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1. Executive Summary

The core focus of WPS5 is the generalization of the action representation developed in WP2, WP3, and
WP4 to cover communicative acts, and the formalization of syntax and semantics for communication and
interaction in natural language with situated purposeful agents, together with mechanisms for the acquisition
of grammar from sentence-meaning pairs. The deliverable and the attached papers show how the LDEC
action representation and the associated PKS planner developed under WP4 and described in D4.3.1 can both
be induced from lower-level representations of states and state transitions, and provide a basis for natural
language semantics at the higher level of Combinatory Categorial Grammar. The associated deliverable 5.2
describes the computational problem of natural language acquisition. Both of these papers are theoretical
and look ahead to the next phase of the project, since at this stage, as was anticipated in the plan of work in
the annex, the grounded linguistic semantics that will provide the basis for learning is yet to be developed.

Combinatory Categorial Grammar (CCG, Steedman 2000) is a theory of grammar according to which all
language-specific grammatical information resides in the lexicon. A small universal set of strictly type-
driven, non-structure dependent, syntactic rules (based on Curry’s combinators B, S, and T) then “projects”
lexical items into sentence-meaning pairs and defines the mapping from one to the other.

Steedman (2002b,a) showed how the same set of combinatory operations were involved in human and
animal non-linguistic planning, and defined a Linear Dynamic version of the Event Calculus (LDEC) as a
notation for such a planner. Work by UEDIN under PACO-PLUS support reported under deliverable D4.3.1
implements LDEC as a high-level symbolic planner under the PKS framework of Petrick and Bacchus
(2002, 2004).

The present report analyzes the problem of connecting this planner to observable state-changes brought
about by robot sensory-motor systems, on the one hand, and the lexicon and the grammar used by the
language system on the other. It is proposed to use an associative memory such as the associative net of
Willshaw (1981) both to associate affordance concepts with representations of initial conditions of actions,
and to represent state-change or STRIPS-style action updates Fikes and Nilsson (1971). This representation
is unusual in mapping the sensory map or manifold onto symbolic names for actions and their effects,
as a basis for learning from experience. These actions are of the type that can be reasoned about by the
PKS/LDEC planner described in Paco-Plus deliverable D4.3.1. This report describes the process whereby
they will form the basis of the linguistic semantics that forms the basis for language learning described
in deliverable D5.2, once the low level action domain is specified in terms of the Object Action Complex
(OAC) representation. Certain extensions to the planner to handle specific types of action involved in speech
acts for constructing dialogs to create shared plans are also described.

The document comprises two papers that describe this work, as follows:

A: Foundations of Universal Grammar in Planned Action (to appear in Christiansen, Collins and Edelman
2007, Language Universals, Oxford University Press). This paper sketches the complete path between
an attentional manifold of localized facts and a representation of action and change to the level of
symbolic action, the nature of the conceptual system for the planner, and its relation to the lexicon
and grammar. The low-level associative representation is the subject of continuing research and is
yet to be linked to the specific representations used in the various robot platforms of the project. The
high level grammar that will be used in the project itself awaits further specification of the robot action
domains. However, the paper establishes that the CCG grammar formalism is transparent to the action
representation. The significance of this link is that a variety of efficient applicable parsers for CCG
already exist, and will be readily adaptable to the demands of PacoPlus.

B: Planning Dialog Actions (draft, to be submitted to AAAI 2007). This paper applies the PKS and
LDEC formalisms developed under deliverable 4.3.1 to the analysis of speech acts to support dialog
planning in PacoPlus. It shows that dialog acts can be treated analogously to perceptual sensing
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acts in standard planning using PKS. The problem of dialog planning is treated with full generality,
and a number of examples involving indirect speech acts and so-called conversational implicature
are shown to fall out of formalism, including some important asymmetries in such effects that have
not hitherto been commented on in the literature. While some of the effects discussed here (such as
sarcasm) are unlikely to be directly involved in dialog with PacoPlus robotic agents, it is the general
human tendency to interpolate unconstrained inference concerning indirection and implicature that
notoriously causes mixed-initiative dialog to diverge and collapse. It follows that this capability needs
to be represented in our systems.

2. Role of PKS/LDEC and situated dialog in PacoPlus

PKS/LDEC provides a unifying theoretical framework for the various low-level action representations used
in PacoPlus, and a practical mechanism for their integration with high level planning and interaction in
natural language.

3. Relation to Demonstrator 8.1

The lower-level concerns of the representation discussed in this report have been influential in determining
the form of representations used in WP8.1 as reported in D8.1.1. The dialog component is relevant to future
interactive demos.

4. Principal Scientific Results

The work described in this report completes the theoretical path between low-level sensory-related and high-
level plan-related and language-related representations for the Paco-Plus project as a whole. It embodies
the knowledge base for reasoning about shared plans and actions grounded in the system developed under
WPs 2.3 and 4. The claim is that it is a logical necessity that the various low-level representations of the
project compile into intermediate level representations of the kind represented here in order to interface
with cognitive systems for shared planning and language interaction. Because of the transparent relation
to the low-level representations, the high level representation will in turn be shaped and informed by its
distinctively embodied and grounded character. A second result is to show that such an action representation
may be robust to the conversational inference processes of users that tend otherwise to make mixed-initiative
dialog systems fail in practise.

5. Future Work

A number of questions remain open at the time of of this report and constitute further work.

1. While the input to the system is described as a map or manifold of located structured meanings the
precise inventory of such features is left open in order to accommodate the various needs of the various
low-level platforms. This picture will be refined over the coming months with partners in WP2,3, and
4.

2. While the device that maps state changes in such feature maps across time onto affordances or action
concepts is currently assumed to be an associative net, issues such as storage efficiency may call for
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other models of associative memory, such as the Holographic Reduced Representations (HRR) of
Plate (1994) may be called for.

3. While the learning mechanism for the associative memory is described in terms of a generalization
to the Perceptron Learning Algorithm (possibly using the “Kernel Trick” discussed by Freund and
Shapire 1999) the generalization to the LDEC rule representation learning remains incomplete at the
time of reporting.

4. The implementation of the dialog planner is incomplete at the time of reporting.

5. The next phase of the planner development will include incorporation of probabilistic models appro-
priate to the types of nondeterminacy that will undoubtedly arise from low level perception. There is
work of this kind in the US using a very different planner framework by Leslie Kaelbling’s group at
MIT (Zettlemoyer, Pasula and Kaelbling 2005), which we are following closely.

6. Publications Associated with D5.1

1. M. Steedman, 2006: “Foundations of Universal Grammar in Planned Action” in Christiansen, Collins
and Edelman, (eds.), Language Universals, Oxford University Press.

2. M. Steedman and R. Petrick, 2007: “Planning Dialog Actions,” to be submitted to AAAI 2007.
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7. Annexes

A. Foundations of Universal Grammar in Planned Action

Mark Steedman

This paper attempts to link the specific form taken by the universal grammatical mechanism that projects
the finite lexicon of any given language onto the infinite set of strings of words paired with meanings that
constitute that language to a more primitive capacity for planning, or constructing sequences of actions
that culminate in an intended goal. A central consideration in defining this system is that of how action
representations can be learned from interaction with the physical world.

B. Planning Dialog Actions

Mark Steedman and Ron Petrick

The problem of planning dialog moves can be viewed as an instance of a more general Al problem of
planning with sensing actions. Planning with sensing actions is complicated by the fact that such actions
engender potentially infinite state-spaces. We adapt the PKS planner and the linear dynamic event calculus
to the representation of dialog acts, and show potential beneficial consequences for planning mixed-initiative
collaborative discourse.
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Draft 1.0, January 29, 2007

This paper attempts to link the specific form taken by the ensigl grammatical mechanism
that projects the finite lexicon of any given language onwitifinite set of strings of words
paired with meanings that constitute that language to a imongtive capacity foplanning or
constructing sequences of actions that culminate in andieg goal. A central consideration in
defining this system is that of how action representatiomsbealearned from interaction with
the physical world.

1 Universal Grammar

Two rather different kinds of phenomenon trade under theenafllinguistic universals. The
first are often expressed as implicational rules of the foifra fanguage has property P it has
property Q”. An example is Greenberg’s (1963) Universallriguages with dominant VSO
order are always prepositional”. While sometimes statatbterministic laws, such rules almost
always admit exceptions (as Greenberg 3 does—Dryer 1992a88 should be regarded as
probabilistic, arising either from the origins of most posjiions as verbs rather than adnominals,
or from a requirement for efficient encoding to ensure eaaynkgbility of the grammar as a
whole, rather than as rules of universal grammar as suchguages are free to violate such
constraints, just so long as they do not violate so many ahthe to make life unreasonably
difficult for the child language learner.

The second kind often take the form of claims of the form “N¢unal language does X” or
“every natural language does Y”, and seem more like striestraints on human language, such
as that every language has nouns, or transitive verbs aivetlauses. This second type of uni-
versal is further divided into three types: “substantiveiversals, “functional” universals, and
“formal” universals, although there is some confusion ia literature concerning the definition
of these types.

*Thanks to Chris Geib, Kira Mourdo, Ron Petrick and Matthean8. The work was supported in part by the SE
Edinburgh-Stanford Link grant Sounds of Discourse and EDd&nt FP6-2004-1ST-4-27657 PACO-PLUS.

'The following distinctions follow Chomsky 1995. Chomsky6EE27-30 distinguishes only between substantive
and formal universals. However, the specific instances wh&b universal cited there include some that under the
definition of Chomsky 1995:54-55 would be classified as sifisie or functional. To the extent that formal universals
are discussed at all in Chomsky 1995:16,222, it is clearttfetefinition is the restricted one stated below, in conhtras
to that in Lasnik and Uriagereka 2005:12, where functiomatersals are referred to in passing as “formal,” threatgni
to lose an important distinction.




Substantive Universals, such as the ubiquity of nouns aatkitive verbs are to do with
content, and are determined by ontology, or the way ourast@ns with the physical and men-
tal world structure mental representations, and hence reizeainto categories like mothers,
dogs, and grasping. Functional Universals, such as theaiityiof complementizers, case, tense,
definiteness and the like, are determined by relations araobstantive entities. Both substan-
tive and functional categories are represented lexicallybrphemes, although at least some
functional categories are almost always morphologicaiiplicit or “unmarked” in any given
language. This distinction therefore corresponds quiteaty to traditional notions of “open
class” vs. “closed class” items, or “stems” vs. “inflectibagad “function words.

The third class, the Formal Universals, are rather differéhese relate to the inventory of
syntactic operations that combine substantive and funaticategories, and project their charac-
teristics and meanings onto sentences and logical fornth Guiversals concern the mathemat-
ical or automata-theoretic class of operations that aretemanced in the theory of grammar,
and take the form of statements such as “Natural langualjesifaide the class of context-free
languages” (Chomsky 1957). Such universals are not statigt nature: one example of a nat-
ural language (or in this case, natural language consbngtas in Huybregts 1984 and Shieber
1985) that is provably non-context-free proves the clawendf natural language constructions
in general are, in fact “with overwhelmingly greater thamobe frequency,” context free.

It is often quite hard to decide to what type a given univectaim should be assigned.
Greenberg’s Universal 20 claims that only six of the twefutyr possible linear orderings of the
categories Dem(onstrative), Num(ber), A(djective), ar(dux) exhibited in English NPs like
These five young ladse universally attested. While Greenberg sampled onitytlinguages,
and eight further orders have since been attested (HawRB3; Cinque 2005), they modify the
statement of the universal itself, not its statistical rsgté.

Similarly, Ross (1970) described a universal relating fgag” or deletion of the verb under
coordination with base constituent order. The pattern eesunmarized as follows for the three
dominant sentential constituent orders (asterisks inglitee excluded cases):

(1) SVO:*SO and SVO SVO and SO
VSO: *SO and VSO VSO and SO
SOV: SO and SQV *SQV and SO

This observation can be generalized to individual conisns within a language: just about any
construction in which an element apparently goes missieggives canonical word order in an
analogous fashion. For example, English ditransitive sexibcategorize for two complements
on their right, like VSO verbs. In the following “argumentister” coordination, it is indeed in
the right conjunct that the verb goes missing:

(2) Give Thelma a book, and Louise a record.

At first glance, this observation looks like an implicatibomiversal, and indeed there were
early claims for exceptions, form languages like Dutch ($@nd Zapotec (VSO, Rosenbaum
1977), which allow both patterns. However, both those laiggs can be claimed to have mixed
base order, and if the claim is relativized to constructibnan be seen as making a claim about
the universal apparatus for projecting lexically specifiedstructions onto sentences, and hence
as a claim about a formal universal.




2 Universal Semantics

The only really plausible source for grammatical univessilthe second, non-statistical, kind
is the semantics, which in turn is determined by the specétane of our interactions with the
world, and the concepts that those interactions engendemi@ky 1965:27-30; Pinker 1979;
Newmeyer 2005). The reasoning is as follows. The only refmamatural language grammar to
exist at all is to support semantic interpretation, as adfasireasoning about joint action in the
world with other members of a language community. Furtheenee know that syntactic gram-
mars for even the simplest language classes cannot beyekatited on the basis of exposure
to strings from the language alone (Gold 1967). (While Hogril969 showed that grammars
of any such class can technically be approximated to anyetkesiegree of probable error by
automatically induced statistical models, and such agprations are in fact quite practically
applicable to problems such as word disambiguation forraat speech recognition, such
statistical approximation carries exponentially growog@mmputational costs. It is also quite
unclear how such approximations can support semantiqirgtation.) We also know that exact
induction of even quite high classes of (monotonic) gramfran strings paired with labeled
trees corresponding to the yield of the grammar for thabgtis essentially trivial (apart from
the problem of noise in the input and consequent error) (Busgki and Penn 1990; Siskind
1996; Villavicencio 2002; Zettlemoyer and Collins 2005) fdllows that the simplest hypoth-
esis concerning the way children acquire their native laggus that they induce its syntactic
grammar from pairings of strings and logical forms représgrmeaning. On this assumption,
language universals must reflect the properties of a urdl/grammar of logical form, in which
the structure of predicates and arguments carves natueding our own being) at the joints
in just one way, ideally suited to reasoning about it.

Of course, to say this much is not terribly helpful. The putagrammar of logical form
itself has a syntax, which can in turn only be explained asiragifrom a semantics that must
be specified in a much stronger sense, using a model theorgendetails will ultimatedly be
determined by the nature of our own and our remote non-humegstor’s interactions with the
world. Worse still, our grasp on this kind of semantics isGagmsky never tires of pointing out)
even shakier than our grasp on linguistic syntax, mainlyabse our formal and intuitive grasp
of such dynamic systems is much weaker than that of stati@udtdee systems. Nevertheless,
this must be where linguistic universals originate.

This is easiest to see in terms of substantive and functiomigkrsals—that is, those that
relate to content and category of morphemes, words, andit@rds. For example, if it is the
case that all natural languages have transitive verbsabnthlanguage has a verb allowing more
than four arguments (Steedman 1993, 2000b; Newmeyer 2066y Pesetsky 1995), then the
universal logical form must include all and only such relati? If languages are nevertheless
free to specify the position of the verb with respect to itpements as initial, second position, or
final, then we may suspect that the universal grammar of éddecm specifies only dominance
relations, not linear ordér.

? shall use the term “transitive” indiscriminately, to cowal verbs taking a second argument such as NP, PP, VP, or
S in addition to the subject

*The fact that UG “cannot count beyond two"—that is, that mmlzage requires its verb to be in third position, next-
to-last position, etc. (Newmeyer 2005:4)—must also be s¢imyesay because of an association between first position
and notions such as “topic”.




But it is also true of the formal universals—that is, thosat tjovern the types of rule that
combine constituents or categories, projecting their erigs onto larger structures. For ex-
ample, the main reason for believing in a formal universahi effect that natural language
grammar formalisms must be of at least the expressive pofvesrdext free grammars is not
that intrinsically non-finite state fragments of langualiles English can be identified. All at-
tested and in fact humanly possible instances of such stigag be recognized by covering
finite-state machines, and human beings must in some setsdabe finite state machines.
The real reason is that no-one can see any way to parsimbnicagture the one part of the
semantics that we do have a reasonably good understandimgoély compositional projection
of function-argument relations under constructions likenplementization and relative clause-
formation, governed by the particular type of transitivebggthat take sentences as complement,
other than by simulating an infinite state, push-down autora

Unfortunately, that is about as far as our intuitions takeTine way in which individual lan-
guages reflect the putative underlying universal is not trarysparent to us as linguists (although
it must be transparent to the child). For example, some lagesilike English lexicalize com-
plex complex causatives like “he was running across thetvath special transitive versions
of verbs likerun taking PP complements. Other languages, like French, appésxicalize the
elements of the underlying causative logical form moredilg, in expressions like “Il était en
train de traverser la rue & la courseMoreover, even such apparently painstakingly elaborated
expressions do not seem to be anywhere near complete icilyptientifying sufficient truth-
conditions for such utterances about a specific situatioch(as one in which the subject of the
remark never reached the destination), and in fact it is défigult to specify such truth condi-
tions for any language. The reason is that such conditicgr® $e include the intentions which
motivated the subject’s plan of action, together with therfnal” consequences that could be
anticipated, as well as the physical action itself. Thi¢ éagenders the “imperfective paradox”
that it is possible to truthfully say “he was running acrdss street” (but not “he ran across
the street”), even if the person in question never reachedtter side, just in case what he did
would normally have resulted in his doing so (see Dowty 181@, much subsequent work).

This paper argues that, if one wants to truly understandséimisantics, and the form of the
linguistic universals that it determines, it is be necestasimultaneously investigate the nature
of action representations capable of supporting notiotsleblogy and change of state, together
with the ways such representations can be learned in itkenawsith experience of the world,
and the ways in which the specific form that human knowledgeesentations takes follows
from that experience, and determines observed and prddicéenmatical universals. The fact
that we find it difficult to specify such knowledge represéotes using the logics that have
been developed for other more mathematical inquiries shoake us expect to find the form of
such grounded and experientially induced knowledge reptations quite surprising, and rather
unlike the hand-built representations for common-senselatdge or “naive physics” that have
been proposed in the Al literature (Hayes 197&ssin).

“In this sense, the emphasis in Hauser, Chomsky and Fitch @@8e evolution of recursion itself as the crucial
element distinguishing human cognition and language freimal cognition may be misplaced. It must be the evolution
of concepts that intrinsically require recursive definitiotiet separates us from other animals. Recursive concepts of
mutual belief seem to be plausible candidates, as Tomak@9® has suggested.

*Many of these explicit elements like “a la course” are ofrseuoften elided in actual French utterance in context,
making the problem of automatic translation much harder.




3 Representing Change and Reasoning About Action

The problem of planning is the problem of finding a sequeneetbnsa, 3, etc. through a state
space of the kind represented in figure 1. This structure hiclwblobs represertates(which

Figure 1: Kripke Model of Causal Accessibility Relation

we can think of as vectors of values of facts or propositipas)l directed arcs represeamtions
that transform one state into another (which we can thinksdfrate-state transducers from one
state vector to another), is known as a S4 Kripke model. Wealefine a planning calculus over
such models as follows.

3.1 The Linear Dynamic Event Calculus

The Linear Dynamic Event Calculus (LDEC) combines the intsigof the Event Calculus of
Kowalski and Sergot (1986), itself a descendant of the 8dnaCalculus of McCarthy and
Hayes (1969) and the STRIPS planner of Fikes and Nilssoril{1@ith the Dynamic and Linear
Logics that were developed by Harel (1984), Girard (198 d)@thers.

Dynamic logics are a form of modal logic in which theand< modalities are relativized
to particular events. For example, if a (possibly nondeteistic) program or command com-
putes a functiorr over the integers, then we may write the followihg:

(3) N> 0= [a](y=F(n))

This can be read as “ifi > 0, executing the actiom always results in a situation in which
y=F(n)". (dually) that “in any situation in whicln > O, there is an execution ofthat terminates
with y = F(n)”.

We can think of this modality as defining a logic whose modsdsaipke diagrams in which
accessibility between possible worlds corresponds te-sfadnging events. Such events can be
defined as mappings between situations or partially spdgifossible worlds, defined in terms
of conditions on the antecedent which must hold for them fayasuch as that > 0 in (3)),
and consequences (such as thatF(n)) that hold in the consequent.

The particular dynamic logic that we are dealing with heraris that includes the following
dynamic axiom, which says that the operator ségjuencean operation related tiunctional

®Dynamic Logic offers a dual “diamond” modality of possibjli as well as the “box” modality of necessity, such
that the following means that “ifi > 0, executing the action sometimes results in a situation in whigk= F(n).”
() n>0= (a)(y=F(n))




compositiorover events, viewed as functions from situations to situnesti

(4) [a][B]P = [a;B]P
Using this notation, we can conveniently represent, salgafpr getting outsides the compo-
sition of pushinga door and thegoing throughit, written pusH; go-througH.

Composition is one of the most primiti@mbinators or operations combining functions,
which Curry and Feys (1958) cdl, writing the above sequence3 asBpa, where

(5) Bpa =Asp(a(s))
Plans likepusH; go-througH could be written in Curry’s notation @go-througHpush

3.2 Situation/Event Calculi and the Frame Problem

The situation calculi are heir to a problem known in the Adiéture as the Frame Problem (Mc-
Carthy and Hayes 1969). This problem arises because thehatiwe structure our knowledge
of change in the world is in terms of event-types that can lagaxtterized (mostly) as affecting
just a few fluents among a very large collection represertiagtate of the world. (Fluents are
facts or propositions that are subject to change). Naivataepresentations which map entire
situations to entire other situations are therefore repriagionally redundant and inferentially
inefficient. A good representation of affordances must getiad this problem.

To avoid the frame problem in both its representational aferéntial aspects, we need a
new form of logical implication, distinct from the standardintuitionistic= we have used up
till now. We will follow Bibel et al. (1989) and others in ugidinear logical implication -
rather than intuitionistic implicatioe> in those rules that change the value of fluents.

For example, in Steedman 2002, events involving doors in ddwgreatly simplified for
purposes of exposition) in which there are two plamesandin separated by a door which may
beopenor shut as follows’

(6) affordgpushy,x)) Ashuix) — [pushy,x)]open(x)

(7) affordggo-throughly,x)) Ain(y) -o [go-through(y,x)]out(y)

These rules say that if the situation affords you pushingetbing and the something is shut,
then it stops being shut and starts being open, and that itisation affords you going through
something, and you are in, then you stop being in and stangbmut. Linear implication has

the effect of building into the representation the updatects of actions—that once you apply
the rule, the proposition in question is “used up”, and carake part in any further proofs,

while a new fact is added. The formulae therefore say thairiething is shut and you push
it, it becomes open (and vice versa), and that if you are inyadgo through something then
you become out (and vice versa). This linear deletion effeonly defined for facts—that is

ground literals.afford§go-through(y,x)) is a derived proposition, so it will hold or not in the
consequent state according to whether it can be proved dnribat state. The way we have
defined affordance, it will hold. (However, we have not yefirded what happens if you go

"We follow a logic programming convention that all variabtgzoearing in the consequent are implicitly universally
quantified and albther variables are implicitly existentialy quantified. Sincetfire real world doors don't always open
when you push them, box must be readiafaultnecessity, meaning “usually”.




through a door when you amut)

In order to know when we can apply such rules, we also needfioedéhe conditions that
afford actions of pushing and going through. Here ordinary noedirintuitionistic implication
is appropriate:

(8) a. door(x) A oper(x) = affordggo-through(y,x))
b. door(x) A shuix) = affordgpusHy, x))

These rules say (oversimplifying wildly) that if a thing islaor and is open then it's possible to
go through it, and that if a thing is a door and it's shut, tht&ngossible to push it.

We also need to define the transitive property of the podsibdlation, as follows, using the
definition (4) of event sequence composition:

(9) affordga) A [a]affordp) = affordqa; B)

This says that any situation which affords an actigand in which actually doing gets you to
a situation which affords an actid} is a situation in which afford thenp.

To interpret linear implication as it is used here in termprafof theory and proof search, we
need to think of possible worlds in the Kripke diagram in figdras states of a single updatable
STRIPS database of facts. Rules like (6) and (7) can thentbepieted as (partial) functions
over the states in the model that map states to other statesiayving facts and adding other
facts. Linear implication and the dynamic box operator ageetessentially used as a single
state-changing operator: you can’'t have one without theroth

The effect of such rules can be exemplified as follows. If thial situation is that you are
in and the door is shut:

(10) in(you) A door(d) A shui(d)

—then intuitionistic rule (8b) and the linear rule (6) mehattattempts to prove the following
propositions concerning the state of the door in the sibnatiat results from pushing the door
will all succeed, since they are all facts in the databasertisalts from the actiopushyou d)

in the initial situation (10):

(11) a. [pust{you d)|oper(d)
b. [pusHyou d)]door(d)
c. [pushyou,d)]in(you)
On the other hand, an attempt to prove the proposition (1R¥aili because rule (6a) removes
the fact in question from the database that results fromdtiergpushyou d):2

(12) [push(you d)]shuid)
The advantage of interpreting linear implication in thispigthat it builds the STRIPS treatment
of the frame problem (Fikes and Nilsson 1971) into the prbebty, and entirely avoids the need
for inferentially cumbersome reified frame axioms of thedqmoposed by Kowalski (1979) and
others (see Shanahan 1997).

This fragment gives us a simple planner in which startingnfrihe world (13) in which
you arein, and the door ishutand stating the goal (14) meaning “find a series of actionis tha

8We follow the logic programming convention of negation bijuiee, according to which a proposition is treated as
false if it cannot be positively proved to be true.




the situation affords that will get yoaut,” can, given a suitable search control, be made to
automatically deliver a constructive proof that one suemps (15), the composition glushing
andgoing throughthe door:

(13) in(you) A door(d) A shui(d)
(14) affordga) A [a]out(you)

(15) a = pusHyou d); go-throughlyoud).

The situation that results from executing this plan in thetdituation (10) is one in which
the following conjunction of facts is directly representsdthe database:

(16) out(you) Adoor(d) A oper(d)

Using linear implication (or the equivalent rewriting logilevices or state update axioms
of Thielscher (1999) and Marti-Oliet and Meseguer (199))STRIPS-like rules makes such
frame axioms unnecessary. Instead, they are theoremsroomgthe linear logic representation.
The further implications of the theory for extended formgtaf frame problem considered by
Hanks and McDermott (1986), Sandewall (1994) and Shanatf#8v] are discussed in Steed-
man 1997, 2000b.

Since we can regard actions as functions from situationguatens, then rule (9) defines
function compositioB as the basic plan-building operator of the system. Comipasit one
of the simplest of a small collection of combinators whichr@wand Feys (1958) used to define
the foundations of tha-calculus and other applicative systems in which new cotscegn be
defined in terms of old. Since the knowledge representatianunderlies human cognition and
human language could hardly be anythmtherthan an applicative system of some kind, we
should not be surprised to see it turn up as one of the basratiqes of planning systems.

This calculus is developed further in Steedman 1997, 20@pjatication to more ambitious
plans, and a number of generalizations of the frame prohlsmg a novel analysis afurative
events extending over intervals of time, in which such evené represented by instantaneous
inceptive and culminative events, which repectively aglaiove facts about the event being in
progress, and the consequences if any of its culminatiois rEfpresentation has a number of
advantages over more standard interval-based reprasestauch as those of Allen (1984);
Allen and Hayes (1989), including a solution to the impetifecparadox. These ramifications
are passed over here.

By making the calculus affordance-based, we provide this farsa simple forward-chaining
reactive style of planning that seems to be characterigtion linguistic animal planning. This
kind of planning is not purely reactive in the sense of Bro(k336) and Agre and Chapman
(1987): the notion of state representation plays a cerdta) as Bryson has proposed within the
Behavior-Based Al approach (2001, Bryson and Stein 2001).

There are two ways of thinking about computing plans withltinear Dynamic Event Cal-
culus. One is as a logic programming language, much likeogrdPoole 1993 shows how the
Horn clauses of such a representation can be associatedwittyesian Network probability
model. However, there are problems in scaling such logiefgtesentations to realistically-sized
cases. We noted earlier that STRIPS/LDEC operators candoglth of as as finite-state trans-
ducers (FSTs) over state-space vectors. We can think of thygsrators, more specifically, as




FSTs ovesparsevectors, since they treat most values as irrelevant, STRAS. It follows that

it is also possible to think of LDEC operators in terms of raduretwork representations, and
in particular in terms of a very simple device called the Asstive Network or Willshaw net,
which is specialized to representing associations betwparse vectors. These two approaches
are discussed next.

4 Planning and Explanation-Based L earning with LDEC

Once an agent has learned a set of actions as LDEC operaieri) & position to use them to
form plans and learn more about the world. This process endtilked of in terms of “explo-
ration”, as if it involved a executing a random walk of acsan the real world storing action
sequences in memory according to their good or bad Howesedom walks make bad plans.
Frequently, even if they end up in desirable states, theyhgee by way of detours and unpro-
ductive steps, so that they require critiquing and rejectiomodification. They may even prove
fatal. It is just as easy, and much safer, to critique padéatition sequences off-line and ahead
of time, a process which is usually called planning.

One simple way to do this efficently for a set of operaforns to consider the subsepA- O
of actionsog, € O such that the current stadig affordsag, and generate the sk, of statesog,,
that result from executing eachy, € Ag in stateag. Some of these states may be desirable goal
states in their own right. However, assessing their deiiisatvill often depend on considering
what action, including actions by other agents, those staemselves afford. A wise agent will
therefore consider the state§Oi ay, € Zqoi A that result from the sets yJAof further actions

that each first-level stateag, affords, and so on recursively by breadth-first iterativeping,
applying dynamic programming methods to identify optimking (Bertsekas and Tsitsiliklis
1996). Although the size of the state-space grows expaabntiith depth, this method of
growing the state-space has the advantage that the studttine search space is isomorphic
to the space of possible plans, potentially allowing plagnising graph-based heuristics of the
kind used by Hoffman and Nebel’'s 2001 FastForward planner.

In this way we generate a set of plans of the fdog;ay;;...;0m/], wherem < the depth
of the tree. We can calculate the result state of each plarpplyiag the LDEC operators in
sequence to the original state. We can assign a value todhdpglcomparing the end state with
the start state. We can also assign a cost to the plan in térine summed costs of the actions
that it is made up of, and can choose among plans that end #athe state on a benefit/cost ba-
sis, eliminating wasteful plans such as those that inclurdéeivant or counterproductive actions.
We can also assign anpriori reliability to the plan by computing the product of the réliay
of its component actions.

Having identified a plan with a good benefit/cost ratio, we add that plan to the séi
as a plan operator in its own right, and begin to collect olzg@ns on its actual reliability
by applying it in the world. This process of adding action igers requires “flattening” the
plan, making any preconditions and deletions of its eleargnactions that are not explicitly
added by an earlier elementary action conditions on s@natihat afford the plan, and making
any additions that are not subsequently deleted be amoragitigons of the plan as a whole.
Crucially, Finite State Transducers are closed under caitipo (Kaplan and Karttunen 1994).

Observations of frequency of use and reliability of operateill be essential to distinguish
generally applicable plans from special-case plans anusplath inherent flaws arising from
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Figure 2: Hetero-associative net: Storage and Retrieval

inadequacies in the knowledge representation. Other dstbibgeneralizing plans will be re-
quired. For example, the recognition that successful mahptans for piling up specific numbers
of boxes are all instances of the iterative p|gthergl); puton(l,box); climbon(box))*] is an
instance of a very powerful form of generalization. The sssful selection of new useful addi-
tions to the set of actioris achieves exponential savings in plan search, and is theolsshting
the exponential growth of plan search spaces, also knowtaagipcomposition or hierarchical
planning.

5 LDEC operatorsasAssociative Networks

This section shows how we can represent the intuitionistit DEC inference rules relating
situations to affordances using the Willshaw netimo-associativenode, and represent the
linear - inference rules by a secoimgtero-associativiVillshaw net, associating input state
vectors with output state vectors.

5.1 The Associative Net

The Associative Net was invented by Willshaw, Buneman, aadduet-Higgins (1969—see
Willshaw (1981)), following early work by Steinbuch (1964)d Anderson (1968). This de-
vice illustrates three basic properties of network moddigtvare characteristic of mechanisms
involved in phenomena of human memory and attention:

e Non-localized storage (“Distributivity”)

e Ability to recover complete stored patterns from partiahoisy input (“Graceful Degra-
dation”).

o Ability to work even in the face of damage (“Holographic Mery.

A number of refinements relevant to practical applicatios proposed by Sommer and Palm
(1998) and Plate (1991).
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Figure 3: Auto-associative net: Storage and Augmenteddretr

An associative net acts as a distributed memory associasiing of input and output vectors,
as in figure 2, which represents a grid of horizontal inputdimnd vertical output lines with
binary switches (triangles) at the intersections. To samrassociation between the input vector
on the left and the output vector along the top, switches et on (black triangles) at the
intersection of lines which correspond to a 1 in both input antput patterns.

To retrieve the associate of the input, a signal is sent d@agh borizontal line corresponding
to a 1 in the input. When such an input signal encounters ah Safitch, it increments the
signal on the corresponding output line by one unit. Thesesliare then thresholded at a level
corresponding to the number of on-bits in the input. Withrstlresholding, an associative
memory can store a number of associations in a distributgdda, with interesting properties
of noise- and damage- resistance, provided that the 1slateed sparse.

For example, if one of the on-bits in the input goes off, sa thathreshold at 2 rather than 3,
we recover the entire associated pattern. Similarly if dfibhoes on we can similarly recover
the correct association by reducing the threshold of 4 to I3es& properties depend on there
being not too many similar patterns stored in the same net.

It follows that if patterns are “autoassociated,” or stongth themselves as output, associa-
tive nets can be used to complete partial patterns, as néededall perceptually non-evident
properties of objects, such as the fact that the tall, dadkrmmdsome person’s name is Fred, as
in figure 3.

5.2 Associative Networks and the Hippocampal Associatilevifay

There is evidence for the involvement of associative andaasgiociative networks in many func-
tions of the brain. Marr’s seminal papers from 1969; 197, 11propose a theory of the cere-
bellum, hippocampus, and neo-cortex using a related ags@mechanism throughout.

There is further evidence from hippocampal patients for @ gath model of information
processing in learning (Gluck and Myers 2000. Such patiarésunable to learn associations
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such as people’s names. However, they can exhibit classicalitioning to the extent of learn-
ing which of those people are nice to them (Damasio 19996134B-121). There seems to be an
associative hippocampal path that is needed for both as@memory and operant condition-
ing, as well as a non associative non-hippocampal path stipgalassical conditioning—as in
the architecture shown in Figure 4.

neocortex

@

Perceptron
S

Limbic System

hippocampus

)

L cerebellum

Figure 4: The basic Cerebellar-Hippocampo-Cortical caah circuit: (adapted from Gluck and
Myers).
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6 Associating Situationswith Affordances

Forward-chaining hierarchical planning via plan comjpilatstill has an exponential search
space (albeit a search space of better plans), and fortreallis sized problems and state-
representations, an animal acting in real time cannotaffofind out what actions the situation
affords by matching the input vectors of all its action opersaagainst the situation. The vast
majority of these operators will not be applicable, so we e state itselfo actively propose
the operators that it affords.

We can do this by representing all the LDEErules as an auto-associative network and all
the LDEC - rules as second hetero-associative network.

We have already seen that the associative hippocampal patiwvgments the state represen-
tation, adding facts about individuals (like their nameyégtors including observable facts about
them (such agall(x) A dark(x) A handsomgx)). In the same way, the associative pathway can
be made to add fluents lilefordg go-through(x)) to state vectors includindoor(x) A oper(x).
The presence of this fluent can then be used to directly aopesators that have been applicable
in similar situations in the past.

Thus, theaffordsliterals of LDEC correpond to elements of the state vectat dorrespond
to FST state transducer operators, which are added to eadis generated state by the hip-
pocampal associative memory, and which are removed agathebgpplication of any such
operator. These operators and these alone form the seethetajes the search space for plans.

This hippocampal associative network can in turn be thooflats relation between states
and actions that they afford.

For example, suppose an animal has learned the opergwstisroughand push and
associatedaffordggo-throughly,x)) with vectors subsumingn(y) A door(x) A oper(x), and
affordq push(x,y)) with those subsuminim(y) A door(x) A shuix). Suppose, morever that agent
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Figure 5: LDEC rules of affordance: Storing preconditiohg@-throughin an empty hippocam-
pal auto-associative network, and retrieving the affocgasf pushfrom the loaded net.

has the goal of gettingutbut the door is shut.

If the agent matches the loaded affordance network to that&in, as in Figure 5, it will find
that of its two learned operatogsshis most strongly activated.

The representation of the update effected by the actiolfi #&® uses associative networks
in a subtly different way, illustrated in Figure 6. Weightedaherefore outputs can take negative
values, and outputs represeafiangedo the database, rather than truth, with meaning “set
the feature-value to 0,” ang¢tl meaning “set the feature-value to 1,” while 0 means “ledree t
feature value unchanged.” If the agent then considers tpkcation of thepushoperator, using
the “neo-cortical” change network in Figure 6, it will obgerthat it takes it to a state in which
the door is open. A further application of the affordanceafetigure Is 5 to the result state,
restarting the whole cycle shown in Figure 7, will revealttids state affordgo-through and
that applying this operator will result in beirgit

The change matrix in Figure 6 can be viewed as encoding théaelbetween affordances
and the states that result from those affordances.

In terms of the logicians’ S4 model in Figure 1, the statengfgamatrix of Figure 6 encodes
theaccessibility relatiordefining the both the search space and the plan space. Trechippal
matrix 5 represents the relation between states and affoedaf those actions.

The associative network representation assumes a sototibe Binding Problem (von der
Malsberg 1995)—that is, the problem of representing thetfet the propertiedoor andopen
are predicated of theameobjectd. This problem was first identified by Rosenblatt (1962), who
noted that a perceptron trained to recognize triangles quares anywhere in the image, and to
recognize objects in the top half and bottom half of the imaméd nevertheless not distinguish
a picture with a triangle above a square from its inverse. Alper of solutions to the binding

°To save space, networks are shown more densely loaded thdd be possible in practice. Note that, in STRIPS
terms, both preconditions and deletions are included im$iseciation. Under present simplifying assumptions,wioe t
rules must have equal numbers of inputs: this assumptioorisessential.
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Figure 6: LDEC rules of change: Storigg-throughin the neocortical hetero-associative net-
work, and retrieving th@ushtransduction from the loaded net.
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Figure 7: LDEC cycle: Retrieving the affordancemfshfrom the hippocampal net, generating
the next state from the neo-cortical net, and preparingtteeve the affordance ajo-through
from the hippocampal net.

problem have been proposed, from the “deictic” solution gfédand Chapman (1987) (which
says thatloor andopenare implicitly predicated of whatever object you are attegdo) to the
temporal encoding of variables in synchronous axonal firatgs of von der Malsberg (1995)
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and Shastri and Ajjanagadde (1993). Others, including Ralaé himself, have suggested that
the binding problem should be avoided by coding the comhuinatof properties that you need
in the first place. Clearly, it is perverse to train on trianfgatures independent of place if place
is important, and training for the combination of triangéafures and upper-half features solves
the problem. There is psychological evidence for combimatioding of some but not all visual
features (Triesman 1982) and for integrated object cosc@pick and Beach 1998). While
combination coding cannot be the solution to the entir@agtpresentation-induction problem,
object-hood is such a fundamental requirement that it mediuilt into The lower-level input
representation itself.

One way of thinking of integrated object concepts is to tmkhdf the input to the system
as a map in which objects are represented by locations, atslliike door(d) andoper(d) are
represented by (sparse) set bits on a vector represengivgline of all facts that can hold of that
location. (The space need not be physical or perceptuabdmatcits easiest to think of it that
way for now.) Some part of the input vector to the associatet@ork cascade then represents an
object/location in the map: if it is a door-location and ttewdlocation is a shut-location and the
non-object specific part of the vector says the you-locasan in-location then there is a you-
push-the-door-location affordance. This general pictaems in keeping with the observations
of O’Keefe and Nadel (1978), Morris et al. (1982), O'Keef@®89), and McNaughton (1989),
concerning single-cell recording from rat hippocampus.

The associative cascade then becomes a function from gbgdtons to affordances and
their results, in which propositions likdoor(d) andoper(d) are simply the relevant bits of the
vector and the identity of the object-location is impligiine can either think of this function be-
ing applied to successive positions in a scan or (more l)k&flyhe object/locations as proposing
themselves by some autonomous salience mechanism.

The latter assumption is attractive, and makes objecteqmis@nd their recognition central to
the planning process. One can think of the scene as proplosiations for attention according
to the a priori value of the objects they contain in terms acgssful planning in the past. Such
a representation is “deictic,” like that of Finney et al. 20(a, but differs in having an active
attention/focus mechanism. The associative memory thertheeffect of turning doors and
other objects into functions from all and only the actiorat thre afforded by the situation and
the things that they include onto the states that result ipplying those actions to those things.

The operation of turning something into a function from then&ions-that-apply-to-it into
the results-of-applying-them-to-it is the second majanbmator that the planner is based on,
namelytype-raising usually written asl'. The concept of a door can be defined as follows:

(17) dOOIJ = )\Xdoor.TX
—where

(18) Taype= AP(type—stata-P(2)
The door concept (17) can then be thought of as a function fiings of typedoor onto
functions from functions-from-things-of-typ#eor-into-states-that-result-from-applying-those-
functions-to-those-things.

Interestingly, there is more information in the affordamegwork than the above minimal
planner is using. The unthresholded activatiorafibrds(go-through(you,djh Figure 6 is al-
most as high as that afffords(push(you,d)yeflecting the fact that the situatiorearly allows
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going through.

The information that the problem is the door being shut ratten open is potentially avail-
able from the network, and could in principle be used to ditlee agent’s attention to those of
the actions that the situation affords that specificallylwg doors, such agush Even if the
agent doesn't yet know theushaction that changes closed doors to open doors, it has a good
chance of discovering this operator by blind exploratioactfons involving the door.

There may be objects other than doors in the situation whigbger—bottles, say—which
also have associated affordances that are activated biyuht@an—say, drinking.However, none
of those action will turn open bottles into open doors, salitdo No harm to ignore them, once
it is clear that none of them bear directly on the goal.

The object-oriented nature of these associations is an @eanfia basic fact about animal
ontology. We recognize the object-property statudadrandbottle, as opposed topenby their
consistent relation to actions. Doors consistently affegdess, and bottles consistently afford
drinking, whereas the class of things that are open isn'sistent in affordances. To see how the
associative network can reveal this distinction, we must ta the question of how the change
network of sparse STRIPS FSTs can be learned from compkgtelyified input-output states.

7 Perceptron-Associative Networks

The associative net can be regarded as a multiple-outpoepteon (Minsky and Papert 1969,
1988b)° In the autoassociative form as presented so far, it is a pgarein which the initial
weights are all zero and the gain is 1. However, in order o 8ach a device on STRIPS rules,
we had to tell it explicitly which (sparse) bits were 1s andahhOs. We want the machine to
work that out for itself, and associate situations inclgdinings with properties likdoor, bottle,
andopenwith actions likepush go-throughanddrink.

The following is a proposal for how we might be able to do thésg a version of the asso-
ciative net in which weights are positive or negative realied, adjusted to minimize error from
a random initial setting using some form the PerceptrontiegrAlgorithm (PLA), according
to their positive or negative contribution to the decisideach bit in the output. This is work in
progress, not a confirmed mechanism.

One of the properties of the PLA is that it will set weights dts lwhose input value is irrel-
evant to zero. We will pass over the details of the PLA herferrimg the reader to Rosenblatt
1962, Samuel 1959, and Russell and Norvig 2003:742, togetitte the important generaliza-
tion of Freund and Shapire (1999) of the PLA to non-lineassification, using the “kernel trick”
originated by Aizerman, Braverman and Rozonoer (1964).\Wéneit is applied is as follows.

Every time an actiom is successfully executed, the input state vector with thedpre-
sentingaffordga) is autoassociated, the weights being updated accordingnte sersion of
the PLA. When learning is complete, and in offline plannirge &ssociated affordance bit is
retrieved and included as input to the change matrix, asgargi7

Every time an actiom is successfully executed, the change associative mematgasup-

%3ust as there are multilayered perceptrons, so there atitayeried Associative Nets, such as Hopfield Nets (Hop-
field 1982, Boltzmann Machines (Hinton and Sejnowski 1986j Recursive AutoAssociative Memory (RAAM Pol-
lack 1990). These devices may well also be applicable to tbielegm of learning and deploying STRIPS/LDEC rules.
However, like multi-layered Perceptrons (Minsky and Pai®B88a), multi-layered Associative Networks are prey to
false minima and are hard to train and generalize, and wegnitire their possibilities here.
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dated according to the PLA, the input state vector with thedpresentingffordga) set being
associated with the output vector with the bit represerdiifigrdga) unset.

One interesting property of this proposal is that the weigiatentially embody a distinction
between object-properties liklbor andbottle, and other properties likie andopen

Object properties correspond to facts that are invariadeuthe effect of (most) actions.
(That is to say that the fact in question holds as long as tjecbéxists. Crucially, if the action
destroys the object, or transmutesit,the related facts and properties typically either change or
entirely cease to hold.) They therefore have very high wisigh the diagonal linking the same
facts in input and output. Properties likeandopenare sometimes changed by actions, so their
weights on the diagonal are lessér.

The emergence of the object-property distinction is imgatrfor the enterprise of mapping
the action representation into natural language semaiasr andbottlebecome properties of
typee — t, butopenmust be assigned the second-order tige>t) — (e —t). This distinction
is in turn grammaticalized as that between nolNrend adjectivedl /N, and in turn provides the
basis for a distinction between the “head” of the nominalstarction and the “adjunct”.

This model is at present untested, and it is unclear whetheillibe necessary to build
more structure into the net—for example, to compensatehioifdct that most fluents are not
affected by most actions, and hence are highly auto-céecklaThe way to actually test the
hypothesis is to generate actual state spaces using a SgrAbgstyle LDEC planner, then show
that the network can learn the operators. This experimasuriently being actively pursued at
Edinburgh using the PKS planner of Petrick and Bacchus (22024). The present account is
put forward merely as an example of what a neurocomputdtibaary of planning might look
like.

8 Languageswhich Lexicalize Affordance

Many North American Indian languages, such as the Athalmagoaup that includes Navajo,
are comparatively poorly-off for nouns. Many nouns for ttés are morphological derivatives
of verbs. For example, “door” ish’&’étiin, meaning “something has a path horizontally out”, a
gloss which has an uncanny resemblance to (7). This prosessripletely productive: “towel”

is bee adit'oodi, glossed as “one wipes oneself with it”, and “towelrackbee adit'oodi baah
dah rahidiiltsos—roughly “one wipes oneself with it is repeatedly hung on(litbung and Mor-
gan 1987)

Such languages thus appear to lexicalize nounstesfalt affordancéT), and tocompose
such affordanced). Of course, we should avoid crassly Whorfean inferencesiaNavajo-
speakers’ reasoning about objects. Though productiveetlexicalizations are as conventional
as our own'?

Navajo nouns are also implicitly classified by animacy, €hanmd consistency. However,
rather than being realized via a rich gender system, as ie sther Athabaskan languages such
as Koyukon, this classification is in Navajo reflected in atnmorphology. For example, the
classifier-iltsos on the verbnahidiiltsos “hung,” marks it as predicated of flat, flexible things
like towels. A belt-rack or a gun rack would have a differeassifier.

"Such object concepts may nevertheless be quite abstrats-aie an example.
’Navajo-speakers probably find equally exotic the propgrefittEnglish to generate denominal verbs, like “table”
and “pocket,” with equal productivity.
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Wikipedia gives the following table of Navajo Classifiersgtorthographic conventions are
slightly different from those used in the examples from Ygamd Morgan 1987).

(19) Navaho Classifiers:

Classifier+Stem Label Explanation Examples

-'a SRO Solid Roundish Object bottle, ball, boot, box, etc.

-yi LPB Load, Pack, Burden  backpack, bundle, sack, sadtle,

--jool NCM Non-Compact Matter bunch of hair or grass, clpfat, etc.

-la SFO Slender Flexible Object rope, mittens, socks,dfifeied onions,
etc.

-ta SSO Slender Stiff Object  arrow, bracelet, skillet, setw.

--tsooz FFO Flat Flexible Object  blanket, coat, sack ofcgries, etc.

-tieé’ MM Mushy Matter ice cream, mud, slumped-over drenk
person, etc.

-nil PLO1 Plural Objects 1 eggs, balls, animals, coins, etc.

-jaa’ PLO2 Plural Objects 2 marbles, seeds, sugar, bugs, etc

-ka OC Open Container glass of milk, spoonful of food, hahdfu
flour, etc.

-H-ti ANO Animate Object microbe, person, corpse, dait.e

As a consequence, the English verb “give” is expressed byiffdreht forms in Navajo, de-
pending on the charateristics of the object given, inclgdifjool (give-NCM), used in “give me
some hay” anahitjjh (give-SSO), used in “give me a cigarette”.

The appearance of such pronominal classifiers on the vernbagample of a “head marking”
system ofcase inasfar as the final position of such classifiers “strudlyianarks the fact that
they are patients of the action (cf. Blake 2001:13). Theredeof such classifiers and their
reflex in Navajo nominalizations as a form of case markingegrent is twofold. First, if these
classifiers appear explicitly in Navajo, one might expeat they reflect a universal ontology of
entities. The advantage of such ontologies is that theyvadlio agent to generalize the notion
of affordances of doors to other actions applying to obje€tdhat class. The extension to a
system of case allows even further generalization to tHednbe of transitive actions. Second,
the type-raising nature of case shows up very directly irtieery of grammar, considered next.

9 B, T, and the Combinatory Projection Principle

Besides supporting the basic operations of seriation ajgtbbrientation that planning depends
upon, syntactic versions of combinat®sT support a rebracketing and reordering calculus of
exactly the kind that is needed to capture natural langugigtas, and provide the basis of
Combinatory Categorial Grammar (CCG, Ades and Steedma2j19see Steedman 2000b for
references)

CCG eschews language-specific syntactic rules like (20fmlish. Instead, all language-
specific syntactic information igxicalized via lexical entries like (21) for the English transitive

¥ once read a transcript of a Navajo radio broadcast thatvisating in this connection. The participants were
discussing how to translate the name of the band called &laati the Blowfish. They had no trouble with “Hootie” and
“fish”, but thought “blow” deplorably vague, demanding tooknexactlywhowas blowing exactlywhatand withwhat
result in order to come up with the correct translation—roughfish which inflates itself”.
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verb:

(20) s VP
VP VvV NP
™ — {powed finds ...}

(21) proved= (S\NP)/NP

This syntactic “category” identifies the transitive verbaafinction, and specifies the type and
directionality of its arguments and the type of its resyiNP indicating an NP argument to the
right, \NP indicating an NP argument to the left, and the brackets atitig that the rightward
argument is the first argument to combine.

The category (21) also reflects its semantic tige- (e —t)), expressed in (22a) below as a
lambda term paired with it via a colon operator, in which grgmark constants, non-primes are
variables, and concatenation denotes function applicatimer a “left associative” convention,
so that the expressigovexy is equivalent tq provex)y.

We follow Baldridge (2002) in generalizing this notationfteer word order languages as
follows, where bracket§} enclose one or more sets of arguments that can combine in any
order, and the preceding slash\/,or | indicates that all members of the set must be found to
the right, left or either direction respectively. We alsmegralize the semantic notation using
a parallel argument set notation for lambda terms and a cdiovethat pairs the unordered
syntactic arguments with the unordered semantic argunirenite left-to-right order in which
they appear on the page. Typical transitive verb categtresappear as follow$:

(22) a. English: (S\NP)/NP: AxAy.provexy
b. Latin:  S|{NPnom NPacc} : Ay, X}.provexy
c. Tagalog: S/{NPnom NPacc} : A{y, x}.provexy
d. Japanes&\ {NPnom NPacc} : A{y, x}.provexy

Such categories should be thought of as schemata coverimitea iumber of deterministic
categories like (22a).

Some very general syntactic rules, corresponding to fanetpplication, and the combina-
tors B and T, together with a third combinat® which we will pass over here, but which is
parallel in every respect B, then constitute the universal mechanism of syntacticzegon or
projection onto the set of all and only the sentences of thguage specified by its CCG lexicon.
This Universal set of rules is the following:

(23) The functional application rules
a. X/Y:f Y:a = X:fa (>)
b.Y:a X\\Y:f = X:fa (<)

“These categories are deliberately simplified for exposiprposes, and certainly overstate the degree to which
alternative constitutent orders are semantically egentah these languages.
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(24) The functional composition rules
a XLY:f Y/[Z:g =8 X/LZ:Mf(gx) (
b. Y\,Z:g X\ )Y:f =g X\,Z:Axf(gx (
c. XLY:f Y\,Z:9 =8 X\, Z:Axf(gX) (
(

>
<
>
d.Y/.zZ:g X\, Y:f =g X/,Z:Axf(gx) <

— — —

B
B
B
B
(25) The order-preserving type-raising rules
a. X:a =1 T/i(T\iX):Af.fa (>T)
b. X:a =1 T\i(T/iX):Af.fa (<T)

The typesk, ¢, and x on the slashes in rules (23) restrict the categories thateombine by
them. While all categories seen so far have the unadornet §fpes/, \, or |, which can
combine by any rule, the language-specific lexicon canictdtre combinatory potential of
lexical function categories using these slash-types. ;Ténmrdinators likeandare restricted via
thex type toonly combine by the application rules:

(26) and :=(X\ X)/X

The ¢ slash-type on a function category means that it can comdither by the application
rules (23),0r by the rules>B and<B bearing that slash-type in (24), bubt by the rules>B

or <By. In English (as opposed to, say, Latin), adjectives aréctett using this slash-type,
because they are entirely fixed in terms of linear order vagpext to the head, unlike adverbs,
and it is the latter rules that allow reordering:

(27) young:=N/N

The variabld type on the type-raising rules (25) means that the raisesjogy inherits the
slash-type of its argument.

The composition rules are all generalized to cover caseserxhe “lower” functionY|Z and
the resuliX|Z are of of higher valencf¥|Z)|W and(X|Z)|W, etc., up to some low value such as 4
(((Y|Z2)|W)|V)|U and(((X]Z)|W)|V)|U, which appears to be the highest valency in the universal
inventory of lexical types (Newmeyer 2005, citing Peset$®@5). It is the combination of
crossed composition, as B, and<B,, and this generalization that increases the expressive
power of the formalism to the lowest known trans-conteggftevel of the “mildly context-
sensitive” class identified by Joshi, Vijay-Shanker andM&991), weakly equivalent to basic
Lexicalized Tree-Adjoining Grammars (LTAG) and Linear éxéd Grammars (LIG). The theory
thus embodies a very strong claim about a Formal Universahety that all natural languages
fall into this low-power class.

A number of Principles which amount to the following statetnaean that these are thely
combinatory rules that are available to Universal Grammar:

(28) The Strict Lexicalization Principle
The universal combinatory rules must project, and may netride, the directionality and
slash-type specified in the language-specific lexicon

This theory has been applied to the linguistic analysis afrdimation, relativization, and
intonational structure in English and many other langud§¢sedman 1996, 2000a; Hoffman
1995; Bozsahin 1998; Komagata 1999; Baldridge 1998, 206®y. example, we can define
relativization without syntactic movement or empty catégm as in (30), via the following
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category for the relative pronoun:
(29) that= (N\_,N)/(S/NP)
This category yields the following derivation:

(30) (The woman that Thelma met
(N\N)/(S/NP) S/(S\NPssq) (§\NPssq)/NP
S/NP
N\_N g

Such “extractions” are correctly predicted to be unbounsiege composition can operate across
clause boundaries:

(31) (The woman that Thelma says she met
(NV.N)/(S/NP) S/(S\NPss) (S\NPasg)/S §(S\NPase) (S\NPssq)/NP
S/S >B >B
>B
S/NP
N\,N) -

It is the lexical category (29) of the relative pronoun thstiablishes the long-range depen-
dency between noun and verb (via the semantics defined iexieh via the logical form (not
shown here): syntactic derivation merely projects it ohi phrasal logical form, with compo-
sition and type-raising, as well as application, doing tloekwof Merge rather than Move, in the
terms of the Minimalist Program.

The conjunction category (26) allows a related movemertt-ceatetion- free account of right
node raising, as in (32):

(32) [Thelmamet and  [Fred says he likés Louise

NP T (X\X)[X  SNP ° S(S/NP)
(S/NP)\,(S/NP)
(S/NP)
S

The* modality on the conjunction category (26) means that it @aly combine like types by
the application rules (23). Hence, the across-the-boandition (ATB) on extractions from
coordinate structures (including the “same case” condliti® captured:

(33) a. Awoman [thqg\ON)/(S/Np) [[Thelma met},/np and [Louise Iikes},/Np]g/Np]N\ON
b. Awoman [tha(ﬁ\,\QN)/(S/Np) *[[Thelma metk/np and [likes Louiseg/Np]S/Np]N\QN
c. Awoman tha(;\,\o,\,)/(s/,\,p) *[[Thelma metk,np and [Louise likes hed]]
d. Awoman tha(N\oN)/(s/Np) *[[Thelma met herg and [Louise likesknp]

CCG offers startlingly simple analyses of a wide variety wtftfier coordination phenom-
ena, including English “argument-cluster coordinatidbgckward gapping” and “verb-raising”
constructions in Germanic languages, and English gapgihe.first of these is illustrated by
the following analysis, from Dowty (1988—cf. Steedman 1p&3 which the ditransitive verb
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categoryVP/NP) /NPis abbreviated aBTV, and the transitive verb categoWP/NP is abbre-
viated asTV:'®

(34) give Thelma abook and Louise arecord
DTV TW\DTV VATV (X\.X)/X TWDTV VATV
st st
(VP\DTV)\_(VP\DTV)
VP\DTV
VP

The universal set of combinatory rules does not allow anyvdgon for word orders like the
following, given the lexicon of English:

(35) *Thelma a book and give Louise a record.

Thus, the universal noted by Ross (1970) concerning thetéreof gapping and the base order
of constituents in constructions is a theorem of the thebgxtyaction without movement based
on combinatory projection with rules basedBrandT.

It should be evident from the fact that the type raising opendn (30) turns the NF'helma
into a function over predicate® NP, while in (34) it turns the same word into a function over
ditransitive verbgVP/NP)\ ((VP/NP)/NP) and the NPa bookinto a function over transitive
verbsVP\ (VP/NP) that type-raising, even in English, is simply (respectivelominative, dative
and accusative) grammaticedse albeit marked “structurally” by position with repect toeth
verb, rather than morphologically, an in Laflinelma, Thelmae, ThelmariVe have seen that
notions of case and affordance are highly related. Thugseat(34) can be seen as composing
pairs of functions over affordances and conjoining theltesu

It is likely that a number of other universals concerninggilole word orders can be base-
generated on similar assumptions of a universal projegiorciple based on the combinators
B andT. Universal 20 of Greenberg (1963) concerning the possi@e lorders of Dem, Num,
A and N, as expanded by Hawkins (1983) and Cinque (2005) riscpkarly promising in this
respect, as Hawkins 1983:121-122 points out.

The close relation between the combinatory syntactic pixies and those involved in
planned action should not come as a surprise. If we turn teetlaspects of language which
presumable reflect its origin most directly, namely its wsentinipulate the actions of others to
our own advantage, then it is clear that this is quintesaiya planning problem, rather than a
distinctively linguistic one. For example, the problem déntifying the fact that the utterance
most likely to effect the manipulation of getting the windstwit is not the imperative “Shut the
window” but the declarative “It's cold in here” can be camdrin essentially the same terms
of affordance and change in knowledge state that are usddnonith doors and locations, the
main difference lying in the fact that representation of stete of other minds is required, as
discussed in Steedman 2002, 2006.

®In more recent work, Dowty has disowned this analysis, beear the implicit “intrinsic” use of logical form that
it entails.
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10 Conclusion

This paper has sketched a theory of the way in which expegishapes object- and action-
concepts, how they are used to plan purposive actions inndignaorlds, and how this system
forms a basis for language, to which the latter is almostegtiransparent. This account is
highly speculative. In particular, it remains to be showattthe particulary simple form of
associative memory assumed here is capable in practiceedfitld of learning required, or
whether some other form is needed, such as that proposedcatey @P91), and whether such
mechanisms scale to realistically-sized problems. Margildewill undoubtedly have to be
changed, and many more filled in.

Nevertheless, it seems likely that a proper theory of actpnesentation will have to embody
the ideas of object-orientation and dynamism, embodieldérassociative memory mechanisms
that have long been associated with the hippocampus, teassumed here. The fact that the
language faculty, whose syntactic aspects have long bermlth to be quite mysterious and
unique, appears to reflect these properties so directly era/donviction to this expectation.
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Abstract early “beliefs, desires and intentions” (BDI) -based

approaches (e.g. Litman & Allen 1987; Bratman

The problem of planning dialog moves can et al. 1988; Cohen & Levesque 1990; Grosz &
be viewed as an instance of a more gen- Sidner 1990). Nevertheless, most work on dialog
eral Al problem of planning with sensing  planning has in practice tended to segregate do-
actions. Planning with sensing actions is  main planning and discourse planning, treating the
complicated by the fact that such actions en-  former as an Al black box, and capturing the lat-
gender potentially infinite state-spaces. We ter in large state-transition machines mediated or

adapt the PKS planner and the Linear Dy-  controlled via a blackboard or “information state”
namic Event Calculus (LDEC) to the repre-  representing mutual belief, updated by specialized
sentation of dialog acts, and show beneficial  rules more or less directly embodying some form
consequences for planning mixed-initiative  of speech-act theory or theory of textual coherence

collaborative discourse. (e.g. Lambert & Carberry 1991; Traum & Allen
_ 1992; Green & Carberry 1994; Young & Moore
1 Introduction 1994; Chu-Carroll & Carberry 1995; Matheson et al.

Successful planning in dynamic domains often regOOO; Asher & Lasce}rldes 290:.3)' 'Such'accour'lts
nd themselves readily to optimization using statis-

quires reasoning about sensing acts, which when ek?—

ecuted, update the planner's knowledge state, qu_cal models (e.g. Slpgh et al. 2002). ) )
out necessarily changing the world state. For in- One of the ostensible reasons for making this sep-

stance, reading a piece of paper with a telepho@erat'on, IS thatndlretq sple.echl.ac:s, achu;vmg;pher-
number printed on it may provide the reader wittt € Via conversational implicatures, abound In con-
ersation. (Green and Carberry cite studies showing

the prerequisite information needed to successfullg d 13% of 0 Yos/N i 0 b
complete a phone call. Such actions typically have roun o OT answers to Yes/No questions 1o be

very large, even infinite, sets of possible outcome'Qd'reCt') Moreover, not all implicatures are con-

in terms of the actual valuefound, and threaten tgersational, and the ontology of the ones that are is

make search impracticable. There have been seve?glmplexih | that biquity of the ph
suggestions in the Al literature for how to handle evertheless, that very same ubiquity ot the phe-

this problem, including Moore 1985 Morgensternnomenon suggests that it is a manifestation of the

1988; Etzioni et al. 1992; Stone 1998; and Petrick &3¢ planning apparatus as the domain planner, and
Bacc’hus 2002. 2004 ’ ' that it should not be necessary to construct a com-

Stone (2000) points out that the problem 0pletely separate specialized planner to handle dialog
planning effective conversational moves is also gets. ,Th's paper consu?lers the problem of.applylng
problem of planning with sensing or knowledge-teChm(w_es develgped n .the Al planplng Ilterature
producing actions, a view that is also implicit infor handling sensing and incomplete information to




the problem of dialog planning. databases, this interpretation precisely characterizes
the planner's knowledge state. To ensure an efficient

2 Introduction to PKSILDEC inference mechanism, we restrict the types of knowl-
edge (especially disjunctive knowledge) that can be

In this paper we work with a particular planningcontained in each of the databases.

system, called PKS, and a formal axiomatization oKs: The first database is like a standard STRIPS

planning domains in the language of the Linear Dyedatabase except that both positive and negative facts

namic Event Calculus (LDEC). are allowed and the closed world assumption is not

PKS (Planning with Knowledge and Sensing) isapplied.K; can include any ground literad, where
a “knowledge-level” planner that is able to con-¢ € K means that is known. K¢ can also contain
struct conditional plans in the presence of incomknowledge of function values.
plete knowledge and sensing Petrick & Bacchuk,: The second database stores information about
(2002, 2004). The key idea of this approach is téunction values that will become known to PKS at
represent the planner’s knowledge using a first-ordexecution time.K, can contain any unnested func-
language, and to represent actions by their effect®n term; such terms model the plan-time effects
on the agent’s knowledge state, rather than their eéf sensing actions that return numeric values. PKS
fects on the world state. Since general reasoning tan us&, knowledge of finite-range functions to in-
such a rich language is impractical, PKS employs sert multi-way branches into a plan, or use function
restricted subset of a first-order language and a limlerms as a form of “run-time variable”.
ited amount of inference in that subset. By doing s&,: The third database models the plan-time effects
PKS is able to make use of non-propositional feaef “binary” sensing actions.¢ € K, means that at
tures, such as functions and variables. plan time the planner either knowgsor knows—@,

The knowledge-level approach to planning differ&nd that at execution time this disjunction will be
from those approaches that concentrate on proposesolved. PKS uses such “know-whether” facts to
tional representations over which complete reasomonstruct conditional branches in a plan.
ing is feasible. Such works often focus on repreKy: The fourth database contains “exclusive-or”
senting the set of all possible worlds (i.e., the sdtnowledge of literals. Entries ik have the form
of all states compatible with the planner’s incom<¢1|¢2|... |¢n), where eacld; is a ground literal. Such
plete knowledge) using a variety of techniques (e.ga formula represents knowledge of the fact that “ex-
BDDs, Graphplan-like structures, or clausal repreactly one of the/; is true.” Such knowledge is com-
sentations). By representing problems at the knowfnon in many planning scenarios.
edge level, PKS can often “abstract” away from the Actions in PKS are modelled by sets of queries
irrelevant distinctions that occur at the world leveland updates to the databases. Action preconditions
Furthermore, the resulting plans are often quite “natre specified as a list of primitive queries that in-
ural” and have a simple structure. Compared to theoke an inference algorithm to answer simple ques-
possible-worlds approaches, PKS’s higher-level refiions about the databases: Ip, is p known to be
resentation is richer, but the inferences it supportsue?, (ii)Kt, is the value ot known?, (iii) Kyp, is
are weaker. Nevertheless, PKS is able to solve prolp-known to be true or known to be false (i.e., does
lems that are often difficult for work-level planners.the planner know-whethep?), or (iv) the negation

PKSis based on a generalization of STRIPS Fikesf queries (i)—(iii).

& Nilsson (1971). In STRIPS, the world state is Action effects are described by a set of updates

modelled by a single database; actions update this the databases, i.e., collections of formulae that

database and, by doing so, update the plannestiould be added to and deleted from the databases.
model of the world. In PKS, the planner’s knowl-Since updates are made directly to the databases,
edge state (rather than the world state) is representdety reflect changes to the planner's knowledge

by a set of four databases, the contents of whicétate, rather than changes to the world state.

have a fixed, formal interpretation into a modal Using this representation, PKS can construct

logic of knowledge. Given any configuration of theplans by applying actions in a simple forward-




chaining manner: provided the preconditions of a@a solution to thédrame problenMcCarthy & Hayes
action are satisfied by the planner’s knowledge statél969).

an action can be applied; applying an action updates An LDEC domainis formally described by a col-
the planner’s knowledge state to form a new knowllection of axioms. Actions (or event} provide the
edge state, allowing planning to continue. A condisole means of change in the world, and affectflire
tional branch can be added to a plan if the planneants(i.e., properties) of the domain. For each action
hasK,, information about a formulg. Along one o, an LDEC domain includes action precondition
branch,p is assumed to be known while along theaxiomof the form:

other branch-p is assumed to be known. The plan-

ning process then continues along each branch until LiAL2A...ALx = affords(a),

each branch satisfied the goal.

The Linear Dynamic Event Calculus (LDEC
Steedman (1997, 2002) is a logical formalism th
combines the insights of the Event Calculus of
Kowalski & Sergot (1986), itself a descendant of the {affords(a)} A @ — [o]y,

Situation Calculus McCarthy & Hayes (1969), and,hare © and Y are conjunctions of fluents. An

the STRIPS planner of Fikes & Nilsson (1971), 101 bEc domain can also includes a collectioniit
gether with the Dynamic and Linear Logics develyi situation axiomf the form:

oped by Girard (1987), Harel (1984), and others.

The particular dynamic logic that we work with LiAL2A...ALp,
here exclusively uses the deterministic “necessity”
modality [a]. For instance, if a program com- where each,; is a ground fluent literal.
putes a functiorf over the integers, then an expres- Action precondition axioms specify the condi-
sion like “n > 0= [a](y = f(n))” indicates that “in tions thatafford a particular action. Effect axioms
any situation in whicm > 0, after every execution use linear implication to build certain “update rules”
of a that terminatesy = f(n).” We can think of directly into the LDEC representation. In particu-
this modality as defining a logic whose models aréar, when an effect axiom is applied, the fluents in
Kripke diagrams. Accessibility between situationghe antecedent (i.ep) are treated as consumable re-
is represented by events defined in terms of the coseurces that are “replaced” by the fluents in the con-
ditions which must hold before an event can occusequent (i.e.lp). (We treat consumed fluents as be-
(e.g., N> 0"), and the consequences of the evenhg made false.) A formula contained {n} indi-
that hold as a result (e.gy = f(n)”). cates that it is a non-consumable resource. All other

This logic also defines theequenceperator “;” fluents remain unchanged. Thus, the LDEC treat-
as a composition operation over events. Like otheanent of action is very similar to STRIPS; in particu-
dynamic logics, LDEC does not use explicit situadar, LDEC's use of linear implication is similar to the
tion terms to denote the state-dependent values STRIPS assumption, and lets us avoid having to in-
domain properties. Instead, it uses the sequence apude explicit frame axioms in our LDEC domains.
erator to chain together finite sequences of actions. Recent work Petrick & Steedman (2007) has
For instance[as,ay,...,0,] denotes a sequence ofestablished a preliminary link between PKS and
n actions anday, 0z, ...,0y)@indicates thatpmust LDEC, in particular for the representation of sim-
necessarily hold after every execution of this actiople sensing actions. We do not go into detall
sequence. about this work here, however, we adapt this ap-

LDEC also mixes two forms of logical implica- proach so that we can include PKS-style queries di-
tion, which contributes to its representational powerectly in our LDEC axioms, as a form of knowl-
Besides standard (or intuitionistic) implicatica, edge fluent. Moreover, we extend these fluents to
LDEC follows Bibel et al. (1989) and others in us-include speaker-hearer modalities. Thus, we can
ing linear logical implication, denoted by the sym- write LDEC axioms that include fluent expressions
bol —. This second form of implication provides like [X]Kp (“X knows p”), [X]Kt (“X knows the

)where eaclh; is a fluent or its negation, and affect
aqixiomof the form:




value oft), or [X]Kwp (“X knows-whetherp). We knows what time it is:
can also nest such modal expressions to form mo&z) — [H]K,time (6b): (1)

complex representations of multi-agent knowledge, N _
e.g.,[X]K=[Y]Kp (“X knows that Y does not know Lemma: By speaker supposition, Bonnie doesn'’t

D). know what train the speaker will catch:
We will also assume that our LDEC domains in{13) = —[B]Kytrain (3b); (Ksp=p)
clude the following standard axioms of knowledge:

The situation affordaisk'S H,time):
(14) = affordgask S H,time)) (5b); (6b); (9b)
(2) =[X]p= [X]K=[X]p  Negative Introspection  After applyingask'S H,time):

(1) XIKp=p Veridicality

3 Planning Speech Actswith PKYLDEC ~ (15) = [HIK=[SKtime (14); (100)
The situation now affordeell(H, S time):
S Fads fordgtell(H, S ti 12); (15);(7b
(3) a. “I suppose Bonnie doesn’'t know what train I(16) = alffords(tell(H, S time)) (12):(15):(7b)
will catch” After applyingtell(H, S time):
b. [SJK=[B]Kytrain (17) = [SK time (16); (5b); (8b))
(4) a. “If I know what time it is, | know what train —which means | know what train | will catch:
| will catch.” (18) = [S|K,train (17); (4b)

b. [SKitime=- [SK train o _
The situation now affordeell(S B, train)

(19) = affordqtell(S B,train))  (18);(3b);(7b))
After applyingtell(S B, train)

(5) a. “lI don’t know what time it is.”
b. —[SIK\time

(6) a. “I suppose you know what time it is.” _
b. [JK[H]K,time (20) = [B]Ktrain (19);(13); (8b)

32 Rules 3.4 Planning an Indirect Speech Act
(7) a. “If X supposes p, and X supposes p is not o . .
common ground, X can tell Y p” The situation in section 3.1 also affords
b. [X]pA [X|K-[C]p= affordstell(X, Y, p)) tell(SH,—[SIK\time), telling the hearer that |
don't know the time:
(8) a. “If X tells Y p, Y stops not knowing it and
starts to know it.”
b. affords(tell(X,Y,p)) A=[Y]p (22) = [SK-[SK.time (5b); (2)
~ [tell(X,Y,p)][Y]p

(21) = [JK-[CIK~[SK time (2)

23) = affordqtell(S,H,=[SIK\time))(22); (21); (7b
(9) a. “IfXdoesn’tknowpandXsupposesYdoes,( ) stellS [SiKvtime))(22); (21):(7)

X can ask Y about it.” After applying tell(S H,-[SKtime)—that is,
b. ~[X]pA [X]K[Y]p = affordgaskX,Y,p)) saying “l don’t know what time it is™:
(10) a. “If X asks Y about p, it makes it common(24) = [CIK=[S|Ktime (100)
ground X doesn’t know it” Since (24) is identical to (15), the situation now
b. affordgask’X,Y,p)) again affordgell(H, S,time), and the rest of the plan
— [ask X, Y,p)][CIK-[X]p is as before.

) ) Asking the time by saying “I don’t know what
3.3 Planning aDirect Speech Act time it is” would usually be regarded as an indi-
(11) Goal: | need Bonnie to know which train | will rect speech act. However, under the present account,
catch both “direct” and “indirect” speech acts have their
Lemma: By speaker supposition, the hearegffects by changing the same set of facts about the




knowledge states of the participants. Both involvé30) = [H]Kfriend(h) = bad
inference. In some sense, there is no such thing as A [H]K=[C]friend(h) = bad
a “direct” speech act. In that sense, it is not surpris- (27);(28); (26b)

ing that indirect speech acts are so widespread:  One might not think that getting the hearer to
speech acts are indirect in the sense of involving iNnfer something they already know is very useful.
ference. However, if we assume a mechanism of attention,
Crucially, at no point does the plan depend upohereby things that are inferred become salient,
the hearer Identlfylng the fact that the SpeakerS Uttefhen we have drawn their attention to their tres-
ance “I don't know what time it is” had the illocu- pass. Moreover, the information state that we have
tionary force of a request or question such as “Whajrought them to is one that would normally suggest,

time is it?". via rules like (7) and (8), that the hearer shootu-
rect the original speaker. Of course, further reflec-
35 On So-called Conversational Implicature tion (via similar rules that we will pass over here) is

S ~ likely to make the hearer unwilling to do so, leaving
The fact that we distinguish speaker suppositionhem few conversational gambits other than to slink

about common ground from the hearer suppositiongjlently away. This of course is what the original
themselves means that we can include the followingpeaker really intended.

rules parallel to (7) and (8) without inconsistency:

. 3.6 A Prediction of the Theor
(25) a. “If X supposes the value of p is common et y

ground, X can say to Y that the value of Y This theory explains, as Grice did not, why this trope
is something else” is asymmetrical: the following is predicted to be an

b. [XIK[CIKF =V AV £ W ineffectual way of indirectly complementing a friend

= affordgsayX,Y,F =W)) on a friendly act:

1, H '
(26) a. “If XsaystoY avalue of f,and Y supposes(sl) #Youe a lousy friend!

a different value of f, then Y continues to Making a hearer think of the key fact for themselves
suppose that value, and supposes that it #oes not constitute a complement at all, and this time

not common ground.” there is no reason for them not to respond to the con-
b. affordgsayX,Y,F = W)) A[YJKF = V A tradiction. Unlike (29), this utterance is therefore
V£W likely to evoke a vociferous correction to the com-
— [sayX,Y,F =W)] mon ground, rather than smug acquiescence to the
[YIF = VA[Y]K=[CIKF =V contrary, parallel to the sheepish response evoked by

Speakers’ calculations about what will follow from (29).
making claims gbout hearers’ knqwledge stqtes % Discussion
tend to what will follow from makingfalse claims
of this kind. To take a famous example from Grice,The above are toy examples: scaling to realistic do-
suppose that we both know that you have have doreains will raise the usual problems of knowledge
me an unfriendly turn: representation that Al is heir to. However, the up-
date effects (and side-effects) of the discourse plan-
ner are general-purpose. They are entirely driven
by the knowlege state, without recourse to specifi-
(28) a. “You know that as a friend you are bad” cally conversational rules, other than some very gen-
b. [H]K friend(h) = bad eral rules of consistency maintenance in common
ground. Rhetorical relations such as explanation,
elaboration, and causation-to-believe, are emergent
from these general rules. There is therefore some
hope that that conversational planning itself is of low
the following holds: complexity, and that any domain that we can actu-

(27) a. “I know that as a friend you are bad”
b. [SIK friend(h) = bad

After applyingtell(S H,friend(h) = good), say by
uttering the following:

(29) You're a fine friend!
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