presented by [15].

The output data computed by the mentioned systems is
intended to be used for different applications, namely action
and activity recognition, and the reproduction of movements
on a humanoid robot system. For visualization and evaluation
purposes, the data is usually also applied to a 3D human
model. The problem is that most human motion capture
systems are intended for the mentioned applications, but in
practice the transfer rarely happens. The reason is that each
system is based on its own representation and therefore the
output data is always given in terms of this specific human
model with its own data format, which is in general not
compatible with systems for action or activity recognition,
or the kinematic model of an actual robot system. Since one
research group cannot deal with all the mentioned issues, it is
crucial to overcome this deficiency to allow for compatibility
of any module developed for any of the mentioned purposes. In
the following, we propose a framework, defining a reference
3D kinematic human model in its core, and presenting the
architecture, with which all modules are connected together.
As a practical example, we show how we built in a markerless
human motion capture system developed at our institute and
the humanoid robot ARMAR III for reproduction of move-
ments.

Fig. 1. ARMAR III with sensor head

II. H UMAN MOTION CAPTURE

In this section, we want to give a short outline of marker-
based and markerless human motion capture systems, in
particular concentrating on the data input and output of the
systems. In Section III, we show how their output can be
mapped to one canonical representation.

A. Markerless Human Motion Capture

As mentioned in Section I, various approaches for marker-
less human motion capture exist. Here, we want to introduce
a system intended for real-time application on an active
head of a humanoid robot system, which has been developed
at our institute ([13], [14]). The input of the system is a

stereo color image sequence, captured with two calibrated
Dragonfly cameras built-in into the head of the humanoid robot
ARMAR III, which can be seen in Figure 1. The input images
are preprocessed, generating output for the gradient cue, the
distance cue, and an optional region cue, as described in [14].
The image processing pipeline for this purpose is illustrated
in Figure 2.

Smooth HSI

Skin Color
Segmentation

Shirt Segmentation

Gradients

Eroded Skin Color MapGradient Pixel Map

Fig. 2. Visualization of the image processing line

Based on the output of the image processing pipeline, a
particle filter is used for tracking the movements in configu-
ration space. The overall likelihood function to compute the
a-posteriori probabilities is formulated as:

p(z|s) ∝ exp

8<:−1

2

0@ 1

σ2
d

3X
i=1

di(s, ci) +
1

σ2
g

(1− 1

Mg

MgX
m=1

gm)

1A9=; ,

wheres is the configuration to be evaluated,z is a general
denotation for the current observations i.e. the current input
image pair, andci ∈ R3 with i ∈ {1, 2, 3} denotes the
triangulated 3D position of the hands and the head. The
function di(s, c) is defined as:

di(s, c) :=
{

|fi(s)− c|2 : c 6= 0
0 : otherwise ,

where n := dim(s) is the number of DoF of the human
model. The transformationfi : Rn → R3 transforms then-
dimensional configuration of the human model into the 3D
position of the left hand, right hand, or head respectively, using
the forward kinematics of the human model.

The gm with m ∈ {1, . . . ,Mg} denote the intensity values
in the gradient image (which is derived from the input images
z) at the Mg pixel coordinates of the projected contour of
the human model for a given configurations. This process
is performed for both input images using the calibration
parameters of each camera.

A detailed description is given in [14]. For each image pair
of the input sequence the output of the system is the estimation
of the particle filter, given by the weighted means over all
particles. The format of the output configurations is:

s = (tBT θBT θLS θLE θRS θRE)T ,

where BT denotes the base transformation,LS and RS
the shoulder joints for the left and right arm, andLE and
RE the elbow joints.tBT ∈ R1×3 is the base transla-
tion, θBT ,θLS ,θRS ∈ R1×3 are rotations given in the
Euler conventionRX′Z′Y ′(α, β, γ), and θRE , θRE ∈ R are
scalar values for the elbow angleα in the Euler convention
RX′Z′Y ′(α, 0, 0). The Euler angle conventions can be found
in the Appendix B of [16].

B. Marker-based Human Motion Capture

Marker-based human motion capture systems are commer-
cially available and often used in the film and animation
industry. The probably most popular one is the VICON system,
which consists of a set of infrared cameras, with each having
a diode array attached to it. The system offers a convenient
calibration routine, which makes it possible to determine 3D
positions for the reflective markers that come with the system.
Since occlusions can occur, it is necessary to postprocess the
output, which can be relatively time-consuming, depending on
the number of markers used. In Figure 3, a typical marker
setup for the acquisition of human upper body motion is
illustrated. Having postprocessed the data, the human motion
capture data, which consists of a temporal sequence of 3D
marker position sets, can be used for various purposes.

Fig. 3. Illustration of a marker-based human motion capture setup from [8]

For action recognition, it is possible either to use the plain
3D marker positions as input directly, or use trajectories in
joint angle space. For the second approach, the trajectories
of 3D marker position have to be transformed to joint angle
trajectories by deriving rotations from the positions of adjacent
markers, as described in [8]. Depending on the target kine-
matic model of the transformation, the joint angle trajectories
can be used for visualization with an articulated 3D human
model, or reproduced on an actual humanoid robot system.
However, the problem is that usually this approach is a dead-
end, since the target kinematic model is determined in advance,
and therefore, the final data can be used only for the one
desired purpose. Only with a lot of effort, human motion
capture data can be shared within the robotics community,

since an agreement on a common representation has been
missing so far.

III. M ASTER MOTOR MAP

To overcome the deficiencies mentioned above, we propose
a reference kinematic model, which we will call theMaster
Motor Map (MMM) in the following. The strategy is to define
the maximum number of DoF that might be used by any
visualization, recognition, or reproduction module, but not
more than that. The H-Anim 1.1 specification [17] defines a
joint for each vertebra of the spine, which is not suitable for
the robotic applications mentioned. Moreover, the H-Anim 1.1
specification does only define relative joint positions in terms
of a graph, but not the actual kinematic model including the
joint angle conventions for each joint, which is crucial for
any robotic application. Therefore, we have defined a subset
of the H-Anim 1.1 specification and have specified the joint
angle conventions for each joint.

The joints which build the subset of H-Anim
1.1 are skullbase, vc7, vt6, pelvis, Humanoid-
Root, l hip/r hip, l knee/r knee, l ankle/r ankle,
l sternoclavicular/r sternoclavicular, l shoulder/r shoulder,
l elbow/r elbow, and l wrist/r wrist. The numbers of DoF
and the Euler angle conventions are listed in Table I. The
kinematic model for the MMM is illustrated in Figure 4.

DoF Euler angles
skullbase 3 RX′Z′Y ′ (α, β, γ)
vc7 3 RX′Z′Y ′ (α, β, γ)
vt6 3 RX′Z′Y ′ (α, β, γ)
pelvis 3 RX′Z′Y ′ (α, β, γ)
HumanoidRoot 3 RX′Z′Y ′ (α, β, γ)
l hip / r hip 3 + 3 RX′Z′Y ′ (α, β, γ)
l knee / rknee 1 + 1 RX′Z′Y ′ (α, 0, 0)
l ankle / rankle 3 + 3 RX′Z′Y ′ (α, β, γ)
l sternoclavicular / rsternoclavicular 3 + 3 RX′Z′Y ′ (α, β, γ)
l shoulder / rshoulder 3 + 3 RX′Z′Y ′ (α, β, γ)
l elbow / r elbow 2 + 2 RX′Z′Y ′ (α, β, 0)
l wrist / r wrist 2 + 2 RX′Z′Y ′ (α, 0, γ)
Total 52

TABLE I

NUMBER OF DEGREES OFFREEDOM AND EULER ANGLE CONVENTIONS

FOR THE JOINTS OF THEMMM

The file format is specified as follows. The 52-dimensional
configuration vectors are written sequentially to a text file,
where each component is a floating point number formatted
as readable text. All components are separated by whitespace.
After one configuration, an additional floating point value
specifies the associated timestamp in milliseconds. Since one
configuration contains a fixed number of 53 numbers (includ-
ing the timestamp), it is not necessary to introduce an explicit
end of one configuration. For readability, it is recommended to
put a line break after each timestamp instead of a space. The
order of the 52 floating point numbers for the configuration
vector is:

(tRT θRT θSB θV C7 θP θV T6 θLSC θLS θLE θLW

θRSC θRS θRE θRW θLH θLK θLA θRH θRK θRA)T

right left
eyeeye

neck (vc7)

shouldershoulder
right left

lower

upper neck
 (skullbase)

clavicula
leftright

clavicula

elbow
right left

elbow

mid-spine
(vt6)

left
wrist

right
 wrist

pelvis

kneeknee
leftright

right hip left hip

ankle
right left

ankle

Fig. 4. Illustration of the MMM kinematic model

whereRT denotes the root transformation,SB the skull base
joint, P the pelvis joint,LSC/RSC the sternoclavicular joints,
LS/RS the shoulder joints,LE/RE the elbow joints,LH/RH
the hip joints,LK/RK the knee joints, andLA/RA the ankle
joints. The length of each vector is given by the number of
DoF, given in Table I.

IV. FRAMEWORK AND CONVERTERMODULES

In the following, we propose the framework which con-
nects all mentioned modules, namely responsible for data
acquisition, visualization, reproduction, and recognition. In the
core of the framework is the MMM, as specified in Section
III. All perceptive modules have an additionally implemented
converter module, which transforms the output data to the
MMM. Modules for visualization, reproduction, and recog-
nition, which need motion capture data as input, implement
an additional converter module, which transforms the data
provided in the MMM format to the required input data format.
This framework is illustrated in Figure 5.

The converter modules implement the transformation from
one human motion representation to the MMM, or vice versa.
In the case of marker-based human motion capture systems,
this transformation is computed on the base of adjacent mark-
ers, as described in [8]. For all other modules, the converter
module has to perform a transformation between two different
kinematic models. There are five common basic types of
adaptations which can occur in such a transformation:

1) Changing the order of values (all modules).
2) Setting zeroes for joint angles which are not captured

(perception modules).
3) Ignoring joint angle values which can or are not to be

used (reproduction and recognition modules).
4) Transformations between two different Euler angle con-

ventions for a ball joint (all modules).
5) Adaptations that include more than one joint, if the

target module does not offer the corresponding degrees
of freedom (reproduction and recognition modules).

We will show three example converter modules, covering all
five mentioned cases. One converter module is for mapping
the output of our markerless human motion capture system
to the MMM, the second for mapping the MMM to the
kinematic model for the humanoid robot ARMAR, and the
third for transforming 6D task space trajectories to the MMM.
Cases 1, 2, and 3 are trivial. Case 4 can be solved by
carefully calculating the conversion between two Euler angle
conventions, as will be shown. Case 5 can not be generalized;
we will show an example for the humanoid robot ARMAR.
In the following, the notation0i denotes the transposed zero
vector ofRi i.e. 0i ∈ {0}1×i.

A. Conversion Example 1

Here, we show how the output of our markerless human
motion capture system is mapped to the MMM. The conver-
sion covers the cases 1 and 2; case 4 does not occur, since
the Euler angle conventions for the shoulder joints are both
RX′Z′Y ′(α, β, γ), as is the base rotation for both models.
Cases 3 and 5 are not of interest for perception modules. The
transformation is formulated as follows:

f1 : R14 → R52

(tBT θBT θLS θLE θRS θRE)T →
(tBT θBT 015 θLS θLE 06 θRS θRE 017)T

B. Conversion Example 2

Here, we show how the MMM is mapped to the kinematic
model of the humanoid robot ARMAR. The conversion covers
the cases 1, 3, 4, and 5. Case 2 is only of interest for perception
modules. The first problem is that ARMAR does not have
the sternoclavicular joint, which is an example for case 5.
One solution is to calculate the effective rotation matrix for
the combination of the sternoclavicular and the shoulder joint.
The effective rotation for the sternoclavicular and the shoulder
joints is then formulated as:

RLS′ = RX′Z′Y ′(θLSC) ·RX′Z′Y ′(θLS)
RRS′ = RX′Z′Y ′(θRSC) ·RX′Z′Y ′(θRS) ,

Markerless
HMC2

Converter
HMC2→MMM

HMCn

Converter
HMCn→MMM

...

Marker-based
HMC1

Converter
HMC1→MMM

3D Marker
Trajectory

Joint Angle
Trajectory

Master Motor Map

3D
Visualization

Converter
MMM→Visualization

Robot1

Converter
MMM→Robot1

Robotn

Converter
MMM→Robotn

Action
Recognizern

Converter
MMM→ARn

Action
Recognizer1

Converter
MMM→AR1

... ...

Fig. 5. Illustration of the proposed framework

where the notationR(θ) meansR(α, β, γ) with (α β γ) =
θ. In the following, c denotes the side, which is necessary
because ARMAR III has different coordinate systems for the
two sides, in contrast to the MMM:

c :=
{

1 : left
−1 : right

Then, the kinematics for the shoulder joint of ARMAR III are
defined as:

RS,ARMAR(c, α, β, γ)
= Ry(cπ

6) ·Rx(−π
2) ·Rz(−cα) ·Rx(β) ·Ry(cγ)

= Ry(cπ
6) ·Rx(−π

2) ·RZ′X′Y ′(−cα, β, cγ)

The problem of calculating the transformed rotation can be
formulated as finding the anglesα, β, γ so that:

RLS′ = RS,ARMAR(1, α, β, γ)
RRS′ = RS,ARMAR(−1, α, β, γ)

and furthermore:

RL := Rx(−π

2
)T ·Ry(

π

6
)T ·RLS′ = RZ′X′Y ′(−α, β, γ)

RR := Rx(−π

2
)T ·Ry(−π

6
)T ·RRS′ = RZ′X′Y ′(α, β,−γ)

In the following, we determine the solution for the left shoul-
der; the solution for the right shoulder can be determined anal-
ogously. First, we need the rotation matrixRZ′X′Y ′(−α, β, γ):

RZ′X′Y ′(−α, β, γ)

=

 sαsβsγ + cαcγ sαcβ −sαsβcγ + cαsγ
cαsβsγ − sαcγ cαcβ −cαsβcγ − sαsγ

−cβsγ sβ cβcγ


=

 r1 r2 r3

r4 r5 r6

r7 r8 r9

 = RL

The two possible solutions can then be calculated by:

α = atan2(±r2,±r5) (1)

β = atan2(r8,±
√

r2
2 + r2

5) (2)

γ = atan2(∓r7,±r9) (3)

These can be disambiguated by taking into account maximum
joint angle constraints. To formulate the complete conversion,
we define for the left shoulder:

gl : R6 → R3 : (θLSC θLS) → (α β γ)T ,

as given in the equations (1)-(3);gr is defined analogously.
The final conversion is then given by:

f2 : R52 → R14

(tRT θRT θSB θV C7 θP θV T6 θLSC θLS θLE θLW

θRSC θRS θRE θRW θLH θLK θLA θRH θRK θRA)T →

(gl

(
θT

LSC

θT
LS

)T

θLE θLW gr

(
θT

RSC

θT
RS

)T

θRE θRW)T

C. Conversion Example 3

This example is important for the programming and exe-
cution of manipulation tasks, which are specified in terms of
object trajectories. Using a magnetic tracking system (Fasttrak,
www.polhemus.com), both the position and the orientation of
the hand(x y z α β γ)T is tracked in Cartesian space. The
mapping to the MMM is provided by a closed-form inverse
kinematics algorithm, which computes the transformation for
an arm:

f3 : R6 → R7 :
(x y z α β γ)T → (θLS θLE θLW)T

In solving the inverse kinematics problem of the arm, the
arm redundancy is used for the generation of human-like
arm postures. The arm joint angles are reconstructed using
a sensorimotor transformation model, which was found in
physiological observation of human arm movements [18]. The
model maps the Cartesian wrist position to a natural arm
posture using a set of representation parameters, which are
the upperarm elevation, the forearm elevation, the upperarm
yaw, and the forearm yaw. Once these parameters are obtained,
the shoulder and elbow joint angles are calculated to match
the hand position whereas the forearm and wrist joint angles
are calculated to match the hand orientation (see [19]).

Fig. 6. Example frames. Top: Projected result from the HMC system.
Middle: 3D Visualization with the HMC model. Bottom: 3D Visualization
of the MMM representation.

V. CONCLUSION

We have presented a framework for perception, visual-
ization, reproduction, and recognition of 3D human motion.
In the core of our framework, we have defined a reference
kinematic model – the Master Motor Map. We have showed
that our approach performs well in practice by having built in
a markerless human motion capture system, a 3D visualization
of the MMM, and a module for converting trajectories given
in the MMM to the kinematic model of the humanoid robot
ARMAR III. Although the proposed framework is intended
primarily to query the kinematics of 3D human motion, it
can be also augmented with dynamic parameters of the body
parts. Currently, we are working on reproducing movements
on ARMAR III not only in simulation but on the real robot.
Herefore, it is crucial to incorporate a self-collision detection
module to avoid configurations which are outside the robot’s
working space. Furthermore, we are building up a database of
movements in the MMM format, consisting of both markerless
and marker-based human motion capture data, which will
serve as a solid data source for applications related to imitation
learning within the EU project PACO-PLUS, and hopefully
also within in the entire robotics community.

ACKNOWLEDGMENT

The work described in this paper was partially conducted
within the EU Cognitive Systems project PACO-PLUS (FP6-
2004-IST-4-027657) and funded by the European Commis-
sion and the German Humanoid Research project SFB588
funded by the German Research Foundation (DFG: Deutsche
Forschungsgemeinschaft).

REFERENCES

[1] A. Safonova, N. S. Pollard, and J. K. Hodgins, “Optimizing human
motion for the control of a humanoid robot.” inSymposium on Adaptive
Motion of Animals and Machines (AMAM03), Kyoto, Japan, March
2003.

[2] N. S. Pollard and J. K. Hodgins, “Generalizing demonstrated manipu-
lation tasks.” inWorkshop on the Algorithmic Foundations of Robotics
(WAFR02), Nice, France, December 2002.

[3] A. Ude, C. G. Atkeson, and M. Riley, “Programming Full-Body Move-
ments for Humanoid Robots by Observation,”Robotics and Autonomous
Systems, vol. 47, pp. 93–108, 2004.

[4] M. Ruchanurucks, S. Nakaoka, S. Kudoh, and K. Ikeuchi, “Generation
of humanoid robot motions with physical constraints using hierarchical
b-spline,” in IEEE/RSJ International. Conference on Intelligent Robots
and Systems, Edmonton, Alberta, Canada, 2005, pp. 1869 – 1874.

[5] T. Inamura, Y. Nakamura, and I.Toshima, “Embodied symbol emergence
based on mimesis theory,”International Journal of Robotics Research,
vol. 23, no. 4, pp. 363–377, 2004.

[6] L. Dongheui and Y. Nakamura, “Stochastic model of imitating a new
observed motion based on the acquired motion primitives,” inIEEE/RSJ
International. Conference on Intelligent Robots and Systems, Beijing,
China, 2006, pp. 4994 – 5000.

[7] “Vicon Peak,” http://www.vicon.com.
[8] T. Beth, I. Boesnach, M. Haimerl, J. Moldenhauer, K. Bös, and V. Wank,

“Characteristics in Human Motion – From Acquisition to Analysis,”
in International Conference on Humanoid Robots (Humanoids), Karl-
sruhe/M̈unchen, Germany, 2003.

[9] F. Caillette and T. Howard, “Real-Time Markerless Human Body Track-
ing with Multi-View 3-D Voxel Reconstruction,” inBritish Machine
Vision Conference, vol. 2, Kingston, UK, 2004, pp. 597–606.

[10] I. Mikic, M. Trivedi, E. Hunter, and P. Cosman, “Human Body Model
Acquisition and Tracking using Voxel Data,”International Journal of
Computer Vision, vol. 53, no. 3, pp. 199–223, 2003.

[11] J. Deutscher, A. Blake, and I. Reid, “Articulated Body Motion Cap-
ture by Annealed Particle Filtering,” inComputer Vision and Pattern
Recognition (CVPR), Hilton Head, USA, 2000, pp. 2126–2133.

[12] H. Sidenbladh, “Probabilistic Tracking and Reconstruction of 3D Human
Motion in Monocular Video Sequences,” Ph.D. dissertation, Royal
Institute of Technology, Stockholm, Sweden, 2001.

[13] P. Azad, A. Ude, T. Asfour, G. Cheng, and R. Dillmann, “Image-
based Markerless 3D Human Motion Capture using Multiple Cues,”
in International Workshop on Vision Based Human-Robot Interaction,
Palermo, Italy, 2006.

[14] P. Azad, A. Ude, T. Asfour, and R. Dillmann, “A Full Body Human
Motion Capture System using Particle Filtering and On-The-Fly Edge
Detection,” in International Conference on Robotics and Automation
(ICRA), Rome, Italy, 2007.

[15] S. Knoop, S. Vacek, and R. Dillmann, “Modeling Joint Constraints for
an Articulated 3D Human Body Model with Artificial Correspondences
in ICP,” in International Conference on Humanoid Robots (Humanoids),
Tsukuba, Japan, 2005.

[16] J. J. Craig,Introduction to Robotics: Mechanics and Control. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1989.

[17] H. A. W. Group, “H-anim 1.1 specification,” http://h-anim.org.
[18] J. F. Soechting and M. Flanders, “Errors in Pointing are Due to

Approximations in Targets in Sensorimotor Transformations,”Journal
of Neurophysiology, vol. 62, no. 2, pp. 595–608, 1989.

[19] T. Asfour and R. Dillmann, “Human-like Motion of a Humanoid
Robot Arm Based on Closed-Form Solution of the Inverse Kinematics
Problem.” in The IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2003), Las Vegas, USA, 27-31 Octorber,
2003.

Imitation Learning of Dual-Arm Manipulation
Tasks in Humanoid Robots

Tamim Asfour, Florian Gyarfas, Pedram Azad and Rüdiger Dillmann
University of Karlsruhe

Institute for Computer Science and Engineering (CSE/IAIM)
P.O. Box 6980, D-76128 Karlsruhe, Germany

Email: {asfour,azad,dillmann}@ira.uka.de, florian.gyarfas@alumni.uni-karlsruhe.de

Abstract— In this paper, we deal with imitation learning of arm
movements in humanoid robots. Hidden Markov Models (HMM)
are used to generalize movements demonstrated to a robot
multiple times. They are trained with the characteristic features
(key points) of each demonstration. Using the same HMM, key
points that are common to all demonstrations are identified; only
those are considered when reproducing a movement. We also
show how HMM can be used to detect temporal dependencies
between both arms in dual-arm tasks. We created a model of the
human upper body to simulate the reproduction of dual-arm
movements and generate natural-looking joint configurations
from tracked hand paths. Results are presented and discussed.

I. I NTRODUCTION

Humanoid robots are expected to exist and work together
with human beings in everyday environments some day. In
doing so they need to be able to interact and cooperate
with humans. Interaction is facilitated if the robot behaves
in a human-like way which implies that his movements look
natural. This is not only advantageous for tasks involving
direct physical cooperation between humans and robots; even
if a robot acts independently his movements should appear
familiar and predictable to us humans. In addition to that,
it is probably also necessary for a robot to have a human-
like appearance to be accepted by society. Given the dynamic
character of the environment in which humanoid robots are
expected to work, they need to have a high degree of flexibility.
They need to be able to adapt to changes in the environment
and to learn new tasks continuously, and they are expected to
carry out a huge variety of different tasks. This distinguishes
them from industrial robots which normally only need to
perform a small number of rather primitive tasks in a static
environment. It seems impossible to create a humanoid robot
with built-in knowledge of all possible states and actions.
Therefore, there has to be way of teaching the robot new tasks.

Teaching a robot can be done in a number of ways, for
example by means of a robot programming language or a
simulation-based graphical programming interface. Another
method is “teaching by guiding”, where the instructor operates
a robot manipulator while its motion is recorded. The recorded
motions are then added to the robot’s action repertoire. Such
techniques are well-suited for industrial robots; however, in
the domain of humanoid robots, where robots are expected to
cooperate with unexperienced users, they suffer from several
drawbacks. They are lengthy, complex, inflexible, require

special programming skills or costly hardware [1]. That con-
tradicts the purpose of humanoid robots which is to make life
easier for us. It is essential that the control of such robotswill
not be too difficult and time-consuming.

An approach that addresses both issues (human-like motion
and easy teaching of new tasks) isImitation Learning: It
facilitates teaching a robot new tasks and at the same time
make the robot move like a human. Imitation learning is
basically the concept of having a robot observe a human
instructor performing a task and imitating it when needed.
Robot learning by imitation, also referred to asprogramming
by demonstration has been dealt with in the literature as a
promising way to teach humanoid robots and several imitation
learning systems and architectures based on the perception
and analysis of human demonstrations have been proposed
[2]–[7]. In most architectures, the imitation process proceeds
through three stages: perception/analysis, recognition and re-
production [8]. An overview of the basic ideas of imitation
learning in robots as well as humans is given by Schaal in [9].

In this paper we focus on a simple form of imitation: A
movement is demonstrated to a robot multiple times by a
human instructor, subsequently generalized (using the data
from all demonstrations) and finally reproduced by the robot
without trying to infer the goal of the movement. As described
in Section III, we have not yet reproduced movements on
a robot but instead simulated the reproduction stage using a
software model that we created for this purpose.

Our work was largely inspired by previous work of Calinon
and Billard. In [5] and [10], they describe an approach to
imitation learning that makes use of Hidden Markov Models
(HMM) [11] to learn and reproduce movements demonstrated
by a human instructor multiple times (while HMM have
become very popular for therecognition of gestures or speech,
they have not been widely used for thereproduction of
movements). After the hand path and joint angle trajectories
have been perceived, the data is reduced to a subset of
critical features in a preprocessing stage using certain criteria
(see [10]). Separate HMM (one for the hand path and one
for each joint angle trajectory) are trained with those “key
points”. The HMM are subsequently used to recognize further
demonstrations of the same movement as well as to imitate
the demonstrated task.

II. OUR APPROACH

We implemented a similar approach as in [10] for dual-arm
movements that also uses HMM to imitate movements shown
to a robot multiple times. In our method, however, the data is
preprocessed in a slightly different way, and, more importantly,
not all states of the resulting HMM are used to reproduce
movements. Instead, we try to identify characteristic features
that can be observed in all (or many) demonstrations and only
consider those when reproducing a movement. We also show
how those common features can be used to detect possible
temporal interdependencies between both arms in dual-arm
tasks. Moreover, we track the orientation of the hand and
not just its position, since the correct orientation is essential
for carrying out complex tasks. In contrast to [5], we do
not, however, try to determine which features of a movement
(hand path, joint angles etc.) are most relevant for the correct
imitation of a task.

We use three different HMM for each arm, one to encode the
position of the TCP (Tool Center Point, a reference point on
the hand), i.e. the hand path, with the Cartesian coordinates
being represented by three-dimensional output distributions,
one for the orientation of the TCP (described by three angles)
and another one for the joint angle trajectories where the
dimension of the output distributions is equal to the numberof
observed joint angles (in our case, 7; see Section III). Those
HMM are denoted byλp, λo andλj .

A. Preprocessing: Detection of characteristic features

A recorded movement is represented by a set of
time-discrete sequences: Per arm there is one sequence
Pd,1, Pd,2, . . . , Pd,l(d) that describes the positions of the TCP
over time, one sequenceOd,1, Od,2, . . . , Od,l(d) that describes
the orientations of the TCP, and seven more sequences
θ

j
d,1, θ

j
d,2, . . . , θ

j

d,l(d) that each specify the joint angle trajectory
of joint j (l(d) denotes the length of demonstrationd). We
omit the demonstration indexd whenever it is not needed
to distinguish between demonstrations.Pi and Oi are three-
dimensional vectors. As in [10], we detect characteristic fea-
tures of the perceived movement - key points - in a prepro-
cessing stage and only use those to train the HMM. In doing
so, we avoid having a high number of states and facilitate the
matching of (or between) multiple demonstrations (see II-C).
Those features are a subset of the aforementioned observation
sequences. Since we try to detect distinctive features, it should
still be possible to reconstruct the original movement well.

We detect key points separately for the position, orientation
and joint angles of each arm. We use different criteria than
[10] to identify key points, described as follows:

For joint angles, we use the following criterion: Letτd,m de-
note the time stamp of the m-th joint angle key point of demon-
strationd, i.e. its position in the sequenceθj

d,1, θ
j
d,2, . . . , θ

j

d,l(d).
Then θd,i = (θ1

d,i, . . . , θ
J
d,i), whereJ denotes the number of

joints, is the m-th key point of the joint angles (jKd,m, or just

Kd,m if the context is clear),τd,m = i, if and only if

∃j : θ̇
j
d,i = 0, i − τd,m−1 > ε1, |θ

j
d,i − θ

j
d,τd,m−1

| > ε2

∨ ∃j : |θj
d,i − θ

j
d,τd,m−1

| ≥ ε3, i − τd,m−1 > ε4,

|θj
d,n − θ

j
d,τd,m−1

| < ε3 ∀n ∈ [i, τd,m−1)

That means that whenever for anyj, θ
j
d,i reaches an extremum

(i.e. changes direction) or stops changing, sufficient time(ε1)
has passed since the creation of the previous key point and
the joint angle ati differs from the angle atτd,m−1 by at
leastε2, a key pointKd,l is created. The second part of the
condition ensures that when an angle that has stayed the same
for some amount of time (ε4) starts changing again, a key point
is created as well. Figure 1 shows three different candidates for
key points that given appropriate thresholds could all satisfy
the above criterion. Any point betweenθb and θc, however,
would not be a key point.

θ

t
θa

θcθb

x

y

Pi
Pi+1

Pi−1

Fig. 1. Potential key points (left) and key point criterion (right)

For the orientation angles of the TCP (key pointsoK) the
same criterion is used, but with possibly different threshold
values (ε5 − ε8).

For TCP positions, we use a slightly different criterion. A
point Pd,i is a key pointpKd,m (or justKd,m) in the sequence
of pointsPd,1, . . . , Pd,l(d) if and only if

∠(~Pd,i − ~Pd,i−1, ~Pd,i − ~Pd,i+1) < 180◦ − ε9

∨ || ~Pd,i − ~Pd,i−1|| < ε10, i − τd,m−1 > ε11,

|| ~Pi − ~Pd,τd,m−1
|| > ε12

∨ || ~Pd,i − ~Pd,τd,m−1
|| ≥ ε13, i − τd,m−1 > ε14,

|| ~Pd,n − ~Pd,τd,m−1
|| < ε15 ∀n ∈ [τd,m−1, i) ,

whereτd,m denotes the time stamp of the m-th position key
point of demonstrationd.

So if the angle between the vector that goes fromPi to
its predecessorPi−1 and the vector that goes fromPi to
its successorPi+1 is less than180◦ − ε9 (see Fig. 1),Pi is
considered a key point. In practice you would wantε9 to be
fairly high so that only sharp corners in the hand path would be
detected as key points. Also, as for the joint angle trajectories,
if the position remains unchanged for some time or starts
changing again, a key point is created as well. Reasonable
values forε1, . . . ε15 can be determined experimentally.

In [10] hand path key points are created only when there
is a change in X, Y or Z direction. However, there can
be significant changes in direction in a 3D path that do
not necessarily result in a reversed direction of any single

coordinate. Our criterion for the hand path has the advantage
that such key points are also detected because it takes the angle
into account.

B. HMM structure

As mentioned before, we use multiple HMM for different
kinds of observations (joint angles, TCP position, TCP ori-
entation). Each HMM is trained with the key points of all
demonstrations using the Baum-Welch algorithm for multiple
observations ([12]). Each training sequence consists of the
key points of the respective demonstration.

For a given observation sequence, the Viterbi algorithm
(see [11]) returns the optimal state sequence of an HMM
with respect to that observation sequence, i.e. the sequence
of states most likely to generate that observation sequence.
Therefore, if used on an HMM with the key points of one
of the demonstrations as the observation sequence, the Viterbi
algorithm would yield a sequence of states that could be said
to correspond (in a probabilistic way) to the key points of the
observed movements. Of course, the key point corresponding
to a state might not occur in all demonstrations; a state could
very well represent a key point of only one demonstration.

Since the states of the HMM roughly correspond to the
key points, it seems reasonable to set the number of states
equal to the number of key points. However, we use mul-
tiple demonstrations to train the various HMM and each
demonstration might have different key points; therefore,the
HMM should have as many states as there are distinct key
points in all demonstrations. We do not know in advance,
though, which of the key points of different demonstrations
are equivalent, so we have to use an estimate for the number
of states. In our experiments, we set the number of states to
maxd k(d) · 2, wherek(d) denotes the number of key points
in demonstrationd.

This is of course not a very satisfying solution and we are
still working on this problem. The standard HMM architecture
that we use does not appear to be perfectly suited for our
approach. What we would like to have is a model that had
a certain number of main states for important key points that
appear in most demonstrations and that allowed for inserting as
many states as necessary in between those main states for key
points that appear in only one or only a few demonstrations. It
should also allow for skipping states that might be key points
in most but not all demonstrations. Profile HMM, a special
kind of HMM which are commonly used in bioinformatics to
align DNA sequences, have those properties [13]. However,
they use discrete output variables and we have yet to determine
how such an architecture could be used with continuous
variables and in the context of our method.

The HMM we use are left-right models [11], i.e. there are
no state transitions between two statesSi and Sj if j <= i.
That is because we want the models to reflect the sequence of
key points over time and thus it should not be allowed to go
backwards in time.

We use continuous HMM, with the output distribution in
each state representing whatever is encoded in the HMM (for

example, the TCP position or the angle of a specific joint) at
a certain time given by the time stamp of the corresponding
key point(s) (if multiple key points correspond to a state we
compute the average of their time stamps and associate that
average time stamp with the state).

The output probability is modeled by the density function of
a multivariate Gaussian distribution. We do not use mixtures
of such density functions - this is crucial if we want to use
the HMM to reproduce a generalized movement because we
consider the means of those functions to be the generalized
positions, orientation angles and joint angles (as explained also
in the next two paragraphs); as such, they have to be scalar
values.

Before the training takes place, the HMM are initialized
as follows: The initial state probabilitiesπi are set to equal
values that sum to 1. They are not particularly important since
they get changed quickly by the Baum-Welch algorithm. We
set the initial transition probabilitiesaij in such a way that
a transition from a stateSi to a stateSj is most likely for
j = i+1 and less likely the higherj − i gets. For the sake of
simplicity and to make the models more robust, our covariance
matrices covij of the multivariate Gaussian density functions
are diagonal matrices, which means covij = 0 for i 6= j. The
variances (covii) are initialized with high values. The means
µi are all initially set to0 (unlike in [10] we do not initialize
them with the key point values because we do not know in
advance which state corresponds to which key point).

C. Common key points

As described earlier, the states of the Hidden Markov Mod-
els represent key points of the demonstrations. A key point
may, however, only occur in some of the demonstrations. Thus,
the question arises which states of the HMM should be used
for the reproduction. In [10], the reproduction of a movement
is triggered by another demonstration of the same movement.
The Viterbi algorithm is then used to determine which states
of the HMM match the key points of that demonstration most
closely; those states are then used for the reproduction.

In our approach, however, the reproduction of a movement
is not necessarily triggered by another demonstration of
that same movement. We use only those key points for
the reproduction of a movement that are common to all
(or almost all) demonstrations and call them “common key
points”. The reason for that is that a key point of asingle
demonstration is not necessarily a characteristic featureof
the movement, in which case it would be reasonable not to
consider it for the reproduction. But how do we know what
key point in one demonstration corresponds to some key
point in another demonstration? This is a classic matching
problem which could for instance be solved by DP matching.
However, we actually use our HMM to match key points
across demonstrations. We use only those states of the HMM
for the reproduction that represent key points which are
shared by all (or almost all) demonstrations.

Formal definition: Let D denote the number of demonstra-
tions. A common key point is defined as a 3-tuple:

Cj = ((ij,1, . . . , ij,D), Tj , νj) ,

where(ij,1, . . . , ij,D) denotes the indices of the corresponding
key points of the different demonstrations. TheD-tupel
Tj = (τ1,ij,1

, . . . , τD,ij,D
) contains the time stamps of

those key points, while then-tuple νj = (ν1
j , . . . , νn

j)
describes the values of the trajectory to be reproduced (i.e.
joint angles wheren=number of joints, Cartesian coordinates
where n=3 or orientation angles wheren=3 as well) at
that common key point. It should be noted that those
values are not equal to the values of any key points; they
are the means of the HMM’s output density function of the
state that corresponds to the key points(K1,ij,1

, . . . ,KD,ij,D
).

Detection of common key points:For each demonstration
we have a list of key points:Kd,1, . . . , Kd,k(d), where d

denotes the number of the demonstration, andk(d) stands
for the number of key points. By using the Viterbi algorithm
on the HMM for each such sequence of key points, we get
the sequences of states that correspond best to those key
points (more precisely, the sequences of states that would most
likely output the key points). LetSd,j denote the state that
corresponds to thej-th key point of thed-th demonstration.
Common key points can then be detected as follows:

K1,ij,1
,K2,ij,2

, . . . ,KD,ij,D
form a common key point

Cj = ((ij,1, . . . , ij,D), Tj , νj)

⇔ S1,ij,1
= S2,ij,2

= . . . = SD,ij,D

So only those key points of one demonstration that correspond
to a state which also corresponds to key points in all other
demonstrations are considered common key points. In figure
2 the bold circles are the optimal state sequence returned by
the Viterbi algorithm for the key points of each demonstration.
For example,S4 corresponds to the key pointsK1,4, K2,3

andK3,2. Clearly, onlyS1, S4 andS5 represent common key
points here.
In general, some of the demonstrations are likely to be
erroneous, so it seems reasonable to ease the above constraint

Demonstration 2

Demonstration 1

Demonstration 3

S1

S1

S1 S2 S3 S4 S5

S5S4S3S2

S2 S3 S4 S5

Fig. 2. Identifying common key points -S1, S4 andS5 are the only states
representing common key points

by saying that it suffices if the majority (say, 4/5) of the
demonstrations have a key point that corresponds to the same
state.

Generating a generalized movement with common key
points: We can reproduce a generalized movement that is basi-
cally the average of all demonstrations and - more importantly
- only uses the common key points of all demonstrations, as
follows: We consider only those states of the HMM that cor-
respond to common key points; we then take the means of the
output density functions (PDFs) of those states (in order) and
what we get is a sequence of positions, orientations and joint
angles that can be used to reproduce the movement. However,
two issues remain to be resolved before the movement can
be regenerated from the common key points. First, what time
stamps should be associated with each of those common key
points? One possibility is to simply take the average of the
time stampsTj of all the key points that constitute a common
key point. Second, the positions and orientations are of no
use by themselves if we want to reproduce a movement on a
robot or a software model of the human body; they have to be
transformed to joint angles. That can be done with an inverse
kinematics algorithm.

D. Reproduction

The detection of common key points is performed separately
for each of the six HMM. Thus, we get sequences of points
that are not necessarily in lockstep; they do not have to occur
simultaneously. We interpolate between common key points to
solve that problem. For example, for each common joint angle
key point, we interpolate between the common position and
orientation key points closest in time to determine the TCP
position and orientation at the same time. That way we obtain
a sequence of common key points of which each common
key point has values for TCP position, TCP orientation and
all joint angles of both arms.

Since the common key points only describe characteristic
features of the trajectories and not the whole trajectories,
we also have to interpolate between them to obtain actual
trajectories that can be used to imitate a movement. Both spline
and linear interpolation can be used for that purpose (we have
only implemented linear interpolation so far).

So eventually we obtain time-discrete sequences for the
TCP position and orientation as well as for all joint angle
trajectories that each describe the movement at every pointin
time (using a certain sampling rate). The sequences of TCP
positions and orientation angles are then transformed to joint
angles with an inverse kinematics algorithm, so that they can
be used for the reproduction.

The resulting joint angle sequencesθ̂
j
i are different from

the joint angle sequencesθj
i that are obtained directly from

the joint angle HMM. A weighting factorω ∈ [0, 1] is used to
determine the relative influence ofθ̂

j
i andθ

j
i on the joint angles

θ̃
j
i that are used to generate the final motion to be executed

by the robot:

θ̃
j
i = ω ∗ θ

j
i + (1 − ω) ∗ θ̂

j
i

This weighting factor can be set by the user. Since the
joints of the robot are not usually totally equivalent to the
joints of the human demonstrator, the human joints have to
be mapped to the robot’s joints. This can be done in different
ways: One can try to approximate the joint angle trajectories
of the demonstrated movement as closely as possible, making
the imitation look natural. That way the hand path might
not be reproduced very well, though. Alternatively, one can
try to imitate the hand path as accurately as possible using
joint angles determined by an inverse kinematics algorithm
which might deviate strongly from the joint angle trajectories
perceived in the demonstration. The former is achieved by
using a weighting factor ofω = 1 while for the latter one
would setω to 0.

The whole process from perception to reproduction is
depicted in figure 3. As in [10], the HMM can of course also
be used to recognize (classify) movements. That has not been
the focus of our work, though.

Fig. 3. Overview on the entire approach from perception to reproduction

E. Temporal coordination

When imitating dual-arm movements, often certain con-
straints have to be satisfied. Dual-arm movements can be un-
coordinated or coordinated. No matter what method is chosen
for the reproduction, information about coordination between
the two arms can be very useful. There are various kinds
of coordination; one way to classify two-arm coordination
is to distinguish between temporal and spatial coordination.

Spatial coordination means that the position and orientation of
one hand is at least partially determined by the position and
orientation of the other hand. As opposed to that, temporal
coordination means that one arm must accomplish a certain
subgoal as moving the hand to a specific position before
the other arm may continue executing its movement. When
imitating a two-arm movement, such dependencies should
be detected and reproduced properly. For example, if with
your left hand you pour water from a bottle into a glass
that you hold in your right hand, you have to move the
glass to its correct position before you can start pouring. It
would be helpful if one could find out whether an observed
temporal relation is just coincidence or whether it constitutes
a necessary coordination. Multiple demonstrations allow you
to determine the likelihood of some temporal relation beinga
true coordination.

The HMM approach in conjunction with the common key
points introduced in this Section can be used to detect temporal
relations between characteristic points of the left hand path and
the right hand path that are unlikely to be coincidental.

Let (τ1,ir,1
, . . . , τD,ir,D

) be the time stamps of the key
points that form a common key pointCr of the right arm’s
movement and(τ1,il,1

, . . . , τD,il,D
) be the time stamps of

someCl of the left arm. Then we can conclude that most
likely there exists temporal coordination between the point
Cr andCl if in all demonstrationsCr is reached beforeCl -
or the other way round, i.e., if:

∀k :
(

τk,ir,k
< τk,il,k

∨ τk,ir,k
> τk,il,k

)

It could also be possible that both arms must reach some
points at the same time. That is accounted for by the following
additional criterion for temporal coordination (δ is fixed and
should be chosen close to zero):

∀k : |τk,ir,k
− τk,il,k

| < δ

Once again, detecting those temporal relations only requires
knowledge about common key points which may be acquired
without HMM and may thus be implemented independently
from the rest of our approach.

III. H UMAN K INEMATICS MODEL

The goal of the methods described in this paper is to
eventually have robots imitate human arm movements. To
achieve this, we need to be able to perceive and analyze
demonstrations, transform them to a robot joint representation
and reproduce them. To begin with, we have so far only
simulate the reproduction on a kinematic model of the human
upper body with 18 degrees of freedom (Fig. 4), where each
arm is modeled by nine DOFs: two in the inner shoulder
joint (sternoclavicluar), three in the outer shoulder joint (gleno-
humeral), two at the elbow and two at the wrist ([14]).

To make imitation look natural, joint angles must be pre-
served as well as possible. However, measuring the joint angles
of a human demonstration requires a complex tracking system
(for example a marker-based system) which is not very usable
in everyday life. So instead, we have incorporated two different

z0

x0

y0

θ7

θ9

θ8

θ6

θ3θ4

θ7

θ9

θ8

θ6

θ2

θ3 θ4

zl
0

xl
0

zr
0

xr
0

yr
0 yl

0

θ1 θ1

TCPr TCPl

θ2

d

θ5 θ5

Fig. 4. The kinematics model of both arms

methods for the acquisition of the required data: a method
based on a magnetic tracking system, and a purely vision-
based markerless human motion capture system.

Using an easy to set up magnetic tracking system (Fast-
trak, www.polhemus.com), the position and orientation of
both hands can be tracked. The joint angles can then be
reconstructed using an approach based on neurophsychological
studies. In [15] and [16], Soechting and Flanders have shown
that arm movements are planned in shoulder-centered spherical
coordinates and suggest a sensorimotor transformation model
that maps the Cartesian wrist position to a natural arm pos-
ture using a set of representation parameters, which are the
upperarm elevation, the forearm elevation, the upperarm yaw
and the forearm yaw, respectively.

In neurophysiology evidence exists that arm and hand
postures are independent of each other. This means that one
can find the forearm and upper arm posture to match the hand
position and then determine the joint angles for the wrist to
match the hand orientation. In [17] we proposed a new al-
gorithm which incorporates the physiological observationinto
a closed-form solution of the inverse kinematics problem to
generate natural looking arm postures. For the reconstruction
of the arm joint angles, we geometrically derived equationsfor
the arm joint anglesθ3, . . . , θ9 in a closed form. The remaining
two shoulder jointsθ1 andθ2 supported by the arm kinematics
model can be set manually by the user. For more details the
reader is referred to [18].

The approach described in section II is based on the tracked
hand path as well as the seven reconstructed joint angles.

Recently, we have also developed a purely image-based
markerless human motion capture system [19], [20]. The input
of the system are stereo color images of size320 × 240
captured at 25 Hz, with two calibrated Dragonfly cameras
built-in into the head of the humanoid robot ARMAR III.
The input images are preprocessed, generating output for the
gradient cue, the distance cue, and an optional region cue, as
described in [20]. Based on the output of the image processing
pipeline, a particle filter is used for tracking the movements
in configuration space. The overall likelihood function to

Fig. 5. Illustration of the performance of the markerless humanmotion
capture system. Left: projection of the estimated configuration into the left
camera image. Right: 3D visualization of the estimated configuration with an
articulated human model.

compute the a-posteriori probabilities is formulated as:

p(z|s) ∝ exp

8

<

:

−
1

2

0

@

1

σ2

d

3
X

i=1

di(s, ci) +
1

σ2
g

(1 −
1

Mg

Mg
X

m=1

gm)

1

A

9

=

;

,

wheres is the configuration to be evaluated,z is a general
denotation for the current observations i.e. the current input
image pair, andci ∈ R

3 with i ∈ {1, 2, 3} denotes the
triangulated 3D position of the hands and the head. The
function di(s, c) is defined as:

di(s, c) :=

{

|fi(s) − c|2 : c 6= 0

0 : otherwise
,

where n := dim(s) is the number of DOF of the human
model. The transformationfi : Rn → R3 transforms then-
dimensional configuration of the human model into the 3D
position of the left hand, right hand or head respectively, using
the forward kinematics of the human model. Thegm with
m ∈ {1, 2, ...,Mg} denote the intensity values in the gradient
image (which is derived from the input imagesz) at theMg

pixel coordinates of the projected contour of the human model
for a given configurations. This process is performed for both
input images using the calibration parameters of each camera.
For each image pair of the input sequence the output of the
system is the estimation of the particle filter, given by the
weighted mean over all particles. A detailed description is
given in [20].

In contrast to the acquisition method based on the magnetic
tracking system, the joint angle valuesθ3, θ4, θ5, andθ6 are
calculateddirectly and therefore the position of the elbow does
not have to be approximated based on empirical studies but is
determined explicitly.

IV. EXPERIMENTS

We used the kinematic model described in the previous sec-
tion to conduct several experiments. We tested the preprocess-
ing, generalization and reproduction stages of our approach
with three different dual-arm movements:

• pick-and-place task: we picked up a box with both arms,
moved it to the right and put it down again

• pouring motion: we poured water from a bottle held by
the left hand into a glass that was held by the right hand

• unscrewing motion: we unscrewed the lid of a jar
(a complex motion that is different every time it is
demonstrated; this did not work too well with our
system)

The joint angles were obtained from the position of the
hand using the algorithm based on findings in [15] and [16]
as described in the previous Section. Our kinematic model was
clearly capable of computing natural looking joint angles that
way. For our experiments, we used the model to simulate the
imitation of movements. We were able to display the simulated
movement using a visualization of the human upper body
that we created with OpenInventor and combined with our
kinematics model. We implemented our own HMM for this
system and did not make use of existing HMM toolbox.

Each of the movements mentioned above was demonstrated
between five and ten times by the same person. Select training
samples as well as the reproduced (generalized) hand path
for the pick-and-place task are shown in Figure 6. It can be
seen how the generalized trajectory is interpolated linearly
between the common key points that were found using all
demonstrations.

y(mm)

−100 0 100 200 300 400 500−100

−200
x(mm)

−300

−400

−500

−200−300−400

−300

−200

−100

 0

 100

z(mm)

Fig. 6. Pick and place task: Training samples and the generalized trajectory
for ω = 0

Figure 7 shows only the reproduced trajectory of the left
hand, but for three differentω. As expected, if the reproduction
is based on joint angles and not only on the observed hand
path (ω = 1 or ω = 0.5), the hand path becomes somewhat
erratic. On the other hand, however, the reproduced movement
seems more realistic and less artificial in that case which can
be explained by the fact that more key points are created for
joint angle trajectories than for the hand path (a joint angle key
point is generated each timeany joint changes its direction).
If you used spline interpolation between key points insteadof
linear interpolation, you would probably obtain more realistic
looking trajectories forω = 0 as well.

In Figure 8, the original joint angle trajectory of joint
θ7 (left arm, see also Figure 4) of one randomly selected
demonstration (solid line) as well the generalized trajectory
of that joint for ω = 0 (dotted line) andω = 1 (dashed
line) are shown. Forω = 0 the spike at aboutt = 20s is
ignored because obviously no key point is detected in the hand
path at that point in time. The key points detected in one of
the demonstrations are shown in Figure 9 which seems to be
what one would expect (characteristic features, i.e. significant
changes in direction, have been detected).

x(mm)

−400

−500

−300
 0

 100
 200−200

−100
y(mm)

−200
−300

−400

−300

−200

−100

 0

 100

z(mm)

ω = 1

ω = 0

ω = 0.5

Fig. 7. Generalized trajectory of the left hand for different values ofω

−2.5
−2

−1.5
−1

−0.5
 0

 0.5

 1.5
 2

 2.5
 3

 1

 0 10 20 30 40 50 60

time

θ7 (rad)

Fig. 8. The generated joint angle trajectory for jointθ7 of the left arm

x(mm)

z(mm)

left
right

−200

−300

−400

−500

−100 500 400 300 200 100 0−100−200

y(mm)

−300−400

−300

−200

−100

 0

 100

Fig. 9. All detected key points in the pick-and-place demonstration

7
6

1

5
2

1
5

4

23

Not a common key point

3
4

left
right

z(mm)

y(mm)

x(mm)

−400

−300

−200

−100 400 300 200 100 0−100−200−300−400

−200

−100

 100

 200

 0

Fig. 10. All detected key points in the pouring motion

Figure 10 shows the key points detected in a training sample
of the pouring motion. One of the key points is not a common
key point, though, and will thus not be considered for the
imitation of the movement.

Table I shows the temporal relations that were identified
between the common key points of both arms. The numbers in
the precondition column specify for each arm which common
key point the other arm’s hand must reach before the motion
can be continued. Before the left hand is allowed to proceed
to the third common key point, the right hand has to reach its
second common key point, which is what one would expect.

CKP pre-condition CKP pre-condition
(right) (left) (left) (right)

1 1 1
2 1 2
3 3 2
4 3 4
5 6 5

6
7

TABLE I

TEMPORAL RELATIONS BETWEEN COMMON KEY POINTS OF THE ARMS

Of course, a few other relations that might not be critical for
the correct execution of the task were detected as well.

V. D ISCUSSION, CONCLUSIONS AND FUTURE WORK

We presented an HMM-based approach for imitation learn-
ing of arm movements in humanoid robots. HMM are used to
generalize movements demonstrated to a robot multiple times.
Common key points in all demonstrations are identified and
used for the reproduction of the movements. The results we
obtained using a software model specifically created for this
purpose show that our approach is an encouraging step in the
effort to teach a robot new tasks in a flexible and natural way.

We would like to mention once again the work of Calinon
and Billard in [5] and [10] due to the similarity to parts
of our work. However, while our work was clearly inspired
by their method, only the basic ideas are based on it. We
have introduced new aspects such as the detection of common
key points and identifying temporal coordination between two
arms and use a different preprocessing method. The kinematic
models presented in Section III are also part of the contribution
of this paper.

So far, we have only simulated generating generalized
trajectories, using a kinematic model of the human arms. A
natural next step would be the reproduction of movements on
the humanoid robot ARMAR-III. That would involve mapping
the joints of our kinematic model to those of the robot and
will be part of future work. Another aspect of our method that
should be improved is how the trajectories are encoded in the
HMM. As described in Section II, a generic HMM architecture
does not seem to be ideal for our approach.

Also, our system is not invariant to translations or rotations
yet, a highly desirable property for any imitation learning
system to be used in practice.

Furthermore, it seems essential for the accurate imitationof
tasks to take into account objects that are manipulated during
the demonstration. Not only do we need to make sure that
an imitated movement results in the same manipulation of an
object as the demonstrated movement, but considering objects
would also be a significant step towards recognizing the goal
of a task, which we have not attempted to do yet but which
is clearly an important aspect of imitation learning.

ACKNOWLEDGEMENT

The work described in this paper was partially conducted
within the EU Cognitive Systems project PACO-PLUS (FP6-

2004-IST-4-027657) and funded by the European Commis-
sion and the German Humanoid Research project (SFB 588)
funded by the German Research Foundation (DFG: Deutsche
Forschungsgemeinschaft).

REFERENCES

[1] Y. Kuniyoshi, M. Inaba, and H. Inoue, “Learning by watching: Ex-
tracting reusable task knowledge from visual observation of human
performance,”IEEE Transactions on Robotics and Automation, vol. 10,
pp. 799–822, 1994.

[2] R. Dillmann, “Teaching and learning of robot tasks via observation of
human performance,”Robotics and Autonomous Systems, vol. 47, no.
2-3, pp. 109–116, 2004.

[3] A. Billard and R. Siegwart, “Robot learning from demonstration,”
Robotics and Autonomous Systems, vol. 47, no. 2-3, pp. 65–67, 2004.

[4] A. Billard, Y. Epars, S. Calinon, S. Schaal, and G. Cheng,“Discovering
optimal imitation strategies,”Robotics and autonomous systems, vol. 47,
pp. 69–77, 2004.

[5] S. Calinon, F. Guenter, and A. Billard, “Goal-directed imitation in a
humanoid robot,” inProceedings of the IEEE International Conference
on Robotics and Automation (ICRA 2005), 2005.

[6] C. G. Atkeson and S. Schaal, “Robot learning from demonstration,”
in Machine Learning: Proceedings of the Fourteenth International
Conference (ICML 1997), 1997, pp. 1040–1046.

[7] S. Schaal, A. Ijspeert, and A. Billard, “Computational approaches to
motor learning by imitation,”Philosophical Transactions of the Royal
Society of London: Series B, Biological Science, vol. 358, no. 1431, pp.
537–547, 2003.

[8] Y. Demiris and G. Hayes, “Imitation as a dual-route processfeaturing
predictive learning components: a biologically-plausiblecomputational
model,” Imitation in animals and artifacts, pp. 327–361, 2002.

[9] S. Schaal, “Is imitation learning the route to humanoid robots?” Trends
in Cognitive Sciences, vol. 3, no. 6, pp. 233–242, 1999.

[10] S. Calinon and A. Billard, “Stochastic gesture production and recog-
nition model for a humanoid robot,” inProceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS
2005), 2005, pp. 2769–2774.

[11] L. R. Rabiner, “A tutorial on hidden markov models and selected
applications in speech recognition,” inProceedings of the IEEE, vol. 77,
1989, pp. 257–286.

[12] J. Bilmes, “A gentle tutorial on the em algorithm and its application to
parameter estimation for gaussian mixture and hidden markov models,”
University of California - Berkeley, Tech. Rep., 1997.

[13] S. R. Eddy, “Profile hidden markov models,”Bioinformatics, vol. 14,
pp. 755–763, 1998.

[14] T. Asfour, “Sensomotorische Bewegungskoordination zur Hand-
lungsausf̈uhrung eines humanoiden Roboters (german),” Ph.D. disser-
tation, University of Karlsruhe, Karlsruhe, Germany, 2003.

[15] J. F. Soechting and M. Flanders, “Sensorimotor Representations for
Pointing to Targets in Three-Dimensional Space,”Journal of Neuro-
physiology, vol. 62, no. 2, pp. 582–594, 1989.

[16] ——, “Errors in Pointing are Due to Approximations in Targets in
Sensorimotor Transformations,”Journal of Neurophysiology, vol. 62,
no. 2, pp. 595–608, 1989.

[17] T. Asfour and R. Dillmann, “Human-like Motion of a Humanoid
Robot Arm Based on Closed-Form Solution of the Inverse Kinematics
Problem.” in The IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2003), Las Vegas, USA, 2003.

[18] F. Gyarfas, “Imitation Learning zur modellbasierten Generierung men-
schen̈ahnlicher Zweiarm-Bewegungen,” Master’s thesis, University of
Karlsruhe, Germany, 2005.

[19] P. Azad, A. Ude, R. Dillmann, and G. Cheng, “A Full Body Hu-
man Motion Capture System using Particle Filtering and On-The-Fly
Edge Detection,” inInternational Conference on Humanoid Robots
(Humanoids), Santa Monica, USA, 2004.

[20] P. Azad, A. Ude, T. Asfour, G. Cheng, and R. Dillmann, “Image-
based Markerless 3D Human Motion Capture using Multiple Cues,”
in International Workshop on Vision Based Human-Robot Interaction,
Palermo, Italy, 2006.

Coaching: An Approach to Efficiently and
Intuitively Create Humanoid Robot Behaviors

Marcia Riley∗, Aleš Ude†‡, Christopher Atkeson†§, and Gordon Cheng†¶
∗College of Computing, Georgia Institute of Technology

Atlanta, Georgia 30332–0250, USA, Email: mriley@cc.gatech.edu
†ATR Computational Neuroscience Laboratories, Dept. of Humanoid Robotics and Computational Neuroscience

2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, Japan
‡Jožef Stefan Institute, Dept. of Automatics, Biocybernetics, and Robotics

Jamova 39, 1000 Ljubljana, Slovenia, Email: ales.ude@ijs.si
§Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA, Email:cga@cmu.edu

¶Japan Science and Technology Agency, ICORP Computational Brain Project
4-1-8 Honcho, Kawaguchi, Saitama, Japan, Email: gordon@atr.jp

Abstract— The advances in humanoid robots in recent years
have given researchers new opportunities to study and create
algorithms for generating humanoid behaviors. Not surprisingly,
most approaches for creating or modifying behaviors for complex
humanoids require specialized knowledge and a large amount of
work. Our aim is to provide an alternative, intuitive way to
program humanoid behavior. To do this, we examine human-
to-human skill transfer, specifically coaching, and adapt it to
the humanoid setting. We enable a real-time scenario where a
person, acting as a coach, interactively directs humanoid behavior
to a desired outcome. This tightly coupled interaction between a
person and a humanoid allows efficient, directed learning of new
behaviors, where behavior characteristics can be modified on-
demand. Communication is realized through demonstration and a
coaching vocabulary, and changes are effected by transformation
functions acting in the behavior domain.

I. INTRODUCTION AND RELATED WORK

In film and literature we often see people interacting with
robots just as they do with other people: for example, they use
natural communication such as speech and gesture to direct
robots. In this fictional world, even people who are not robot
experts can control complex machines including humanoids
with ease. However, in today’s reality creating behaviors for
humanoid robots remains a task for specialists, where commu-
nication of behavior details is often time-consuming and takes
place largely through the mechanisms of programming.

One way we can begin to address this disconnect between
imagined possibilities and current reality is by focusing on
paradigms which afford more intuitive methods for creat-
ing robot behaviors. Human-to-human skill transfer is an
especially interesting model for building robot behaviors, as,
besides efficiency, it offers a familiar context to people dealing
with humanoids: rather than learning special skills, people can
bring their own knowledge from interacting with each other
directly into the humanoid domain. In this work we develop an
approach to generating robot behavior modeled on a particular
type of skill transfer: coaching, where a robot acquires new
skills with guidance from a human coach. For this work, we
explore the specific behavioral domain of movement. Where

possible, we emulate the efficiency of human skill transfer,
and because of the familiar, high-level control afforded by
coaching we enable non-specialists to participate in creating
robot behaviors.

Other robotics researchers inspired by coaching include
Nakatani and co-authors [1], who use coaching to aid in
balance and walking controller design for a biped robot. Their
experiments nicely demonstrate the efficiency gains of intro-
ducing intuitive human instruction into the controller design
loop, and although their solution is directed toward specialists,
the authors encourage creation of adaptable interfaces to allow
non-specialists a role in such control. Our approach is more
general purpose, targeting trajectory-based movement acquisi-
tion and subsequent refinement, and provides mechanisms for
novel behavior acquisition and an interface with affordances
suitable to specialists and non-specialists alike.

In [2] robot coaching is used in a teaching scheme for a
mobile robot where the emphasis is on learning representations
for high level tasks rather than on motor skill acquisition. The
coaching component, like our system, uses both demonstration
and verbal input to direct a robot, although demonstration
in [2] is limited to recognizing known primitives, and new
behaviors are limited to combinations of these primitives.

In interactive evolutionary computation (IEC), human eval-
uation is used in optimizations as fitness functions [3], and
although especially suited to topics like music retrieval where
subjective evaluation is critical, IEC has proven useful in
a number of fields including robotics [4]. It differs from
coaching, however, in that evaluations usually take the form
of selecting preferences from a range of current possibilities,
while in coaching specific feedback about how to improve a
performance is given.

Motion editors have also been used to create new robot [5]
and virtual human behaviors [6], [7], [8]. In [5] Kuroki and
colleagues present a motion editor specifically designed for
a small biped robot using the graphical tools common in
motion editors such as inverse and forward kinematics modes,
pose control, pose interpolation, and blending functions. Our

approach differs from this and from most motion editors
from the graphics community in the way the user interacts
with the robot: our human-robot communication takes the
form of a coach’s demonstrations and high-level qualitative
instructions, while motion editors offer powerful but less
intuitive motion editing paradigms requiring more training to
master. In addition, our system keeps live robot performance
in the loop, allowing for timely evaluation by the coach.

In the next sections we discuss the role of a coach in motor
skill acquisition, followed by our adaptation and implementa-
tion of useful coaching formalisms comprising our humanoid
coaching system, including domain-specific vocabulary, trans-
formation functions, modes of demonstration, and mechanisms
for focusing student attention in both time and body space. We
then discuss our experiments coaching a robot in catching,
and in throwing a ball into a basket. All exchanges occur in
a real-time interactive setup that preserves the iterative nature
of coaching and the tight coupling among effort, evaluation
and guidance.

II. THE ROLE OF A COACH IN HUMAN SKILL TRANSFER

In building our humanoid coaching system, we first studied
human coaching, with particular emphasis on the role of the
coach in teaching motor skills. In general, a coach is an expert
whose job is to improve the performance of a student. This
means providing instructions which are incorporated into the
student’s learning sessions to produce a successful outcome.
Coaching, being a well-established field, offers us a number
of formalisms for teaching new skills. These include acquiring
new motor knowledge; focusing attention on relevant task
features to improve learning of critical task aspects; assigning
priorities among goals; giving specific feedback to improve the
performance; giving a strategy for correction; and helping to
iteratively define the characteristics of a successful outcome.
These coaching methods imply a tightly coupled interaction
between coach and student where close observation of student
performance is followed by feedback or further instructions
from the coach.

The role and usefulness of an expert to guide a student has
been well-studied in humans. Performance and learning varies
with the form of the supplied information, its amount and
its timing. Frequent ways instructors give information are by
showing videotapes of a person performing the task, directly
demonstrating the task, physically guiding a person through a
task, and providing verbal instructions. With the right guidance
at the right time the student can adjust behavior both during
and after a learning session until the desired motion or state
is attained.

Students use live or video demonstration to observe strate-
gies, spatial or temporal information, and as a reference
of correctness for their own attempts at the behavior [9].
Some researchers have shown that mistakes may be more
instrumental in facilitating learning than perfect performances,
which by themselves are not giving the type of information
the learner needs.

Several studies, however, found that showing videotapes
alone, which is similar to direct demonstration, often did not
improve motor learning [9]. It was postulated that too much
information is available, particularly for complex tasks, and
the viewer does not know which details are important to the
outcome. In one study, showing a videotape by itself was
even shown to hinder learning. On the other hand, as early as
1952, verbal instructions were shown to have a lasting effect
on learning and performance, although verbal instructions
are more useful when used in conjunction with other input,
particularly demonstration [9].

Verbal instructions can communicate information includ-
ing focus, specific stance, or strategies for error correction.
Some verbal information takes the form of specific kinematic
feedback, such as ”bend your knees”. Besides patterns of
coordination, kinematic feedback can also be position, ve-
locity, and acceleration information. Expert instructors play
a valuable role in being able to observe, identify and correct
kinematic errors by giving verbal descriptions to the student.
The usefulness of kinematic information is supported by
studies giving evidence of kinematic trajectory plans in the
parietal cortex [10]; the presence of inverse dynamics models
in the cerebellum [11]; and motor equivalence where different
limbs are shown to produce kinematically similar patterns,
despite having such different dynamical properties [12], [13].

In the next sections we discuss implementation of coaching
components pulled from these ideas and tied together by an
interface used in directing humanoid behaviors.

III. THE HUMANOID ROBOT COACHING SYSTEM

A. Overview

In our humanoid coaching system the coach, much like a
dance instructor or sports coach, wishes to change a given
behavior to suit a particular end. In order to achieve this,
the coach and humanoid must be able to communicate. The
interface shown here facilitates and coordinates this commu-
nication. Embedded in it are access points for the different
capabilities of the system which incorporate:

• vocabulary;
• a set of transformation functions;
• the ability to demonstrate a desired behavior, either

through performance or by physically guiding the robot;
• the ability to focus on specific parts of a behavior for

refinement (body and time segmentation);
• the ability to clarify instructions or resolve ambiguities

through a student-coach dialogue.
Each capability is derived from an aspect of human coach-

ing. The vocabulary, for instance, reflects verbal instructions
coaches commonly use to give instructions. These commands
center around kinematic descriptions of motion, such as higher
and bend, used often when teaching motor skills. Movements
are changed by transformation functions (TFs) articulated
by this high-level vocabulary which manipulate appropriate
behavioral parameters to achieve a specific outcome (see
Section III-B for details). New movement acquisition is based

Fig. 1. The four modules of the humanoid robot coaching interface.

on two widely-used methods: demonstration and guiding.
Focusing on behavioral features relevant to success as defined
by the coach is achieved by selecting specific parts of a
movement, such as arm or leg motion (segmenting in body
space) for coaching. Attention can also be focused on certain
sections of a movement (segmenting in time) by breaking
it into sub-movements. Composition of partial movements
into a complex movement is easily accomplished by joining
segmented sub-movements. Lastly, during human coaching,
students are free to ask for clarification when misunderstand-
ings arise. We emulate this by giving the robot the ability to
initiate a dialogue with the coach to ask for further instructions
when faced with ambiguous or unclear situations.

The interface itself is shown in Fig. 1 and is comprised of
modules representing the different functionalities. They are:

• A classic interface comprised mainly of buttons and
sliders labeled with various coaching commands making
up the explicit coaching vocabulary.

• A simple 2D representation of a robot body allowing the
coach to easily focus changes on any part(s) of the body.

• A 3D graphics window which allows visualization of
movements on a 3D humanoid to allow quick, intuitive

segmentation, and real-time 3D visualization of color
markers used in vision-based demonstrations.

• An interactive text-based window to facilitate student-
initiated dialogue between coach and student, and to
provide current state information to the coach on demand.

Information transfer is initiated by using the vocabulary on
the classic interface. We use this type of interface for many
higher-level (”verbal”) instructions in order to avoid the pitfalls
of speech processing, such as the need for speaker-specific
training, although the system has also been successfully tested
with speech recognition software.

B. Transformation Functions

At the heart of the system lie transformation functions,
which form the essential mechanism for bringing about
changes in robot behavior. A TF is typically comprised of
a label, which is the coaching command that invokes it, and a
set of criteria that serves to define the high level command in
terms of low level behavioral criteria. Label and criteria are
wrapped together in a function that ultimately effects changes
to the appropriate behavioral parameters in accordance with
the TF’s definition.

C. The Role of World and Self Knowledge

To set the criteria for TFs, the system needs access to certain
types of knowledge relevant to the behavior domain. For the
movement domain the robot needs an understanding of the
relationship between its body and the world. In people, body
and world knowledge for movement is gained from childhood
on, beginning when children explore the space around them
with seemingly random gestures. In our system we seek a
minimal knowledge representation that affords the robot the
same type of understanding.

We designate world and body (self) reference frames with
a known correspondence, each comprised of a 3D Cartesian
system where the axes correspond to left, up and front. At any
time the robot is able to map its own local orientation to the
world reference frame. A TF is defined as relative to either
the world or body frame. For example, the notion of ”front”
and ”back” embedded in the further TF is always relative to
the robot body frame, so the current robot body orientation is
used no matter where the robot is in the world, while higher
is always relative to the world frame. Taken together, the
TFs begin to define a type of domain-specific dictionary of
behavioral knowledge.

Body knowledge in the humanoid coaching system is also
represented in the form of kinematic chains whose connectivity
is known to the robot. In our system, the interdependencies
of the human skeleton are represented as 6 hierarchically
dependent kinematic chains. By exploring the relationship of
the robot body joints to the appropriate Cartesian reference
frame, the robot can determine which joints may be useful
in effecting change for a specified direction. For example,
the robot may find that a higher arm movement could be
accomplished by extending the arm front and up (shoulder
flexion/extension) or to the side and up (abduction/adduction),
or some combination of the two. Additionally, knowing its
body connectivity, a robot may suggest using the torso to effect
changes in an arm posture. In determining which changes
to make, the robot engages in a dialog with the coach (see
the appendix) resulting in the final set of relevant DOFs
used to effect the change. During this exchange, the robot
can demonstrate the effect of the candidate DOFs to provide
immediate feedback to the coach.

DOF exploration starts with the body parts selected by
clicking in the 2D window, which graphically represents body
part vocabulary (right arm, head, etc.) in a simplified robot
shape. Body part(s) are highlighted (in red) when active, and
each part corresponds to a set of candidate DOFs that are con-
sidered in effecting subsequent changes. This selection process
works in conjunction with the Perform ACTIVE and Perform
ALL options on the classic interface which direct the robot
to perform changes using only the selected DOFs, or with all
DOFs involved in the movement. With this mechanism, the
coach has the option of seeing the effect of partial changes on
the entire movement while refining specific pieces.

To determine appropriate DOFs, the robot makes use of
forward kinematics where each joint change is related to a

change in the 3D positions of virtual points attached to the
relevant body part. Our robot is comprised of revolute joints
modeled with twists [14] as in our previous work [15], [16],
[17]. Each candidate joint is moved by respectively increasing
and decreasing its value, and the change in 3D point position
attached to the body part moved by the joint is then compared
to criteria for the TF, where the position of a point after
rotation is given by

Pt+1 = g(R,d) · exp(ω̂θ) · Pt (1)

where Pt and Pt+1 are the initial and final 3D positions
respectively of a point attached to the body part given in the
body coordinate system, g(R,d) is the homogeneous matrix
representing the body orientation and position in the world
coordinate frame, and exp(ω̂θ) is the exponential that maps
a rotation of angle θ radians about ω, the unit vector in the
direction of the joint axis, to the corresponding rotation matrix.
(Note that for the special case of pure rotation, the exponential
coordinates of rotation, θ and ω, suffice in the place of the twist
coordinates, and the exponential mapping can be efficiently
calculated by Rodrigues’ formula.)

When both rotational directions match the TF criteria, the
solution prefers to continue in the current direction of motion,
but the final decision is left to the coach.

For world-based criteria like higher, it is important to test
DOFs with respect to the robot’s world position and orientation
since changes therein can affect the solution set of DOFs.
(Consider making a higher arm movement lying down versus
standing, for example.)

D. Initial Behavior Acquisition

Another important use of domain knowledge is found in
imitation, where the coach demonstrates movements that can
be understood and reproduced by the robot during interactive
coaching sessions. It is not surprising that imitation plays
a key role in coaching motor skills, as it is a successful
and fundamental strategy used for human learning [18], and
has inspired much work in the robotics and virtual human
communities [19], [20], [21].

To solve direct imitation, the robot already has crucial
information: its position and orientation with respect to the
world reference frame, and an understanding of its own body
configuration.

Our approach, described in [15], [16], [17] relates the
coach’s kinematics to the robot’s kinematics automatically, and
acquires the motions in the robot joint space by matching the
position of markers in Cartesian world space attached to the
coach’s body to the motion of corresponding virtual markers
attached to the robot body and measured in body space.

In the past we have used a commercial optical motion
capture system with active markers and trailing wires to track
points on the body, but for coaching we usually use our own
less intrusive (wireless) color tracking system, which tracks
color blobs attached to clothing (Fig. 2). During coaching,
imitation occurs in real time or immediately following a

demonstration, and the solution is constrained to the robot
joint limits.

In the coaching system, the Imitate command is used with
the 3D window to allow real-time display of 3D vision markers
attached to the coach, and to visualize solution markers as the
transition from Cartesian space to joint angles is calculated.
This is important in ensuring good tracking information is
maintained, a reasonable solution ensues, and problems such
as occlusion can be quickly identified and monitored.

Another common method of seeding behaviors is physically
guiding a robot through a motion. This is invoked with the
Pose command and is accomplished by lowering gains on
the robot and directly capturing joint angles while the coach
physically guides the robot through a motion.

The last demonstration-based command, Morelike, is in-
tended to make a movement similar to the movement being
shown. This is achieved by performing a weighted average on
joint angles for each DOF used in the demonstration and in
the current movement to drive them toward the demonstration.

E. Descriptions of Transformation Functions

Due to space constraints we present only brief descriptions
of the remaining transformation functions, omitting most of
the mathematical details. TFs were implemented using tools
from various areas including digital signal processing, spline
analysis, approximation theory, and computer vision.

We chose Cartesian and joint angle space to express move-
ment information because they reflect common spaces for de-
scribing movements in human coaching, and lend themselves
easily to change within this paradigm. Movements, M , are
represented either by a sequence of points Pt in time, splines
or radial basis functions, and transformation functions act on
these representations.

At the top left of the classic interface, we find motion
descriptors and associated sliders, which control the mag-
nitude of the desired changes bounded by the robot’s ca-
pabilities. faster changes the frequency of the movement
under consideration, where robot velocity capabilities limit
desired frequencies if necessary. smoother requires less sharp
changes in position with respect to time. This is achieved
using a moving average filter which smooths a curve in joint
space representing the active motion segment (See Fig. 3).
The slider value influences the filter window size. bigger
corresponds to an increase in amplitude of the movement range
measured in joint space and is achieved using a global scaling
algorithm [22]. higher causes an increase along the vertical
axis of the world Cartesian system, and is accomplished by
moving the maximum (or minimum) of the current trajectory
toward the robot’s maximum joint position with a blending
function. further directs the motion either further left or right,
or front or back with respect to the robot body. bend bends
a part of the body (e.g.,elbow, knee or waist) by increasing
the appropriate joint angle over the movement segment under
consideration. turn orients the body (here, the torso and head)
right or left relative to body space, or toward an object in its
surroundings.

Next we consider the time segmentation commands SEG-
MENT, JOIN Ends, and JOIN Concurrent that allow the
coach to split a movement into sub-movements or join two
movements together. The coach can visualize a movement
in the 3D humanoid window to quickly select the beginning
and end of a segment using the SEGMENT, Mark Start and
Mark End buttons. Once a movement segment is identified,
instructions from the coach will affect only this segment until
segmentation is turned off.

In the case of JOIN Ends, the end of one movement is joined
to the beginning of the second movement. When the two joined
movements have different frequencies, relative frequencies are
preserved by re-sampling the slower segment represented by
splines at the higher frequency. JOIN Concurrent aligns the
start of two segments and merges them into one. This action
is intended to join movements with different DOFs (legs plus
arms, for example), allowing the coach to create complex
movements from simpler ones. The buttons Move 1, Move
2 and Move 3 allow the coach to switch between movements
and select movements to be joined.

When movement segments are joined care is taken to
smoothly blend the end and start of adjacent segments to
avoid sharp discontinuities in the motion. In all cases the
robot’s joint limits (position and velocity) act as constraints
during modifications, and joint velocities and accelerations are
computed by finite differencing after position changes.

Also on the interface are the object interaction commands
Grip/Release and External Goal. The first allows the coach
to tell the robot when to grip or release objects in its hand,
while the second tells the robot that the current behavior is
associated with an external object found in its environs.

The remaining commands are meta-commands which con-
trol the flow of the overall coaching session (GET MOVE, GO,
STOP, etc.); or housekeeping commands such as Relax, which
resets the robot posture to reasonable values.

IV. EXPERIMENTS AND RESULTS

Our previous work showed the feasibility of using real-time
full-body imitation for movement acquisition [15], [16], [17].
Here we discuss our work on coaching the robot to throw
and catch a ball where our student is a 30 DOF humanoid
robot [23] shown in Fig. 5. The gross movement for throwing
was acquired from direct demonstration using computer vision
(see Fig. 2). The original trajectory acquired from the vision
data, shown in Fig. 3, was too noisy for the robot to properly
execute. So our coaching sequence was as follows:

• acquire a set of throwing movements using real-time
demonstration;

• select one of the movements and use SEGMENT to extract
the relevant part of the trajectory for the desired throw;

• smooth the movement several times, each time acting on
the previous results with smoother (Fig. 3).

With an acceptable throwing movement, we could now focus
on coaching the robot to throw the ball toward the basket. To
do this we

• increase the velocity and acceleration with faster

Fig. 2. The initial throwing behavior was captured and processed in real time
using color markers attached to the body and computer vision techniques.

• change the course of the trajectory with higher (Fig. 4)
to extend the length of the throw,

• use release to specify the exact timing for the release.
During the coaching session, the robot demonstrated how

higher can be accomplished using a variety of DOFs, and let
the coach select the appropriate DOFs (shoulder and elbow
flexion/extension) to make the new movement. After each
refinement, we (the coaches) watched the robot to evaluate its
performance, and then gave successive instructions based on
what we saw. Throwing at this point was much improved, but
still not satisfactory. This led us to constrain the body space
for the movement from DOFs originally used in the movement
to the DOFs most relevant for successful robot throwing until
throwing was successful.

We then moved the basket, and again coached the robot
until it could throw successfully to the new location. In
the second coaching sequence, further was instrumental in
directing the movement toward the robot’s right, particularly
for the robot torso, as the new target was further to the
right. It is important to point out that the acquisition of
this behavior was accomplished without any programming
and without the input of accurate parameters like velocities
and accelerations. The initial trajectories were acquired by
observation and then modified using qualitative higher-level
instructions. Fig. 5 shows a sequence of postures from a
coached throwing movement.

In our catching experiments, we used coaching to improve
the performance for an existing catching behavior [24]. In this
case we used the transformation function higher to change the
height where the robot catches the ball. This parameter had
an effect on the time it took to catch the ball, with lower
catches affording more time to plan and execute an intercept
motion. GO was used to specify when to begin prediction of
the ball’s flight. For different types of ball trajectories, different
parameters led to successful catching. Our system supports

Fig. 3. Original (dashed, noisy line) and modified trajectories for the right
shoulder flexion/extension DOF showing modification by two iterations of the
smoother transformation function implemented with a moving average filter.

Fig. 4. Original (dashed line) and modified (solid) trajectories showing
modification by the higher transformation function after using smoother.

permanently associating the relevant behavior parameters to
the movement primitives and thus expanding the knowledge
base of the robot.

V. CONCLUSIONS AND FUTURE DIRECTIONS

The presented system explores a new way to intuitively
create behaviors for complex humanoid robots. Currently,
much time is spent by specialists in creating each new
behavior. Our intent is to introduce other methods with the
potential to improve the time and ease of creating behaviors.
Efficiency is often facilitated by intuitive solutions, as they
are easy to understand and require less training to use. As
we examined strategies people use to acquire new skills, we
were inspired by coaching’s proven merits in accelerating
human skill acquisition. In addition, and perhaps because of

Fig. 5. Postures from a sequence of coached throwing movements.

its success in accelerating learning, coaching is a paradigm
familiar on some level to most people. It is a special case of
a more general teacher-student relationship that we meet from
our infancy forward.

Because of this, our coaching system offers a familiar
setting to most people for interacting with and directing the
behavior of a complex humanoid robot where human-robot
communication takes the form of coach’s demonstrations and
high-level qualitative instructions. This familiarity allowed
us to create a ”walk up and use” type of system, where,
unlike many motion editing systems, little previous training
is needed, and, unlike most current robot control schemes,
non-specialists can participate in implementing complex robot
behaviors such as throwing a ball in a basket. In doing so
we do not obviate the need for specialists to create low-level
algorithms for robot control. Instead, we look at the potential
role of introducing the advantages of interactive high-level
instruction and interactive goal specification used often by
people in improving the overall efficiency of creating new
robot behaviors. Our approach brings a collaborative nature
of problem solving to the domain, where the intent is for
widespread availability, ease of use, and the ensuing behavioral
flexibility and customization these methods make possible.

Consistent with these goals, we wish to develop new
methods for adding transformation functions to the system.
The functions described here represent examples of domain-
specific transactions related to the language of motion, but are
not meant to be an exhaustive list. At present, more transfor-
mations can be added as needed by traditional programming
methods. However, it would be more suitable and interesting

to develop a mechanism for learning new transformations and
attaching them to a particular label without the need for such
programming. We will work on this in the future.

VI. APPENDIX

The following exchange shows an excerpt from an
interaction between the robot and coach during a higher
command. The position of a virtual point on the upper arm at
its current position and after a positive and negative rotation
from the current position is shown. An increase in the second
(y) dimension corresponds to an increase along the vertical
world axis, the criteria for higher. The main points of the
robot’s communication to the coach are shown in bold.
The coach’s responses are shown in italics. The robot first
checks all active DOFs (those corresponding to body parts
selected in the 2D window, here the left upper arm), and then
checks any connected parts (here the torso) whether they
are active or not to suggest additional possibilities to the coach.

HIGHER requested.
....checking right shoulder

Potential candidates to help with UP for this part:

DOF Status:
...shoulder flexion/extension Active (rsfe)
...shoulder abduction/adduction Active (rsaa)
...shoulder rotation Active (rshr)

I could also check:
....torso rotation Not Active (btr)

....torso abduction/adduction Not Active (btaa)

....torso flexion/extension Not Active (btfe)

Cartesian frame changes:
x y z
testing dof shoulder flexion/extension (rsfe)
-10.296700 4.763384 2.019819 (starting position)
-10.296700 11.492188 5.085141 (positive rotation)
-10.296700 3.356163 -1.992737 (negative rotation)

testing dof shoulder adduction/abduction (rsaa)
-11.976195 4.334291 -2.170500
-10.514429 3.448190 -2.170500
-14.950410 12.791493 -2.170500

testing dof shoulder rotation (rhr)
-10.179647 3.349600 -1.507159
-9.144885 3.349600 -4.726161
-8.644364 3.349600 0.327433

Up: Checking displacement for: y
rsfe winner: y displacement: 6.7288
rsaa winner: -y displacement: 8.4572
rhr NO winner: displacement: 0.0000

Can change by using shoulder flex/ext.
Use it?(yes or no)?
Coach: yes
Can change by using shoulder abd/add.
Use it?(yes or no)?
Coach: yes

Finished with right shoulder. Testing torso next...

ACKNOWLEDGMENT

This material is based upon work supported in part by
the DARPA Learning Locomotion Program, the National
Science Foundation under NSF Grants CNS-0224419, DGE-
0333420, and ECS-0325383 and the EU Cognitive Systems
project PACO-PLUS (FP6-2004-IST-4-027657) funded by the
European Commission.

REFERENCES

[1] M. Nakatani, K. Suzuki, and S. Hashimoto, “Subjective-evaluation
oriented teaching scheme for a biped humanoid robot,” in Proc. IEEE-
RAS Conference on Humanoid Robotics, September/October 2003.

[2] M. N. Nicolescu and M. J. Mataric, “Natural methods for robot task
learning: Instructive demonstrations, generalization and practice,” in
Proc. Second Int. Joint Conf. on Autonomous Agents and Multi-Agent
Systems, July 2003.

[3] H. Takagi, “Interactive evolutionary computation: Fusion of the capa-
bilities of EC optimization and human evaluation,” Proceedings of the
IEEE, vol. 89, no.9, pp. 1275–1296, 2001.

[4] S. Kamohara, H. Takagi, and T. Takeda, “Control rule acquisition for
an arm wrestling robot,” in IEEE International Conference on System,
Man, Cybernetics, October 1997, pp. 4227–4231 Vol.5.

[5] Y. Kuroki, B. Blank, T. Mikami, P. Mayeux, A. Miyamoto, R. Playter,
K. Nagasaka, M. Raibert, M. Nagano, and J. Yamaguchi, “Motion cre-
ating system for a small biped entertainment robot,” in Proc. IEEE/RSJ
Conf. on Intelligent Robots and Systems, October 2003, pp. 1394–1399.

[6] J. Lee and S. Shin, “A hierarchical approach to interactive motion editing
for human-like figures,” in Proceedings of ACM SIGGRAPH 99, 1999,
pp. 39–48.

[7] J. Lee, J. Chai, P. Reitsma, J. Hodgins, and N. Pollard, “Interactive
control of avatars animated with human motion data,” in Proceedings
of ACM SIGGRAPH 2002, 2002.

[8] M. Gleicher, “Comparative analysis of constraint-based motion editing
methods,” Graphical Models, vol. 63, no. 2, pp. 107–134, 2001.

[9] R. Schmidt and T. Lee, Motor Control and Learning: A Behavioral
Emphasis. Human Kinetics, 3rd edition, 1999.

[10] J. Kalaska, What parameters of reaching are encoded by discharges of
cortical cells? John Wiley & Sons, 1991.

[11] N. Schweighofer, J. Spoelstra, M. Arbib, and M. Kawato, “Role of the
cerebellum in reaching movements in humans: Ii. a neural model of the
intermediate cerebellum,” European Journal of Neuroscience, vol. 10,
pp. 95–105, 1998.

[12] J. S. Kelso, Ed., Human Motor Behavior: An Introduction. Lawrence
Erlbaum Associates, Inc., 1982.

[13] N. Bernstein, The control and regulation of movements. London:
Pergamon Press, 1967.

[14] R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction to
Robotic Manipulation. Boca Raton, New York: CRC Press, 1994.

[15] M. Riley, A. Ude, and C. Atkeson, “Methods for motion generation
and interaction with a humanoid robot: Case studies of dancing and
catching,” in AAAI and CMU Workshop on Interactive Robotics and
Entertainment 2000, April 2000, pp. 35–42.

[16] M. Riley, A. Ude, K. Wade, and C. Atkeson, “Enabling real-time full-
body imitation: A natural way of transferring human movement to
humanoids,” in Proc. IEEE Int. Conf. Robotics and Automation, Taipei,
Taiwan, September 2003, pp. 2368–2374.

[17] A. Ude, C. G. Atkeson, and M. Riley, “Programming full-body move-
ments for humanoid robots by observation,” Robotics and Autonomous
Systems, vol. 47, pp. 93–108, 2004.

[18] J.Piaget, Play, Dreams and Imitation in Childhood. New York: W. W.
Norton, 1945, translated 1962.

[19] C. Breazeal and B. Scassellati, “Robots that imitate humans,” TRENDS
in Cognitive Sciences, vol. 6, no. 11, pp. 481–487, 2002.

[20] M. Mataric, “Getting humanoids to move and imitate,” IEEE Journal of
Intelligent Systems, vol. 15, no. 4, pp. 18–24, July/August 2000.

[21] S. Schaal, “Is imitation learning the route to humanoid robots?” Trends
in Cognitive Sciences, vol. 3, pp. 233–242, 1999.

[22] N. Pollard, J. K. Hodgins, M. Riley, and C. G. Atkeson, “Adapting
human motion for the control of a humanoid robot,” in IEEE-RAS
Conference on Robotics and Automation, May 2002, pp. 1390–1397.

[23] C. Atkeson, J. Hale, F. Pollick, M. Riley, S. Kotosaka, S. Schaal,
T. Shibata, G. Tevatia, A. Ude, S. Vijayakumar, and M. Kawato, “Using
humanoid robots to study human behavior,” IEEE Journal of Intelligent
Systems, vol. 15, no. 4, pp. 46–56, July/August 2000.

[24] M. Riley and C. Atkeson, “Robot catching: Towards engaging human-
humanoid interaction,” Autonomous Robots, vol. 12, pp. 119–128, 2002.

Experience based Learning and Control of Robotic Grasping

Johan Tegin and Jan Wikander
Mechatronics Laboratory

Machine Design
KTH, Stockholm, Sweden

E-mail: johant, jan@md.kth.se

Staffan Ekvall and Danica Kragic
Computational Vision and Active

Perception Laboratory
KTH, Stockholm, Sweden

E-mail: ekvall, danik@nada.kth.se

Boyko Iliev
Biologically Inspired Systems Lab.

Applied Autonomous Sensor Systems
Örebro University,Örebro, Sweden

E-mail: boyko.iliev@tech.oru.se

Abstract— In this paper a method for automatic grasp gen-
eration for robotic hands is presented. Experience and shape
primitives are used in synergy and provide a basis not only for
grasp generation but also for a grasp evaluation process when
the exact pose of the object is not available. The problem is
studied in a Programming by Demonstration scenario where the
system first recognizes the human induced grasp and the object
it is applied to. Based on these, a suitable grasping scheme is
chosen for the robot so that it can perform a successful grasp.
In this work, the entire grasp sequence is thoroughly evaluated
in a simulated environment, from learning a grasp to actually
reaching it, including dynamic simulation of the grasp execution
with a focus on grasping objects whose pose is not perfectly
known. We also discuss the necessary requirements for evaluating
this approach in a real setting.

I. I NTRODUCTION

One of the main challenges in the field of robotics is
to make robots ubiquitous. To intelligently interact with the
world, one of the key abilities that robots need to have is
to manipulate objects. Typical environments in which robots
will be deployed, such as a house or an office, are dynamic
and it is very difficult to equip robots with an ultimate and
general grasp planning capability. Planning a grasp is difficult
due to the large search space resulting from all possible
hand configurations, grasp types, and object properties that
occur in regular environments. Another important question
is how to equip robots with capabilities of gathering and
interpreting the necessary information for novel tasks through
interaction with the environment in combination with minimal
prior knowledge.

In relation to grasping, some recent approaches propose
the use of prehensile postures where object features and
experience is used to aid the selection of the pre-grasp posture
and grasp scheme. Such an approach significantly decreases
the size of the search space. This paper presents a method
for grasp generation for robotic hands where programming
by demonstration, experience and shape primitives are used
to provide a successful grasp. A top-down (experience) and
a bottom-up methodology are integrated to develop a more
natural grasp learning system. It is important to note that
the bottom-up methodology can be seen as semi-autonomous
grasping control. The proposed method is shown to work
for choosing the grasp approach vector, but can also be
used to choose other grasp control parameters that affect the
fingers’ closing sequence, controller switching, reactions to
tactile sensor inputs et cetera. The methods in this paper

are applicable to numerous grasping related problems but the
focus here is on one of the main challenges – choosing the
object approach vector, which is dependent both on the object
shape and pose as well as the grasp type. Using the proposed
method, the approach vector is chosen not only based on
perceptional cues but also on experience that some approach
vectors will provide useful tactile cues that finally result in
stable grasps. Moreover, a methodology for developing and
evaluating grasp schemes is presented where the focus lies on
obtaining stable grasps under imperfect vision.

Our longterm research is related to the design of the Pro-
gramming by Demonstration systems, [1], [2], where the user
teaches the robot new tasks by simply demonstrating them.
The robot can first imitate human behaviour and then improve
through continuous interaction with the environment. This
approach borrows some ideas from the field of teleoperation,
that provides a means of direct transmission of dexterity from
the human operator. Most of the work in this field focuses
however on low-level support such as haptic and graphical
feedback and deals with problems such as time delays, [3].
For instruction systems that involve object grasping and ma-
nipulation, visual and haptic feedback are necessary. The robot
has to be instructedwhat and how to manipulate, [4]. If the
kinematics of robot arm/hand system is the same as for the
human, a one-to-one mapping approach may be considered.
This is, however, never the case. The problems arising are
not only related to the mapping between different kinematic
chains for the arm/hand systems but also to the quality of
the object pose estimation delivered by the vision system.
Hence, the methods presented here should be considered in a
Programming by Demonstration setting where the system can
recognize the human induced grasp and the object it is applied
to. Based on these, a suitable grasping scheme is chosen for the
robot so that it can perform a successful grasp. Our previous
results related to these problems have been presented in [5],
[6], [7] and [8].

In this work, the entire grasp sequence is thoroughly eval-
uated in a simulated environment, from learning a grasp to
actually reaching it, including dynamic simulation of the grasp
execution. We also discuss the necessary requirements for
evaluating this approach in a real setting. It should be noted
here that the problems arising are not only related to the
mapping between different kinematic chains for the arm/hand
systems but also to the quality of the object pose estimation
delivered by the vision system.

The contributions of the work presented in this paper are:
• A suitable grasp is related to object pose and shape and

not only a set of points generated along its outer contour.
This means that we do not assume that the initial hand
position is such that only planar grasps can be executed as
proposed in [9]. In addition, grasps relying only on a set
of contact points may be impossible to generate on-line
since the available sensory feedback may not be able to
estimate the exactly same points on the object’s surface
once the pose of the object is changed.

• The choice of the suitable grasp is based on theexperi-
ence, i.e. it is learned from the human by defining the
set of most likely hand preshapes with respect to the
specific object. A similar idea was investigated in [10]
but only one robotic hand and four grasp preshapes were
considered. We evaluate both Barrett [11] and Robonaut
hand, [12]. Since grasp preshapes are generated based
on recognition of human grasps it makes them more
natural. This is, of course, of interest for humanoid robots
where the current trend is to resemble human behaviour
as closely as possible.

• Finally, we evaluate the quality of different grasp types
with respect to inaccuracies in pose estimation. This is an
important issue that commonly occurs in robotic systems.
The reasons may be that the calibration of the vision
system or hand-eye system is not exact or that a detailed
model of the object is not available. We evaluate how big
pose estimation error different grasp types can handle.

This paper is organized as follows. In Section II we shortly
review the related work and in Section III a description of
the the whole system is given. In Section IV, our grasp
mapping strategy is presented in more detail followed by
the adopted control approach Section V. Planning and grasp
quality is discussed in Section VI and the results of the
conducted experimental evaluation are given in Section VII.
We summarize the paper in Section VIII.

II. RELATED WORK

Considering specifically object manipulation tasks, the work
on automatic grasp synthesis and planning is of significant
relevance, [10], [13], [9], [14]. The main issue here is the
automatic generation of stable grasps assuming that the model
of the hand is known and that certain assumptions about the
shape of the object can be made. Example of assumptions
may be that the full and exact pose of the object is known
in combination with its (approximate) shape, [10]. Another
common assumption is that the outer contour of the object
can be extracted and a planar grasp applied, [9]. The work on
contact-level grasps synthesis concentrates mainly on finding
a fixed number of contact locations with no regard to hand
geometry, [15], [16].

Taking into account both the hand kinematics as well as
somea-priori knowledge about the feasible grasps has been
acknowledged as a more flexible and natural approach towards
automatic grasp planning [17], [10]. In [17], a method for
adapting a given prototype grasp of one object to another

object, such that the quality of the new grasp would be at
least 75% of the quality of the original one was developed.
It has to be, however, pointed out that this process required a
parallel algorithm running on supercomputer to be computed
efficiently. The method proposed in [10] presents a system for
automatic grasp planning for a Barrett hand by modelling an
object as a set of shape primitives, such as spheres, cylinders,
cones and boxes in a combination with a set of rules to
generate a set of grasp starting positions and pregrasp shapes.

With respect to dynamic grasping and manipulation control,
previously presented results include catching a ball or playing
the piano using the robotic DLR Hand [18]. Exchanging a
light bulb has been shown using the Utah/MIT hand [19].
High speed grasping has also been demonstrated in [20]. In
terms of grasping systems, relevant ideas have been presented
in [21].

III. SYSTEM DESCRIPTION

In this paper, robotic grasping sequences are performed
combining a learning by demonstration framework with semi-
autonomous grasping. Let us start by a short motivation for the
system design. Consider a human and a robot each standing
in front of a table, on which a set of objects are placed,
Fig. 1. A specific task is then demonstrated to the robot. That
task may be moving (pick up/move/put down) an object. The
robot recognizes which object has been moved and where
using visual feedback. The magnetic trackers on the human
hand, provide information that enables the robot to recognize
the grasp type used. The robot should then reproduce or
imitate the action induced by the human, [5]. Recent work
has also evaluated how tasks can be learnt based on multiple
demonstrations, [6].

In this paper, we design and evaluate a system for automatic
grasp generation and fine control, that can be used in the
above scenario. The approach is evaluated in simulation using
two kinematically different hands, the Barrett hand and the
Robonaut hand. Using the Barrett hand as an example, a
methodology for designing a grasp controller for corrective
movements is outlined. In addition, it is shown how dynamic
simulation can be used for building grasp experience and for
the evaluation of grasp performance.

Fig. 1. Left: A human demonstrates object manipulation tasks to the robot.
A camera and data glove equipped with magnetic trackers provide sensory
input for task recognition. Right: The robot uses this information to reproduce
the demonstrated task using its own frame of reference.

Barrett Two−finger Thumb Robonaut Four−finger Robonaut Platform Robonaut Precision Disc

Four−finger Thumb Three−finger Thumb Light Tool Abducted Thumb Power Sphere Large Diameter Small Diameter Medium Wrap Platform Precision Disc

Barrett Precision DiscBarrett WrapRobonaut Wrap Robonaut Thumb Wrap

Fig. 2. Initial robot hand postures for different grasp types.

We shortly review the components currently used in our
system:

1) Object Recognition and Pose Estimation
Estimation of the objects’ poses before and after an
action enables the system to identifywhich object has
been movedwhere. For object recognition and pose
estimation, Receptive Field Co-occurrence Histograms
is used [7], [22]. In this study, it is assumed that the
objects are resting on a table. The pose can hence be
represented by three parameters (x, y andφ).

2) Grasp Recognition
A glove with magnetic trackers provides hand postures
to to a grasp recognition system [8]. The position of the
hand is used to segment the grasp task.

3) Grasp Mapping
An off-line learnt grasp mapping procedure maps the
human grasps to robot grasps as presented in Section IV.

4) Grasp Planning
The robot selects a suitable grasp controller. The object
will be approached from the direction that maximized
the probability of reaching a successful grasp. This is
presented in more detail in Section VI.

5) Grasp Execution
A semi-autonomous grasp controller is used to control
the hand from the planned approach position until a
force closure grasp is reached, Section V.

The evaluation of the system proposed in this work is
performed using a modified and extended version of the
robot grasp simulator GraspIt! [23] to allow for repetitive
experiments and statistical evaluation. We strongly believe
that the results of the experimental evaluation facilitate further
development of robot grasping systems.

IV. GRASPMAPPING

It has been argued that grasp preshapes can be used to limit
the large number of possible robot hand configurations. This
is motivated by the fact that, when planning a grasp, humans
unconsciously simplify the grasp choice by choosing from a
limited set of prehensile postures appropriate for the object
and task at hand [24]. Related to robotics, Cutkosky [25] clas-
sified human grasps needed in a manufacturing environment
and evaluated how the task and object geometry affect the
choice of grasp. The work on virtual fingers generalized the

existing grasp taxonomies, [26]. Based on the above work
and described in our previous work [8], the current grasp
recognition system can recognize ten different grasp types.
Due to the different kinematics between the robot and human
hand, the grasp demonstrated by the human has to be first
mapped to the robot. For this purpose, the mapping scheme
showed in Table I was defined.

Human Grasp Barrett Grasp Robonaut Grasp

Large Diameter Barrett Wrap Robo. Thumb Wrap

Small Diameter Barrett Wrap Robo. Thumb Wrap

Medium Wrap Barrett Wrap Robo. Thumb Wrap

Abducted Thumb Barrett Wrap Robonaut Wrap

Light Tool Barrett Wrap Robonaut Wrap

Four-finger Thumb Barrett Two-finger Thumb Robo. Four-finger

Three-finger Thumb Barrett Two-finger Thumb Robo. Four-finger

Power Sphere Barrett Wrap Robonaut Wrap

Precision Disc Barrett Precision Disc Robo. Precision Disc

Platform Barrett Wrap Robonaut Platform

TABLE I

THE MAPPING OF HUMAN GRASPS TO ROBOT GRASP CONTROLLERS. THE

LEFT COLUMN IS A SELECTION OF HUMAN GRASPS FROMCUTKOSKY’ S

GRASP HIERARCHY.

It has to be noted here that the robot grasp types do not refer
only to hand postures, but to grasp execution schemes. Such
a scheme includes the initial position, theapproach vector,
the robot hand closing sequence, controllers for corrective
movements, etc. Hence, different strategies are used to grasp
an object dependent on the grasp type. Fig. 2 illustrates the
initial hand postures for each of the controllers.

V. GRASPCONTROL

There are two basic grasp controllers in the system: Power
Grasp and Precision Grasp. There are eight variations of these,
three for the Barrett hand and five for the Robonaut hand.
The difference lies in the initial grasping position and the
finger control during closure. In this paper, all eight variations
are evaluated. As the the dynamics of the grasping process is
essential in deciding if a stable grasp was reached, the Barrett
Wrap grasp was simulated using rigid body dynamics and the
control scheme outlined in Section V-A.

• Power Grasp
First, the initial hand posture is set according to the grasp
type recognized from the human demonstrator. The hand
then approaches the object until contact is detected upon
which all fingers close until contact. Depending on the
grasp type, the joint angle speed may be different for
each joint, causing for example the thumb to close more
slowly.

• Precision Grasp
This controller is similar to the Power Grasp, but with an
added dimension. Once a contact is detected, the hand
retracts a predefined distance and then close all fingers
simultaneously. This allows the robot to better combine
tactile sensing with computer vision, as we previously
demonstrated in [27].

The grasp approach vector is defined relative to the object’s
pose and center. Other object shapes may require evaluation
of several approach vectors, e.g. the object top and bottom, or
one or more for each object feature.

A. Control Scheme

As previously mentioned, with the goal of making robots
ubiquitous, complete knowledge of the world cannot be ex-
pected. In addition, limited accuracy in computer vision or
effects such that objects or the hand itself may occlude vision,
requires a grasp control algorithm able to handle such uncer-
tainty. Here we show how to derive a low level controller that
is able to cope with some of these problems. The controller is
designed to cope with uncertainties and corrective movements,
but it does not communicate with higher level controllers.
Hence, the grasp control has no support for moving the wrist or
detecting object motion from vision. From start to completion
of the grasp, the grasp controller is autonomous.

The grasping sequence can be seen as comprised of two
phases; first closing the fingers until contact and then maintain-
ing the contact while applying proper contact forces. It is also
important to implement a contact displacement controller so
that the object position after finger contact can be controlled.
In other words, using position control we can also apply local
corrective movements. The need for such movements can be
exemplified by the Barrett hand where the grasp is often of
higher quality when all fingers have approximately the same
closing angle rather than when the object is far from the palm
center. This behaviour can be seen in the example task shown
in Fig. 4. Here, the Barrett hand is modelled as rigid bodies
where the two joint angles of each finger have a fixed relation.
Control is performed by applying torque joint. Hence position
control requires D-control or friction modelling. This and all
other control is performed in Matlab, see Fig. 3.

Before the contact, the velocity of each finger is individually
controlled. The contact is then detected by deriving the accel-
eration from the joint encoders. While the reference values
for position and force start to change, the velocity controller
is smoothly switched off. A feed-forward loop compensates
for gravity. Alternative controllers have been investigated in
e.g. [28].

Fig. 3. Software layout for the simulation environment.

Fig. 5. The box is grasped and lifted by the Barrett hand mounted on a
Puma arm.

B. Control Design

To enable a more intuitive formulation of the controller – as
opposed to decentralized control of reference trajectories and
torques – a control design is used that allows the controller to
be specified in a more direct way, as presented in our previous
work [29]. To exemplify the design process we use the Barrett
hand. The angle between the two fingers on the one side,
the spread, and the closure of each finger can be controlled
by setting the joint torques. Accordingly, the hand has four
degrees of freedom. The basis for the controller is a linear
transformT relating the original joint anglesq to new control
variablesx, see Fig. 6. The transform is

x = Tq. (1)

It is approximated that joint angle corresponds to finger
position. (The controller is designed as if the hand was a
parallel jaw gripper.) The closing force is controlled using
tactile force sensor data while joint encoder data is used to
control the finger positions. For now, spread is not controlled.

To control the total grasp force, a variable is defined to
control the hand closure:

x2 =
q2 + q3

2
+ q4. (2)

Fig. 4. Execution of a sample task wherecorrective movementsare used to center the object.

Fig. 6. Grasp controllers: total grasp force, stability, centering, and spread.

To control centering, the next variable is defined as the
difference between the average joint angle of the two fingers
on the one side and the single finger on the other side:

x3 =
q2 + q3

2
− q4. (3)

Stability is added to the grasp by trying to keep the angles
q2 and q3 equal. A control variable that is the difference in
joint angle between the two fingers on the one side is defined:

x4 = q2 − q3. (4)

Controlling the force, centering and stability according to
the above and Fig. 6, the transform becomes:

T =


1 0 0 0
0 1/2 1/2 1
0 1/2 1/2 −1
0 1 −1 0

 . (5)

The control forcesf are computed using a P-controller
f = De whereD contains controller gains ande is an error
vector with force and position errors. The joint torquesF are
computed as

F = TT f = TTDe. (6)

Tactile sensors, see Section V-C are used to control the
grasp force (x2) and joint encoders to control the position
(x3) and “stability” (x4). The errore is computed using the

desired [des] and actual [act] variable values as

e =
[
e1 e2 e3 e4

]T

e1 = 0
e2 =

[
0 1 0 0

]
ef

e3 =
[

0 0 1 0
]
ex (7)

e4 =
[

0 0 0 1
]
ex

ef = fdes − fact = fdes − T−TFact

ex = xdes − xact = xdes − Tqact.

To focus on the displacement control, we use

D =


0 0 0 0
0 kp 0 0
0 0 5kp 0
0 0 0 kp

 . (8)

C. Tactile Sensors

Most robots are equipped with sensors that measure joint
positions, but only tactile sensors are able to provide measure-
ments at the exact point of contact. In the current system, it is
assumed that three distributed extrinsic tactile sensors capable
of detecting the normal force only were mounted to the distal
links, see Fig. 7. This type of touch sensors are available at a
low cost and are easy to mount to an existing robot hand as
we have shown in our previous work [27]. Considerations on
different tactile sensors are put in to perspective in [30]. More
general overviews of sensors for grasping include [31], [32].

VI. GRASPPLANNING

The grasp planner assumes that an approximate model of
each object considered for grasping is available. Since it
can be difficult to automatically acquire detailed models of
complex shapes, it is more reasonable to assume that it will
be possible to extractshape primitivesusing computer vision

Fig. 7. The placement of the tactile sensors.

Fig. 8. Left: The real objects. Center: The modelled objects. Right: The
object primitives used for training.

or laser technology. Each object can be represented by its
appearance (textural properties) for visual recognition and its
object shape, or shape primitives, for grasp planning. The basic
shape primitives are e.g. truncated cone, sphere, box, cylinder
etc. Recent progress presented in [33] shows a promising
method for retrieving shape primitives using vision, although
the method currently is restricted to objects with uniform color.
To evaluate an object representation using primitives, primitive
representations were derived, see Fig. 8.

The planning is performed using a simple search technique
where many different approach vectors are tested on the object.
The training can be performed on either the primitive object
model or the full object model, and in the experiments we

have evaluated both methods. A more detailed model will in
general result in higher grasp quality on the real object.

For power grasps, three parameters (θ, φ, ψ) are varied
describing the approach direction and hand rotation. For
precision grasps, a fourth parameterd, that describes the retract
distance when contact is detected, is added. The number of
evaluated values for the variables areθ=9, φ=17, ψ=9, d=6.
For the precision grasps the search space was hence 8262
grasps which required about an hour of training using kine-
matic simulation. For the power grasp simulations, 1377 ap-
proach vectors were evaluated. The 5 s long grasping sequence
is dynamically simulated in 120 s (Intel P4, 2.5 GHz, Linux).
The quality measures for each grasp is stored in agrasp
experiencedatabase.

A. Grasp Quality Measures

To evaluate grasps, the 6-D convex hull spanned by the
forces and torques that the grasp can resist is analyzed
using GraspIt! [34]. Theε-L1 quality measure is the smallest
maximum wrench the grasp can resist and is used for power
grasps. For precision grasps, a grasp quality measure based on
the volume of the convex hull was used, volume-L1. These
grasp quality measures obviously require full knowledge of
the world, and can thus only be used in simulation.

B. Grasp Retrieval

At run-time, the robot retrieves the approach vector that
result in the highest quality grasp from the grasp experience
database. As the highest quality grasp is not necessarily
the most robust with respect to position and model errors,
the grasp should be chosen taking also those parameters
into account, see Section VII-B. Because of robot kinematic
constraints and possible non-free paths toward the object, all
approach directions are not suitable at task execution time.
Thus, the robot searches the database only for directions that
are applicable in the current situation. In a Programming by
Demonstration scenario, the mapping from human to robot
grasp is one-to-one. But if the robot acts autonomously, i.e.
explores the environment and performs grasp on unknown
objects, the grasp type is not defined and the best grasp can
be chosen from among all possible grasps.

VII. E XPERIMENTAL EVALUATION

This section provides experiments that demonstrate i) grasps
performed by the robot hand given the current state of the
environment and thegrasp experiencedatabase, and ii) ex-
periments that show how errors in pose estimation affect the
success of the final grasping result.

The five objects shown in Fig. 8 were modelled and added
to the GraspIt! simulator. The real objects were placed on
a table, Fig. 9 (left). A camera monitors the world state
which consist of five objects placed at arbitrary positions. The
figure on the right shows the results of object recognition and
pose estimation process - the objects are placed at the same
positions in the simulator as they are in the world.

Fig. 9. Left: The human moves the rice box. The system recognizes what
object has been moved and which grasp is used. Right: The robot grasps the
same object using the mapped version of the recognized grasp.

The human teacher, wearing a data-glove with magnetic
trackers, moves one object. The move is recognized by the
vision system and so is the grasp the teacher used. This
information is used to generate a suitable robot grasp (grasp
mapping) that controls the movement of the robot hand in the
simulator.

A. Control

Fig. 10 shows a few examples of the best grasps obtained
during kinematic simulation when the robot is free to choose
any approach direction. Fig. 10 (i) shows an example of a
failed grasp, due to a simulated error in pose estimation.

Grasping the rice box was dynamically simulated using the
controller from Sections V-A and V-B. Of the 1377 worlds,
1035 were automatically discarded because the hand interfered
with the table upon which the box is placed while approaching
the object, or that the object was obviously out of reach. The
remaining 342 initial robot hand positions were evaluated and
resulted in 171 force closure grasps, 170 failed grasp attempts,
and one simulation error. The top three hand initial positions
and the resulting grasps are shown in Fig. 11.

Some sample data from the third best simulation, Fig. 11 c)
and f), is shown in Fig. 12. The desired grasping force is set
to 5 N. A low-pass filter is used for the tactile sensor signal.

B. Introducing Error in Pose Estimation

To evaluate the performance under imperfect pose estima-
tion, we have simulated errors in pose estimation by providing
an object pose with an offset. As pointed out in [35], the
robustness of a grasp to positioning the end-effector has not
been widely addressed in the literature.

In the experiment, the target object was placed on the table
and the robot performed 50 grasps using different approaches.
The robot hand position was between each grasped translated
a certain distance in a random direction. As a result, the robot
interpreted the situation as if the object (and possibly table)
was in another position than that for which the grasp was
planned. This was repeated for five different vector lengths: 0,
1, 2, 3, and 4 cm. In total, the robot grasped the object 250
times from a total of 201 different positions.

Fig. 13 - 17 show the grasp success rates for various grasps
and objects, under increasing error in position estimation.

(a) Barrett Preci-
sion Disc

(b) Barrett Wrap (c) Barrett Wrap

(d) Robonaut
Precision Disc

(e) Robonaut
Thumb Wrap

(f) Robonaut
Thumb Wrap

(g) Barrett
2-finger Thumb

(h) Robonaut 4-
finger Thumb

(i) Failed Barrett
Wrap

Fig. 10. Examples of grasp executions for various grasp types and objects.
(a)-(h) shows successful grasps, while (i) shows a failed grasp due to a
simulated error in pose estimation. The contact friction cones are plotted in
red.

The hand is moved along the approach vector until contact
and the grasp scheme is initialized. A grasp is considered
successful if it results in force-closure. As expected, power
grasps are more robust to position errors than precision grasps.
The precision grasps target details of an object, e.g., the
bottle cap or the ear of the mug. Thus, the grasps are much
more sensitive to position inaccuracies. It is interesting to
see that the dynamic simulation and the controller previously
outlined yields significantly better results than that from purely
kinematic simulation. This is a motivation for continuing the
investigations on the dynamics of the grasp formation process.

It is clear that the Barrett hand is more robust than the
Robonaut hand, likely due to its long fingers. The exception
is the grasping of the mug, Fig. 14, where the Robonaut Four-
finger Thumb grasp is the best.

The bottle and the mug have been trained both using a

0 1 2 3 4 5
0

2

4

6
fGrasp − desired grasp force

Time [s]

Fo
rc

e
[N

]

(a) Desired grasp force

0 1 2 3 4 5
0

2

4

6
filtS

Time [s]

Fo
rc

e
[N

]

 Sensor 2
Sensor 3
Sensor 4

(b) Tactile sensors - filtered

0 1 2 3 4 5
0

0.5

1

1.5
qActual

Time [s]

Jo
in

t A
ng

le
 [r

ad
]

DOF 1
DOF 2
DOF 3
DOF 4

(c) Joint angles

0 1 2 3 4 5
0

2

4

6

x 108 Fbarret

Time [s]

Jo
in

t T
or

qu
e

[µ
Nm

m
]

DOF 1
DOF 2
DOF 3
DOF 4

(d) Joint torques

Fig. 12. Data logged from the grasp simulation in Fig. 11 c) and f). The first 1.3 seconds the fingers close under force control. The force at that time is
used as the start value for the force controller that ramps the grasp force to 5 N. The joint angle values show that the joint angles are getting closer to equal
as time goes by. The controller output shows some undesirable peaks induced by collisions between the fingers and the object.

(a) Best grasp –
initial

(b) Second best
grasp – initial

(c) Third best
grasp – initial

(d) Best grasp –
final

(e) Second best
grasp – final

(f) Third best
grasp – final

Fig. 11. The top three approach positions and the final grasps for the rice
box. These results show that it is important to consider the dynamics when
designing grasp execution schemes and for analyzing the grasp formation
process. In several simulations the fingers stop after contacting the box as
they should, but when the grasping force is increased, the box slides on the
low friction proximal links until it comes in contact with the high friction
tactile sensors.

primitive model and using the real model (see Fig. 8). Training
on the primitive model does not decrease the grasp success
rate much, especially not for the bottle. However, the primitive
model of the mug is, unlike the real mug, not hollow, which
causes problems for some of the precision grasps trained on
the primitive.

We have also evaluated how an error in rotation estimate
affects the result. For each object and grasp type, we tested
how much the object could be rotated before the grasp failed.
As expected, for symmetric objects like the orange and the
bottle this type of error has no effect. However, for the other
objects we found that the difference in rotation error tolerance
is large. Table II shows the rotation tolerance for various
objects and grasp types. For two of the Robonaut grasps on

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Position error (cm)

G
ra

sp
 S

uc
ce

ss
 R

at
e

Robonaut Thumb Wrap
Barrett Thumb Wrap

Fig. 15. Grasping the orange.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Position error (cm)

G
ra

sp
 S

uc
ce

ss
 R

at
e

Robonaut Thumb Wrap
Barrett Thumb Wrap

Fig. 16. Grasping the zip disc box.

the mug, the rotation is not a problem, with a perfect success
rate. For one of the Barrett grasps on the mug, the rotation
estimation is absolutely crucial and cannot withstand a small
rotation inaccuracy. Thus, this type of grasp should be avoided
for this object.

C. Discussion

The success rate of the presented system depends on the
performance of four subparts: i) object recognition, ii) grasp
recognition, iii) pose estimation of the grasped object, and

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Position error (cm)

G
ra

sp
 S

uc
ce

ss
 R

at
e

Robonaut Thumb Wrap
Robonaut Thumb Wrap, trained on primitive
Robonaut Precision Disc
Robonaut Precision Disc, trained on primitive
Barrett Wrap
Barrett Wrap, trained on primitive
Barrett Precision Disc
Barrett Precision Doranisc, trained on primitive

Fig. 13. Grasping the bottle.

Fig. 14. Grasping the mug.

iv) grasp execution. As demonstrated in previous papers, [7],
[8], the object recognition rate for only five objects is around
100 %, and the grasp recognition ratio is about 96 % for ten
grasp types. Therefore, the performance in a static environment
may be considered close to perfect with respect to the first
steps. As the object pose and possibly the object model is not
perfectly known, some errors were introduced that indicate the
needed precision in the pose estimation given a certain grasp
execution scheme. Initial results suggest that for certain tasks
stable grasping is possible even when the object’s position is
not perfectly known.

If a high quality dynamic physical modelling is essential,

for example when grasping compliant objects or for advanced
contact models, other simulation tools may be more suitable,
see e.g. [36]. But since grasping often can be performed
rather slowly, and as model errors for mass properties, sensors,
friction, and in actuator and gear models are often quite large,
second order dynamic effects can be ignored in the control
design and instead considered as small disturbances [37].

VIII. C ONCLUSIONS

Methods for generating robot grasps based on object mod-
els, shape primitives and/or human demonstration have been
presented and evaluated. While many factors are important, the
focus lies on one of the main challenges in automatic grasping;

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

Position Error [cm]

G
ra

sp
 S

uc
ce

ss
 R

at
e

Barrett Kinematic
Robonaut Kinematic
Barrett Dynamic

Fig. 17. Grasp success rates for different controllers and simulations. The
dynamic grasp is the one from Fig. 11 c) and f). (Due to some problems
with the simulator, a limited number of samples were used in the evaluation
of dynamic grasping. For the 0, 1, 2, 3, and 4 cm random displacement, the
number of trials were 50, 14, 18, 18, and 12 respectively (instead of 50). Still,
these samples were truly random and we believe that the number of trials is
high enough to draw conclusions.)

Object and Grasp Type: Rot. Err. Tolerance (degrees):

Mug, Robonaut Precision Disc 4

Mug, Robonaut Thumb Wrap 180

Mug, Robonaut Four Finger Thumb 180

Zip Disc Box, Robonaut Thumb Wrap 17

Rice Box, Robonaut Thumb Wrap 2

Zip Disc Box, Barrett Wrap 3

Rice Box, Barrett Wrap 17

Mug, Barrett Wrap 12

Mug, Barrett Precision Disc 0

Mug, Barrett Two Finger Thumb 6

TABLE II

THE ROTATION ERROR TOLERANCE FOR DIFFERENT OBJECTS AND GRASP

TYPES.

the choice of approach vector which depend on the object as
well as on the grasp type. Using the proposed methods, the
approach vector is chosen not only based on perceptional cues,
but on experience that some approach vectors will provide
useful tactile cues that result in stable grasps. Moreover, a
methodology for developing and evaluating grasping schemes
has been presented. Focus lies on obtaining stable grasps
under imperfect vision, something that has not been thoroughly
investigated in the literature.

Simulating results was necessary for generating insight into
the problem and for performing the statistical evaluation for
the grasp experience, since i) the world must be reset after each
grasp attempt, and ii) computing the grasp quality measure
requires perfect world knowledge.

The proposed strategies have been demonstrated in combi-
nation with tactile feedback and hybrid force/position control
of a robot hand. The functionality of the proposed framework
for grasp scheme design has been shown by successfully
reaching force closure grasps using a Barrett hand and dy-

namic simulation.
Future work include further grasp execution scheme de-

velopment and implementation. Furthermore, to ensure truly
secure grasping outside the simulator, the grasping scheme
must also comprise a grasp quality evaluation method that does
not use information available in simulation only. Preferably
such a measure would also depend upon the task at hand.

The grasp experience database contains not only a record
of success rates for different grasp controllers but also the
object-hand relations during an experiment. In this way, we
can specify under what conditions the learnt grasp strategy
can be reproduced in new trials.

The results of the experimental evaluation performed in a
simulated environment suggest that the outlined approach and
tools can be of great use in robotic grasping, from learning by
demonstration to robust object manipulation.

ACKNOWLEDGEMENT

This work was supported by EU through the project PACO-
PLUS, FP6-2004-IST-4-27657, by the Knowledge Foundation
through AASS atÖrebro University, and by the Swedish
Foundation for Strategic Research through the Centre for
Autonomous Systems at KTH.

REFERENCES

[1] H. Friedrich, R. Dillmann, and O. Rogalla, “Interactive robot program-
ming based on human demonstration and advice,” inChristensen et al
(eds.):Sensor Based Intelligent Robots, LNAI1724, pp. 96–119, 1999.

[2] J. Aleotti, S. Caselli, and M. Reggiani, “Leveraging on a virtual
environment for robot programming by demonstration,” inRobotics and
Autonomous Systems, Special issue: Robot Learning from Demonstra-
tion, vol. 47, pp. 153–161, 2004.

[3] M. Massimino and T. Sheridan, “Variable force and visual feedback
effects on teleoperator man/machine performance,” inProc. of NASA
Conference on Space Telerobotics, 1989.

[4] S. Calinon, A. Billard, and F. Guenter, “Discriminative and adaptative
imitation in uni-manual and bi-manual tasks,” inRobotics and Au-
tonomous Systems, vol. 54, 2005.

[5] S. Ekvall and D. Kragic, “Integrating object and grasp recognition for
dynamic scene interpretation,” inIEEE International Conference on
Advanced Robotics, ICAR’05, 2005.

[6] S. Ekvall and D. Kragic, “Learning task models from multiple human
demonstration,” inIEEE International Symposium on Robot and Human
Interactive Communication, RO-MAN’06, 2006.

[7] S. Ekvall and D. Kragic, “Receptive field cooccurrence histograms for
object detection,” inIEEE/RSJ IROS, 2005.

[8] S. Ekvall and D. Kragic, “Grasp recognition for programming by
demonstration,” inIEEE/RSJ IROS, 2005.

[9] A. Morales, E. Chinellato, A. H. Fagg, and A. del Pobil, “Using
experience for assessing grasp reliability,”International Journal of
Humanoid Robotics, vol. 1, no. 4, pp. 671–691, 2004.

[10] A. T. Miller, S. Knoop, and H. I. C. P.K. Allen, “Automatic grasp plan-
ning using shape primitives,” inIn Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 1824–1829, 2003.

[11] W. Townsend, “The barretthand grasper – programmably flexible part
handling and assembly,”Industrial Robot: An International Journal,
vol. 27, no. 3, pp. 181–188, 2000.

[12] C. Lovchik and M. Diftler, “The Robonaut hand: a dexterous robot hand
for space,” inRobotics and Automation, IEEE International Conference
on, vol. 2, pp. 907–912, 1999.

[13] N. S. Pollard, “Closure and quality equivalence for efficient synthesis
of grasps from examples,”International Journal of Robotic Research,
vol. 23, no. 6, pp. 595–613, 2004.

[14] R. Platt Jr, A. H. Fagg, and R. A. Grupen, “Extending fingertip grasping
to whole body grasping,” inProc. of the Intl. Conference on Robotics
and Automation, 2003.

[15] A. Bicchi and V. Kumar, “Robotic grasping and contact: A review,”
in Proceedings of the IEEE International Conference on Robotics and
Automation, ICRA’00, pp. 348–353, 2000.

[16] D. Ding, Y.-H. Liu, and S. Wang, “Computing 3-d optimal formclosure
grasps,” in In Proc. of the 2000 IEEE International Conference on
Robotics and Automation, pp. 3573 – 3578, 2000.

[17] N. S. Pollard, “Parallel methods for synthesizing whole-hand grasps
from generalized prototypes,” 1994.

[18] C. Borst, M. Fischer, S. Haidacher, H. Liu, and G. Hirzinger, “DLR
hand II: Experiments and experiences with an antropomorphic hand,” in
IEEE Int. Conf. on Robotics and Automation, vol. 1, pp. 702–707, Sept.
2003.

[19] M. Jägersand,On-line Estimation of Visual-Motor Models for Robot
Control and Visual Simulation. PhD thesis, Univ. of Rochester, 1997.

[20] A. Namiki, Y. Imai, M. Ishikawa, and M. Kaneko, “Development of a
high-speed multifingered hand system and its application to catching,” in
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, vol. 3, pp. 2666–
2671, Oct. 2003.

[21] I. Horswill, Behavior-Based Robotics, Behavior Design. Technical report
CS 395, Northwestern University, 2000.

[22] S. Ekvall, D.Kragic, and F. Hoffmann, “Object recognition and pose es-
timation using color cooccurrence histograms and geometric modeling,”
Image and Vision Computing, vol. 23, pp. 943–955, 2005.

[23] A. T. Miller and P. Allen, “Graspit!: A versatile simulator for grasp-
ing analysis,” inProceedings of the of the 2000 ASME International
Mechanical Engineering Congress and Exposition, 2000.

[24] J. Napier, “The prehensile movements of the human hand,” inJournal
of Bone and Joint Surgery, vol. 38B(4), pp. 902–913, 1956.

[25] M. Cutkosky, “On grasp choice, grasp models and the desing of
hands for manufacturing tasks,”IEEE Transactions on Robotics and
Automation, vol. 5, no. 3, pp. 269–279, 1989.

[26] T. Iberall, “Human prehension and dextrous robot hands,”The Int. J. of
Robotics Research, vol. 16, no. 3, 1997.

[27] D. Kragic, S. Crinier, D. Brunn, and H. I. Christensen, “Vision and
tactile sensing for real world tasks,”Proceedings IEEE International
Conference on Robotics and Automation, ICRA’03, vol. 1, pp. 1545–
1550, September 2003.

[28] R. Volpe and P. Khosla, “A theorethical and experimental investigation
of explicit force control strategies for manipulators,”IEEE Trans.
Automatic Control, vol. 38, pp. 1634–1650, Nov. 1993.

[29] J. Tegin and J. Wikander, “A framework for grasp simulation and
control in domestic environments,” inIFAC-Symp. on Mechatronic Syst.,
(Heidelberg, Germany), Sept. 2006.

[30] R. D. Howe, “Tactile sensing and control of robotic manipulation,”
Advanced Robotics, vol. 8, no. 3, pp. 245–261, 1994.

[31] M. H. Lee and H. R. Nicholls, “Tactile sensing for mechatronics - a
state of the art survey,”Mechatronics, vol. 9, pp. 1–31, Oct. 1999.

[32] J. Tegin and J. Wikander, “Tactile sensing in intelligent robotic manip-
ulation – a review,”Industrial Robot, vol. 32, no. 1, pp. 64–70, 2004.

[33] F. Bley, V. Schmirgel, and K. Kraiss, “Mobile manipulation based on
generic object knowledge,” inIEEE International Symposium on Robot
and Human Interactive Communication, RO-MAN’06, 2006.

[34] A. Miller and P. Allen, “Examples of 3D grasp quality computations,”
in Proceedings of the of the 1999 IEEE International Conference on
Robotics and Automation, pp. 1240–1246, 1999.

[35] A. Morales, P. J. Sanz, A. P. del Pobil, and A. H. Fagg, “Vision-based
three-finger grasp synthesis constrained by hand geometry,”Robotics
and Autonomous Systems, vol. 54, no. 6, pp. 494–512, 2006.

[36] G. Ferretti, G. Magnani, P. Rocco, and L. Viganò, “Modelling and
simulation of a gripper with dymola,”Mathematical and Computer
Modelling of Dynamical Systems, 2006.

[37] D. Prattichizzo and A. Bicchi, “Dynamic analysis of mobility and
graspability of general manipulation systems,”IEEE Trans. on Robotics
and Automation, vol. 14, no. 2, pp. 241–257, 1998.

Integrated Grasp Planning and Visual Object
Localization For a Humanoid Robot with

Five-Fingered Hands
Antonio Morales

Department of Computer Science and Engineering
University Jaume I

Campus Riu Sec, E-12071 Castellón, Spain
morales@uji.es

Tamim Asfour, Pedram Azad,
Steffen Knoop and Rüdiger Dillmann

Institute of Computer Science and Engineering
University of Karlsruhe

Haid-und-Neu-Straße 7, 76131 Karlsruhe, Germany
{asfour,azad,knoop,dillmann}@ira.uka.de

Abstract— In this paper we present a framework for grasp
planning with a humanoid robot arm and a five-fingered hand.
The aim is to provide the humanoid robot with the ability of
grasping objects that appear in a kitchen environment. Our
approach is based on the use of an object model database that
contains the description of all the objects that can appear in the
robot workspace. This database is completed with two modules
that make use of this object representation: An exhaustive offline
grasp analysis system and a real-time stereo vision system.
The offline grasp analysis system determines the best grasp for
the objects by employing a simulation system, together with
CAD models of the objects and the five-fingered hand. The
results of this analysis are added to the object database using
a description suited to the requirements of the grasp execution
modules. A stereo camera system is used for a real-time object
localization using a combination of appearance-based and model-
based methods. The different components are integrated in a
controller architecture to achieve manipulation task goals for
the humanoid robot.

I. INTRODUCTION

The attention of the robotics community has been drawn
more and more to humanoid robots in the last years. Their
design, building and applications addresses many interesting
research challenges: biped walking, human-robot interaction,
autonomy, interaction with unstructured and unknown envi-
ronments, and many others. Among them, the development of
manipulation skills is of utmost importance and one of the
most complex.

One of the main challenges that humanoid developers have
to face when considering manipulation issues is the design of
robot hands and arms. In the case of hands for humanoids
their design is guided by the need of a great versatility, which
means a large number of fingers and degrees of freedom, the
reduced size and the human-like appearance. A constant issue
has been to design human-size light arm/hand systems either
focusing on a pure mechanical approach [1] or taking some
anthropomorphic and biological inspiration [2]. A recent work,
Domo, has focused on the design of compliant and reliable
humanoid arms able to run for days in a secure way for
humans [3]. The limited size of robot hands complicates the
dispositions of the joint actuators. The solution usually comes

from the use of novel actuation systems, pneumatic or fluidic
[4] or cable driven [5].

In order to deal with manipulation tasks in human-centered
environments, an intensive use of sensor information, par-
ticularly visual and tactile, within closed control loops is
indispensable. Visual information has been used mainly to
identify and apprehend the pose and shapes of objects [6],
[7]. Especially relevant for dexterous manipulation tactile
information has been used to reach stable grasps through finger
gating or for controlling whole body grasping [8]. Several
control architectures were proposed for manipulation tasks.
Their main goals are to coordinate a set of behaviors implied
by manipulation [9], to introduce learning in the sensor motor
coordination [10], and to get inspiration from biology findings
[2].

The work presented in this paper is part of long term
German Humanoid Project, which goal is to develop a robot
aimed to assist humans in tasks of everyday life [11]. To reach
these goals, many complex abilities and characteristics are
included: Humanoid shape, multimodality and the ability to
cooperate with humans and learn. In the aspect of manipula-
tion it includes the ability to learn from demonstration and to
use high level cognitive models of objects and tasks.

In this paper we present an integrated approach for grasp
planning. The central idea of this system is the existence of a
database with the models of all the objects present in the robot
workspace. From this central fact we develop two necessary
modules: a visual system able to locate and recognize the
objects (Sec. III), and an offline grasp analyzer that provides
the most feasible grasps configuration for each object (Sec.
IV). The results provided by these modules are stored and used
by the control system of the humanoid to decide and execute
the grasp of a particular object. We emphasize that this paper
describes a first step towards a complete humanoid grasping
system. At this stage the use of object and hand models
allows the fast development and test of multiple interactive
manipulation skills. In the long-term it is desirable, and is our
purpose to develop grasping and manipulation strategies able
to deal with unmodelled and unknown objects.

II. SYSTEM OVERVIEW

Since the robot has to work in an environment mostly
designed for humans, the approach of the whole project has
been to build a anthropomorphic arm/hand system that allows
to imitate the way humans perform these activities. ARMAR,
our humanoid robot, has 23 mechanical degrees-of-freedom
(DOF). From the kinematics control point of view, the robot
consists of five subsystems: Head, left arm, right arm, torso
and a mobile platform [12]. The head has 2 DOFs arranged as

Fig. 1. The humanoid robot ARMAR with the 5-finger hands

pan and tilt and is equipped with a stereo camera system and a
stereo microphone system. Each of the arms has 7 DOFs and
is equipped with 6 DOFs force torque sensors on the wrist.
Each hand has five fingers and 11 DOFs (3 for the thumb and
2 for the other four fingers) driven by fluidic actuators [4].

A functional description of the grasp planning system
described in this paper is depicted in figure 2. It consists of
the next parts:

• The global model database. It is the core of our ap-
proach. It contains not only the CAD models of all the
objects, but also stores a set of feasible grasps for each
object. Moreover, this database is the interface between
the different modules of the system.

• The offline grasp analyzer that uses the model of the
objects and of the hand to compute on a simulation
environment a set of stable grasps (see Sec. III). The
results produced by this analysis are stored in the grasps
database to be used by the other modules.

• A online visual procedure to identify objects in stereo
images by matching the features of a pair of images with

Fig. 2. Overview of the system.

the 3D prebuilt models of such objects. After recognizing
the target object it determines its location and pose. This
information is necessary to reach the object. This module
is described in detail in section IV.

• Once an object has been localized in the work-scene,
a grasp for that object is then selected from the set of
precomputed stable grasps. This is instanced to a partic-
ular arm/hand configuration that takes into account the
particular pose and reachability conditions of the object.
This results in an approaching position and orientation.
A path planner reaches that specified grasp location and
orientation. Finally, the grasp is executed. These modules
are not described in this paper since they are still under
development.

III. OFFLINE GRASP ANALYSIS

In most of the works devoted to grasp synthesis, grasps
are described as sets of contact points on the object surface
where forces/torques are exerted. However, this representation
of grasps presents several disadvantages when considering
their execution in human-centered environments. These prob-
lems arise from the inaccuracy and uncertainty about the
information of the object. Since we have models of the
shapes of the objects this uncertainty comes mainly from the
location of the object and inaccuracy in the positions of the
mobile humanoid. Usually, the contact-based grasp description
requires the system be able to reach precisely the contact
points and exert precise forces.

It is possible to include inaccuracy in the force/torque
models, but this paper faces this problem from a different
approach. In our approach grasps are described in a qualitative
and knowledge-based fashion. Given an object, a grasp of that
object will be described by the following features (see Fig. 4):

• Grasp type: A qualitative description of the grasp to
be performed (see Fig. 3). The type of the grasp has
practical consequences since it determines the grasp exe-
cution control, i.e.: the hand preshape posture, the control
strategy of the hand, which fingers are used in the grasp,
the way the hand approaches the objects and how the
contact information of the tactile sensors is interpreted.

• Grasp starting point (GSP): For approaching the object,
the hand is positioned at a distant point near it.

• Approaching direction: Once the hand is positioned in
the GSP it approaches the object following this direction.
The approaching line is defined by the GSP and the
approaching direction.

• Hand orientation: the hand can rotate around the ap-
proaching direction. The rotation angle is a relevant
parameter to define grasp configuration.

It is important to note that all directions are given with
respect to an object centered coordinate system. The real
approach directions result from matching of this relative
description with the localized object pose in the workspace
of the robot.

A main advantage of this grasp representation is its practical
application. A grasp can be easily executed from the informa-

(a) Hook (b) Cylindrical (c) Spherical (d) Pinch (e) Tripod

Fig. 3. Hand preshapes for the five types of grasp.

Fig. 4. Schematics with the grasp descriptors

tion contained in its description, and is better suited for the
use with execution modules like arm path planning. Moreover
this representation is more robust to inaccuracies since it only
describes starting conditions and not final conditions like a
description based in contacts points.

It is important to notice too, that this approach involves the
existence of an execution module able to reach a stable grasp
from the given initial conditions. This module will require the
uses of sensor information, tactile or visual, to complete the
grip. This module is out of the scope of this paper.

A. Grasp types
Cutkosky describes 16 different grasping hand postures for

human hands [13]. The taxonomy described by Cutkosky is
very complete and present many grasps that could be hardly
executed by our anthropomorphic five-fingered hand attending
to its mechanical limitations. Hence, we have made a selection
of the most representative grasps that can be executed with
our hand. These are three power grasps: hook, cylindrical
and spherical and prismatic; and two precision grasps: pinch
and tripod (see Fig 3). For this selection we have considered
that the only finger with abduction/adduction mobility is the
thumb, being thus the only one able to change its opposition
with respect to the other fingers.

• Hook grasp: In this grasp the hand opposes the gravity.
All fingers, but the thumb, form a hook that would
enclose a cylindrical shaped object. The palm might
exert force opposing the fingers. The thumb does not
participate in any case.

• Cylindrical grasp: All fingers close around a cylindrical
object. The thumb opposes completely the other four

fingers.
• Spherical grasp: All fingers close around a ball-shaped

object. The thumb is disposed in a way that it maximizes
the area covered by the fingers.

• Pinch grasp: The grasp is characterized by the opposition
of the thumb and index finger tips. The rest of the
fingers do not participate. This is appropriate to grasp
thin objects.

• Tripod grasp: In this case the grasp is conformed by the
opposition of the thumb fingertip against the index and
middle finger tips. This grasp is useful to grasp small
objects.

Precision grasps only imply contacts on the finger tips,
while power grasps use contacts on the whole hand surface,
finger tips, phalanxes, and palm. This difference is relevant
for the design of the execution controller. Roughly, for the
execution of a power grasp the hand approaches the object
until it makes contact, and then closes the fingers. However,
in the case of precision grasps, the fingers have to close at a
certain distance so that only the finger tips make contact with
the object.

An important aspect when considering an anthropomorphic
hand is how to relate the hand with respect the grasp starting
point (GSP) and the approaching direction. For this we define
for the hand the grasp center point (GCP). It is a virtual point
that has to be defined for every hand and that is used as
reference for the execution of a given grasp. Figure 4 depicts
the parameterization of a grasp. The GCP is aligned with the
GSP of the grasp. Then the hand is oriented and preshaped
according to the descriptors of the grasp. Finally, it moves
along the approaching line.

B. Methodology of the analysis
An important characteristic in our system is that there

exists a 3D CAD model for every objects that appears in the
workspace. This allows for extensive offline analysis of the
different possibilities to grasp an object, instead of focusing
on fast online approaches. To accomplish this we have also
built a computer 3D model of the hand.

We perform an extensive analysis for each object that
consists of testing a wide variety of hand preshapes and ap-
proach directions. This analysis is carried out on a simulation
environment where every tested grasp is evaluated according
to a quality criterion. The resulting best grasps for each object
are stored in order to be used during online execution of the
robot.

We use GraspIt! [14] as grasping simulation environment It
has some very convenient properties for our purposes such
as the inclusion of contact models and collision detection
algorithms, and the ability to import, use and define object
and robot models.

Our approach to compute stable grasps on 3D objects is
inspired by a previous work by Miller et al. using GraspIt!
[15]. The offline analysis follows four steps to find the grasps
for a given object:

1) The shape of the object model is approximated by a set
of basic shape primitives (boxes, cylinders, spheres and
cones). There are many ways to obtain these primitive
approach. GraspIt! doesn’t provide any procedure to
produce them. We assume that the primitive description
of the objects is part of the model of an object.

2) A set of candidate grasps is generated automatically for
every primitive shape of the object description. A grasp
candidate consists of a hand type, a grasp starting point,
an approach direction and a hand orientation. For every
primitive there exists a set of predefined grasp types and
approaching directions [15].

3) Each grasp candidate is tested within the simulation en-
vironment. The hand is placed in the grasp starting point
and oriented according to the approaching direction and
hand orientation. Then, the hand is preshaped depending
on the grasp type.
The approach phase is different for power and precision
grasps. For power grasps, the hand moves opened along
the approach direction until it touches the object. Then,
it closes and the quality of the grasp is evaluated. If the
quality is under certain threshold then the hand opens,
backs a step amount and closes again. This sequence
is repeated until a maximum stability measurement is
reached.
However, in the case of precision grasps, a different test
is designed: 1) the hand is preshaped at the grasp starting
point , 2) it closes and the grasp is evaluated if there
exist a contact with object 3) it opens again and moves
a step forward, 4) steps 2 and 3 are repeated until it
reaches a maximum stability or a maximum number of
steps is reached. Following this procedure we ensure
that the first contacts with the object are made with the
fingertips.
The final position of the hand and the quality obtained
is stored.

4) Finally, all final grasps that are over the minimum
threshold are sorted and stored.

Part of this procedure is available in the source code of
GraspIt! [14]. However it is designed exclusively for the
Barrett Hand [16]. We have redesigned it to adapt it to our
hand model.

As a metric for evaluating the quality of a grasp we use
the magnitude of the largest worst-case disturbance wrench
that can be resisted by a grasp of unit-strength. This metric is
described in detail by Ferrari and Canny [17].

Fig. 5. Two examples of grasps produces by the grasp planning

Finally two examples of the grasps obtained for a beer bottle
and an egg are shown in Fig. 5.

C. Grasp database
All stable grasps computed for every object are stored

in a database in order to be used by execution modules.
Every grasp stored includes the grasp type, the grasp starting
point, hand orientation, approaching direction and the quality
measure obtained from the simulation. This value is used by
the other modules to select the best grasp for a given object.

IV. OBJECT RECOGNITION AND LOCALIZATION

In general, any component of a vision system in a humanoid
robot for application in a realistic scenario has to fulfill a
minimum number of requirements. In the particular context
of the grasping system presented in this paper, the main
requirements are these.

1) The component has to deal with a potentially moving
robot and robot head: The difficulty caused by this is that
the problem of segmenting objects can not be solved by
simple background subtraction. The robot has to be able
to recognize and localize objects in an arbitrary scene
when approaching the scene in an arbitrary way.

2) Recognition of objects has to be invariant to 3D rotation
and translation: It must not matter in which rotation and
translation the objects are placed in the scene.

3) Objects have to be localized in 6D (location + orien-
tation) with respect to a 3D rigid model in the world
coordinate system: It is not sufficient to fit the object
model to the image, but it is crucial that the calculated
3D pose is sufficiently accurate in the world coordinate
system. In particular, the assumption that depth can
be recovered from scaling with sufficient accuracy in
practice is questionable.

4) Computations have to be performed in real-time: For
realistic application, the analysis of a scene and accurate
localization of the objects of interest in this scene should
take place at frame rate in the optimal case, and should
not take more than one second.

A. The Limits of State-Of-The-Art Model-Based Systems
Most model-based object tracking algorithms are based on

relatively simple CAD wire models of objects, as the example

llustrated in Figure 6. Using such models, the starting and end
points of lines can be projected very efficiently into the image
plane, allowing real-time tracking of objects with relatively
low computational effort. However, the limits of such systems
are clearly the shapes they can deal with. Most real-word
objects, such as cups, plates and bottles, can not be represented
in this manner. The crux becomes clear when taking a look at
an object with a complex shape, as it is the case for the can
illustrated in Figure 7.

Fig. 6. Illustration of an object modeled by a wire model from [6]

The only practical way to represent such an object as a
3D model is to approximate its shape by a relatively high
number of polygons. To calculate the projection of such a
model into the image plane practically the same computations
a rendering engine would do, have to performed. But not only
the significantly higher computational cost makes common
model-based approaches not feasible, also from a conceptual
point of view the algorithms can not be extended for complex
shapes: Objects which can be represented by straight lines and
even planes have the property that each edge of the object is
represented by a straight line in the model, which are then used
for matching. As soon as an object also has curved surfaces
this is not the case anymore: the edges of the polygons do
not correspond to potentially visible edges. In [18], we show
that a purely model-based approach for arbitrary 3D object
models would take more than five minutes for the analysis of
one potential region, having a database of three objects.

Fig. 7. Illustration of a 3D model of a can

B. Our Approach
Our approach combines the benefits of model-based and

global appearance-bases methods [19] for object recognition
and localization. Recently, local appearance-based methods
using texture features have become very popular [20]–[23].

However, these methods are only applicable for sufficiently
textured objects, which is often not the case for the objects of
interest for our intended application [18].

In [18], we present a system which can build object repre-
sentations for appearance-based recognition and localization
automatically, given a 3D model of the object. An initial
estimate for the position of the object is determined through
stereo vision, while an initial estimate for the orientation is
determined by retrieving the rotation the recognized view was
produced with. Then, a number of correction calculations are
performed for accurate localization, which is explained in
detail in [18]. An outline of the overall algorithm is given
by the following steps:

1) Perform color segmentation in both images.
2) Determine color blobs with a connected components

algorithm.
3) Match the blobs in the left and right image on the base

of their properties and the epipolar geometry.
4) For each matched blob:
5) Calculate initial estimate for the position by stereo

triangulation.
6) Determine the best matching view by calculating the

Nearest Neighbor in the PCA eigenspace.
7) Determine initial estimate for the orientation by retriev-

ing the stored rotation for the recognized match.
8) Apply pose correction formulate as presented in [18].
9) Verify validity by comparing the size of the blob to the

expected size, determined on the base of the calculated
pose and the object model.

Fig. 8. Illustration of the color segmentation result for the colors red and
green

As we show in [18], our system is very robust and is able
to recognize and localize the objects in our test environment
accurately and reliably in real-time. Recognition and localiza-
tion for one potential region takes approximately 5 ms on a
3 GHz CPU, with a database of five objects: a cup, a cup
with a handle, a measuring cup, a plate, and a small bowl. An
exemplary segmentation result is shown in Figure 8; the result
of a full scene analysis is visualized in Figure 9.

V. DISCUSSION AND CONCLUSION

At this point it is important to mention the work of Kragic et
al. [6] due to the similarity in some aspects to our work. They
present a visual tracking system also able to recognize objects.
Once an object is recognized the model and pose of it is sent
to GraspIt!. A human operator uses GraspIt! visualization and

Fig. 9. Recognition and localization result for an exemplary scene. Left: left
input image. Right: 3D visualization of the result.

analysis tools to determine a stable grasp with the Barrett
Hand. Later the grasp is executed.

On the visual part the main difference is that we are able to
deal with arbitrarily complex shaped objects, while Kargic et
al. are limited to planar-faced objects. Another main difference
to our approach is that we compute grasps automatically
and offline, without a human operator. The addition of these
features, five-fingered hands, automatic grasping synthesis, and
realistic shaped objects in a realistic environment (but with
simplified texture/colours) makes our approach more complete
and autonomous.

To conclude, in this paper we have presented an integrated
approach that includes an offline grasp planning system with
an visual object identification system. The integration of these
two modules relies on the use of an appropriate object and
grasp representation database that is also described.

However, the work presented here is only a part of a larger
manipulation system. Some modules are still required, in order
to execute any of the grasps computed. First, in any situation
several grasp candidates are possible, but only one can be
executed. A module that selects one taking into account the
task and the execution conditions is necessary. Once a grasp is
selected, an arm motion planner is necessary to move the hand
to the pregrasping location according to the grasp description
and the object pose. And finally, a module that executes the
grasp using tactile and visual feedback has to be developed
too.

ACKNOWLEDGMENT

The work described in this paper was partially conducted
within the German Humanoid Research project SFB588
funded by the German Research Foundation (DFG: Deutsche
Forschungsgemeinschaft) and the EU Cognitive Systems
project PACO-PLUS (FP6-2004-IST-4-027657) funded by the
European Commission. Support for the first author is provided
in part by the spanish government under project DPI2001-
3801 and DPI2004-01920; by the Generalitat Valenciana under
projects inf01-27, GV01-244, CTIDIA/2002/195, GV05/137;
and by the Fundació Caixa-Castelló under project P1-1B2005-
28, P1- 1A2003-10.

REFERENCES

[1] A. Konno, K. Nagashima, R. Furukawa, K. Nishiwaki, T. Oda, M. Inaba,
and H. Inoue, “Development of a humanoid robot saika,” in IEEE/RSJ
International. Conference on Intelligent Robots and Systems, Grenoble,
France, Sept. 1997, pp. 805–810.

[2] C. Laschi, P. Dario, M. Carrozza, E. Guglielmelli, G. Teti, D. Taddeucci,
F. Leoni, B. Massa, M. Zecca, and R. Lazzarini, “Grasping and ma-
nipulation in humanoid robotics,” in IEEE International Conference on
Humanoid Robots (Humanoids 2003), Karlsruhe, Germany, Oct. 2003.

[3] A. Edsinger-Gonzalez and J. Webber, “Domo: a force sensing humanoid
robot for manipulation research,” in IEEE International Conference on
Humanoid Robots, Santa Monica, California, Nov. 2004, in CD.

[4] S. Schulz, C. Pylatiuk, A. Kargov, R. Oberle, and G. Bretthauer,
“Progress in the development of anthropomorphic fluidic hands for a hu-
manoid robot,” in IEEE-RAS/RSJ Inernational Conference on Humanoid
Robots (Humanoids 2004), Santa Monica, California, Nov. 2004.

[5] W. Bluethmann, R. Ambrose, M.Diftler, S. Askew, E. Huber, M. Goza,
F. Rehnmark, C. Lovchik, and D. Magruder, “Robonaut: A robot
designed to work with humans in space,” Autonomous Robots, vol. 14,
no. 2–3, pp. 179 – 197, Mar. 2003.

[6] D. Kragic, A. Miller, and P. Allen, “Real-time tracking meets online
grasp planning,” in IEEE International Conference on Robotics and
Automation, Seoul, Republic of Korea, May 2001, pp. 2460–2465.

[7] G. Taylor and L. Kleeman, “Integration of robust visual perception
and control for a domestic humanoid robot,” in IEEE International
Conference on Robotics and Automation, Sendai, Japan, Sept. 2004,
pp. 1010–1015.

[8] R. Platt Jr., A. Fagg, and R. Grupen, “Extending fingertip grasping to
whole body grasping,” in IEEE International Conference on Robotics
and Automation, Taipei, Taiwan, Sept. 2003, pp. 2677–2682.

[9] R. Platt Jr., O. Brock, A. Fagg, D. Karupiah, M. Rosenstein, J. Coelho,
M. Huber, J. Piater, D. Wheeler, and R. Grupen, “A framework for
humanoid control and intelligence,” in IEEE International Conference on
Humanoid Robots (Humanoids 2003), Karlsruhe, Germany, Oct. 2003.

[10] M. Cambron and R. Peters, “Learning sensory motor coordination for
grasping by a humanoid robot,” in IEEE International Conference on
Systems, Man, and Cybernetics, vol. 1, Nashville, Tennessee, Oct. 2000,
pp. 6–13.

[11] R. Becher, P. Steinhaus, and R. Dillmann, “ARMAR II - a learning
and cooperative multimodal humanoid robot system,” ”‘International
Journal of Humanoid Robotics”’, vol. 1, no. 1, pp. 143–155, 2004.

[12] T. Asfour, K. Berns, and R. Dillmann, “The humanoid robot ARMAR:
Design and control.” in The 1st IEEE-RAS International Conference
on Humanoid Robots (HUMANOIDS 2000), MIT, Boston, USA, 7-8
September, 2000.

[13] M. Cutkosky, “On grasp choice, grasp models and the design of
hands for manufacturing tasks,” IEEE Transactions on Robotics and
Automation, vol. 5, no. 3, pp. 269–279, 1989.

[14] A. Miller and P. Allen, “Graspit!: A versatile simulator for robotic
grasping,” IEEE Robotics & Automation Magazine, vol. 11, no. 4, pp.
110–122, Dec. 2004.

[15] A. Miller, S. Knoop, H. Christensen, and P. Allen, “Automatic grasp
planning using shape primitives,” in IEEE International Conference on
Robotics and Automation, Taipe, Taiwan, Septmeber 2003.

[16] Barrett Technology Inc., http://www.barrett.com/.
[17] C. Ferrari and J. Canny, “Planning optimal grasps,” in IEEE Interna-

tional Conference on Robotics and Automation, Nice, France, May 1992,
pp. 2290–2295.

[18] P. Azad, T. Asfour, and R. Dillmann, “Combining appearance-based
and model-based methods for real-time object recognition and 6d-
localization,” in International Conference on Intelligent Robots and
Systems (IROS), Beijing, China, 2006.

[19] S. Nayar, S. Nene, and H. Murase, “Real-time 100 object recogni-
tion system,” in International Conference on Robotics and Automation
(ICRA), vol. 3, Minneapolis, USA, 1996, pp. 2321–2325.

[20] D. G. Lowe, “Object recognition from local scale-invariant features,” in
International Conference on Computer Vision (ICCV), Corfu, Greece,
1999, pp. 1150–1517.

[21] V. Lepetit, L. Vacchetti, D. Thalmann, and P. Fua, “Fully automated and
stable registration for augmented reality applications,” in International
Symposium on Mixed and Augmented Reality (ISMAR), Tokyo, Japan,
2003, pp. 93–102.

[22] E. Murphy-Chutorian and J. Triesch, “Shared features for scalable
appearance-based object recognition,” in IEEE Workshop on Applica-
tions of Computer Vision, Breckenridge, USA, 2005.

[23] S. Obdrzalek and J. Matas, “Object recognition using local affine
frames on distinguished regions,” in British Machine Vision Conference
(BMVC), vol. 1, Cardiff, UK, 2002, pp. 113–122.

	1. Introduction
	2. Markerless Human Motion Capture
	3. Master Motor Map (MMM)
	4. Imitation learning
	5. Coaching
	6. Applying actions to Objects
	6.1 Grasp mapping
	Grasp Planning and Visual Object Localization

	7. Links to other Workpackages
	Attached Papers
	References

