

Friday, 26 January 2007 14:18 Page 1 of 22

IST-FP6- IP-027657 / PACO-PLUS

Last saved by Ales Ude Confidential

Project no.: IST-FP6- IP-027657

Project full title: Perception, Action & Cognition through Learning of

Object-Action Complexes

Project Acronym: PACO-PLUS

Deliverable no.: D 2.1

Title of the deliverable: Technical report describing the adaptive

algorithms and the designed software

Contractual Date of Delivery to the CEC: January 31st, 2007

Actual Date of Delivery to the CEC: January 30th, 2007

Organisation name of lead contractor for this deliverable: JSI

Author(s): Ale! Ude, Damir Omr"en, Tamim
Asfour, Danica Kragic, Norbert Krüger,
Juan-Andrade Cetto, Babette Dellen

Participant(s): JSI, UniKarl, KTH, BCCN, AAU,
CSIC, UEDIN

Work package contributing to the deliverable: WP2 (Sensorimotor primitives for
learning of OACs)

Nature: R/D

Version: 1.0

Total number of pages: 22

Start date of project: 1st Feb. 2006 Duration: 48 months

Abstract:

This technical report summarizes the algorithms and software developed in WP2 in the first twelve months.

It reports on the development and implementation of sensorimotor primitives that can be used to explore the

robot’s environment, to learn sensory representations of new objects, and to act upon objects (which in this

phase are still called “things” in PACO terminology). The following learning approaches and primitive

movements are described: oculomotor control and foveation, learning of inverse kinematics and reaching,

automatic grasp generation by integrating human demonstration and object shape, modeling of corrective

movements using tactile information, and exploratory sensorimotor acts for learning object representations.

These primitives provide the means for learning of early object-action complexes. To enable their execution

in real-time, we designed a computer architecture that allows us to distribute and synchronize the processing

of sensory data on a network of PC computers in real-time. We implemented a real-time visual attention

system to demonstrate the capabilities of this system.

Keyword list: Sensorimotor primitives, foveation, grasping, distributed computing

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)

Dissemination Level

PU Public

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services) X

Page 2 of 22

IST-FP6- IP-027657 / PACO-PLUS Confidential

Table of Contents
1 INTRODUCTION ... 3

1.1 SENSORIMOTOR PRIMITIVES FOR EXPLORATION AND INTERACTION ... 3

2 FOVEATION AND LESSONS FOR OCULOMOTOR CONTROL... 5

3 OCULOMOTOR CONTROL AND VISUAL ATTENTION.. 6

3.1 SACCADES AND SMOOTH PURSUIT .. 6

3.2 VISUAL ATTENTION ... 6

3.3 PROCESSING OF SENSORIMOTOR INFORMATION .. 7

4 GRASPING .. 7

4.1 MODELING AND EVALUATION OF AUTOMATIC GRASP GENERATION BY INTEGRATING HUMAN

DEMONSTRATION EXPERIENCE AND OBJECT SHAPE PRIMITIVES... 7

4.1.1 Grasp Mapping ... 8

4.1.2 Grasp Control ... 8

4.1.3 Introducing Error in Pose Estimation ... 9

4.2 MODELING OF CORRECTIVE MOVEMENTS USING TACTILE INFORMATION ONCE CONTACT WITH THE

OBJECT HAS BEEN ESTABLISHED ... 10

4.2.1 Controller Design ... 10

4.2.2 Evaluating the Controller... 12

5 INVERSE KINEMATICS AND REACHING.. 13

6 EXPLORATORY SENSORIMOTOR PRIMITVES FOR LEARNING OBJECT

REPRESENTATIONS .. 15

6.1 EXPLORATORY MOVEMENTS FOR CALIBRATION.. 16

6.2 PLACING THE OBJECT IN THE IMAGE CENTER AND DETERMINING THE OPTIMAL DISTANCE 16

6.2.1 The control algorithm ... 17

6.3 SHOWING THE OBJECT FROM DIFFERENT VIEWPOINTS .. 18

6.4 EXTRACTING INFORMATION ABOUT OBJECTS: SURFACE SEGMENTATION USING 3D CLUSTERING OF

STEREO IMAGES .. 18

7 ACTION RECOGNITION AND UNDERSTANDING THROUGH MOTOR PRIMITIVES 19

8 LINKS TO OTHER WORKPACKAGES .. 20

9 SUMMARY AND OUTLOOK.. 20

ATTACHED PAPERS .. 21

REFERENCES ... 21

Page 3 of 22

IST-FP6- IP-027657 / PACO-PLUS Confidential

1 Introduction

The development and emergence of higher-level cognition is only possible on an artificial system with a rich

repertoire of sensory and motor capabilities. For this reason humanoid robots are our hardware system of

choice for the study of embodied cognition. A humanoid robotic system with the ambition of developing

higher-level cognitive categories must be able to actively explore its environment and to interact with people

and other agents in its world. A necessary condition for these activities is the existence of low-level

sensorimotor processes that provide means for feed-forward and feedback control of the robot’s actions

based on the continuous stream of incoming percepts. Low-level sensorimotor processes also facilitate the

acquisition of new knowledge. Hence one of the first aims of the project is to identify and implement these

low-level sensorimotor processes on an artificial system. Our goal is to demonstrate how they can be applied

to learn about new objects (or things in PACO terminology), which should finally lead to the generation of

early object-action complexes (OACs). The basic paradigm of PACO-PLUS is that OACs are the entities on

which cognition develops. By grounding the OACs in physical interactions of the robot with the external

world, we provide the basis for the development of shared, mutually grounded symbols.

In this first phase of the project we investigated which low-level sensorimotor primitives are essential for a

humanoid robot that will be used for the learning of OACs. This report describes the identified low-level

sensorimotor processes, their implementation and our first experiments geared towards the generation of

early OACs using the realized sensorimotor primitives.

1.1 Sensorimotor Primitives for Exploration and Interaction

The concept of sensorimotor primitives originates in the work of Arbib [1] who viewed motor primitives as a

sequence of actions that accomplish a complete goal-directed behavior. Conceptually, the idea of movement

primitives is appealing because it allows us to abstract complex motions as symbols, thus providing the basis

for higher-level cognitive processes. This has been demonstrated for example in [12], where motor behaviors

execute the appropriate primitives to accomplish a verbally described high-level task.

There is no consensus in the literature about how to encode movement primitives. Proposals include

nonlinear dynamic attractor systems that can be flexibly adjusted to represent arbitrarily complex motor

behaviors [18], primitive flow fields acquired from motion capture data [10], recurrent neural networks [20],

HMMs [3, 8], and representations by force fields [14]. The degree of integration between perception and

motor control also varies across these proposals.

Figure 1. PACO-PLUS humanoid platform ARMAR and its head with foveated vision.

In PACO-PLUS we are interested in the following aspects of sensorimotor primitives: firstly, they provide us

with the initial sensorimotor knowledge needed to explore “things” situated in the robot’s environment. In

this context we are interested to identify which action primitives are needed with the goal of implementing

them on the PACO-PLUS hardware. Secondly, by providing means to structure motor knowledge, they

supply building blocks that can be used to learn and represent early OACs. The motor knowledge needs to be

Page 4 of 22

IST-FP6- IP-027657 / PACO-PLUS Confidential

parameterized and the appropriate cost functions need to be developed to enable the adaptation of primitives

to novel situations and the selection of primitives incorporated into the OACs in a given state.

Figure 2. Simultaneous views from the peripheral and foveal cameras. The high resolution of object image

and better localization makes foveal images suitable for image analysis task such as object recognition

(right), while the wide field of view from the peripheral camera is suitable for visual search and smooth

pursuit (left).

For PACO-PLUS experiments we shall use the humanoid robot ARMAR developed by the University of

Karlsruhe. ARMAR is equipped with the foveated vision system that mimics the foveated structure of the

human eye. Foveation is implemented using two cameras in each eye; one of the cameras is a narrow-angle

foveal camera and the second is a wide-angle camera for peripheral vision. Foveation is useful because,

firstly, it enables the robot to monitor and explore its surroundings in images of low resolution, thereby

increasing the efficiency of the search process, and secondly, it makes it possible to simultaneously extract

additional information - once the area of interest is determined - from higher resolution foveal images that

contain more detail (see Figure 2). The exploration of unknown environments can definitely benefit from a

vision system with such properties. In addition, ARMAR is equipped with two five-finger hands providing

tactile feedback that can support grasping.

Besides motor and sensory capabilities, we also need to consider the problem of real-time processing. On-

board processing is best suited for tasks that require tight integration between perception and motor control

and small delays. However, on-board processing becomes too limiting when emulating higher-level,

computationally expensive cognitive processes. We have therefore developed a cluster architecture that

enable us to better explore various levels of cognitive processing on the humanoid system while still

providing real-time responses, albeit with somewhat higher latencies.

As described above, our first task was to identify and implement sensorimotor primitives needed to find and

explore new objects in the scene. To start learning higher-level concepts, the robot should be able to explore

its environment, reach for the objects and manipulate them. On the perceptual side, the robot needs to be able

to identify possible regions of interests, discern new objects from the background and acquire sensory

representations that can be used for recognition. Starting from a study elucidating the properties of foveated

vision systems, we concentrated on the following primitive actions to enable initial exploration needed to

find objects and build early object-action complexes:

• searching for objects (visual attention) and saccades,

• inverse kinematics learning and reaching,

• grasping of unknown objects,

• smooth pursuit of grasped objects and tracking,

• explorative movements and the associated sensory processing for the generation of viewpoint

independent object representations.

Page 5 of 22

IST-FP6- IP-027657 / PACO-PLUS Confidential

Since grasping, eye movements and arm movements are fundamentally different motor acts, we did not

attempt to find a unified motor representation. There may well be that no single representation exists and that

different movement primitives are encoded differently. However, we are currently working on developing

more unified representations in limited domains such as for example reaching and grasping.

2 Foveation and Lessons for

Oculomotor Control

In a foveated vision system, the main task

of the eye control system is to place a

salient region over the field of view of

foveal cameras so that more accurate

analysis of regions of interest can be

accomplished. Although the focus of the

task is to bring an object into the center of

the fovea, the control system uses the view

from peripheral cameras as the basis for

control. Data from peripheral images is

more reliable because objects can easily be

lost from the foveal views due to the

narrowness of the viewfield (see Figure 2).

Two issues need to be considered when

analyzing the foveation setup with two

cameras:

1. Given a 3-D point that projects onto the

center of the foveal image, where will

the point be projected onto the

peripheral image? This will be the ideal position in the periphery for foveation.

2. If a 3-D point projects onto the peripheral image away from the ideal position described above, how far

is the projection of the point from the center of the foveal image?

A thourough analysis of these two problems is provided in Section III of paper [B] attached to this report.

The main lessons can be drawn by studying the solutions arising in the case when 1. the origin of the world

coordinate system is chosen to be in the projection center of the foveal camera with z-axis equal to its optical

axis, and 2. the eye is constructed in such a way that the optical axes of both cameras are parallel and that the

projection centers of both cameras are placed at Z = 0. In this case we have the following expression for the

position (xp
0
, yp

0
) in the peripheral image that results in the projection onto the principal point in the foveal

image for a 3-D point at distance Z from the camera,

xp
0 = �

� pr1
Tt pf
Z

, y p
0 = �

� pr2
Tt pf
Z

, (1)

where tpf = [tx, ty, 0] is the position of the origin of the peripheral coordinate system expressed in the foveal

coordinate system and Rpf = [r1
T
, r2

T
, r3

T
]

T
is the rotation matrix that rotates the basis vectors of the

peripheral coordinate system into the basis vectors of the foveal coordinate system. �p, �p are the scaling

factors of the peripheral camera along both image axis. This tells us that knowing the distance of the object

from the eye we can calculate the position in the peripheral camera that corresponds to the cental position of

the projection in the foveal camera.

If the projection of a 3-D point at distance Z is displaced from (xp
0
, yp

0
) by (dx, dy), then we have the

following expression for the displacement (Dx, Dy) of the foveal projection of this point from the principal

point in the foveal image

Figure 3. Red curve: yp
0

with respect to the distance of the

object from the camera system as calculated by Eq. (1)

(totally aligned, ideal pinhole cameras, R = I, tx = tx = 0, ty =

25, �p = �p = 290.9). Blue curve: yp
0

determined

experimentally by placing the object manually at various

distances so that it projects on the center of the foveal image.

At each such configuration we measured the object's position

in peripheral image and its distance from the eye (using

stereo vision). The blue circles show these measurements.

Page 6 of 22

IST-FP6- IP-027657 / PACO-PLUS Confidential

Dx �
� f

� p

dx , Dy �
� f

� p

dy . (2)

For example, in one of our foveation setups, the peripheral cameras are equipped with 3mm lenses and with

CCD chips of size 6.6 x 4.4 millimeters, while the foveal cameras are equipped with 12mm lenses and with

CCD chips of size 3.3 x 2.2 millimeters. The distance between them is about 25mm along the y-axis (tx� 0, ty

� 25). Theoretically, the scaling factors of such cameras are �p = �p � 290.9 and �f = �f � 1306.8 when the

cameras are calibrated for images of size 640 x 480.

Figure 3 shows the variation of yp
0

with respect to Z under such assumptions and proves that our system

indeed exhibits such characteristics. For Z = 1 meter, the ideal position in the periperal image is given by xp
0

= 0 and yp
0

= -290.9 * 25 / 1000 = -7.3 pixels. For objects further away, yp
0

tends to zero. From Eq. (1) it

follows that the necessary displacement doubles to -14.6 when Z � 498 mm. Hence, if we fix Z to 1 meter

and observe objects more than 0.5m away from the camera, the systematic error in the peripheral images will

be less than 7.3 pixels. Eq. (2) tells us that the displacement from the central position in the foveal view will

be at most 1306.8 / 290.9 * 7.3 � 32.8 pixels, hence we are still relatively close to the principal point in the

foveal image. Note that fixing the distance Z is equivalent to replacing the perspective projection with the

orthographic projection in our model.

Based on these results we can conclude that it is possible to control the foveated setup based on 2-D

information and without using distance information. The maximum error is limited as long as the object is

enough far away from the eye. Hence we can avoid calibrating the cameras and we copntrol the eyes using

only 2-D feedback.

3 Oculomotor Control and Visual Attention

3.1 Saccades and Smooth pursuit

The main task of the oculomotor system is to find objects of interest

(selective attention) and to capture targets on a very narrow fovea.

We have implemented saccades for visual attention and smooth

pursuit for tracking moving objects. Since we are primarily

interested in manipulation tasks and interactions that do not require

visual processing during large movements in space, the vestibulo-

ocular reflex and optokinetic response for gaze stabilization were

not implemented, but can be added in the future if need arises.

We developed a head and eye control system that is appropriate to

realize both saccadic movements and smooth pursuit and enhances

the appearance of the humanoid through mimicking various aspects

of human movements: human eyes follow target movements, but

without head movements they have a limited range; thus, the robot’s

control system supports its eye movements through head

movements and thus exploits the redundancy of the humanoid head.

The details of the control system are explained in the attached paper

[B]. The same control system is used to implement both saccadic movement and smooth pursuit. The

difference between both type of movements (saccades are very fast movements towards a current focus of

attention, whereas smooth pursuit is much more smoother) is realized by increasing the gains and

suppressing visual processing when saccading towards a new focus of attention.

3.2 Visual Attention

The visual attention system is described in more detail in paper [24]. It is based on the attention model

proposed by Itti, Koch, and Niebur [9], but adds two additional cues: motion and disparity. The main goal of

our implementation was to demonstrate the abilities of the distributed architecture we use for the processing

Figure 4. Computer cluster at JSI

Page 7 of 22

IST-FP6- IP-027657 / PACO-PLUS Confidential

of visual information (see the next section) and to demonstrate how top-down effects can be incorporated

into the proposed model, which was initially purely bottom-up. More details can be found in the paper.

3.3 Processing of Sensorimotor Information

Our architecture for sensorimotor processing is based on the processing of visual information in the brain.
Visual information is transferred along a number of pathways (e. g. magnocellular pathway,
parvocellular-blob pathway, and parvocellular-interblob pathway) and visual processes are executed in
well-defined areas of the brain. Visual perception results from interconnections between these partly
separate and functionally specialized systems. We designed a system that allows us to distribute
computational processes across a network of computers and transfer information from the source to
any node in the cluster responsible for a particular visual process. The computational processes can be
executed either sequentially or in parallel and we provided means to integrate information from various
streams coming at different frame rates and with different latencies. The transfer of information can be

both feed-forward (bottom-up processing) and feed-backward (top-down effects). With this framework

we gain the capability to explore a greater range of cognitive architectures than previously possible. The

effectiveness of the distributed architecture has been demonstrated with the implementation of the visual

attention system. We intend to use it to realize various computationally expensive processes such as for

example motion capture and movement learning in real-time.

4 Grasping

Another important question is how to equip robots with

capabilities of gathering and interpreting the necessary

information for novel tasks through interaction with the

environment in combination with minimal prior

knowledge. To interact with the environment, the robots

have to be able to manipulate both known and unknown

objects. Planning object manipulation and grasping is

difficult due to the large search space resulting from all

possible hand configurations, grasp types, and object

properties that occur in regular environments. In our

work, robot learning from demonstration, experience and

shape primitives are used to provide a successful object

grasping strategies. A top-down (experience) and a

bottom-up methodology are integrated to develop a more

natural grasp learning system. The specific focus here is

on choosing the object approach vector, which is

dependent both on the object shape and pose as well as

the grasp type. Using the proposed method, the approach vector is chosen not only based on perceptual cues

but also on the experience that some approach vectors will provide useful tactile cues that finally result in

stable grasps. The approach is evaluated using two kinematically different hands, the Barrett hand and the

Robonaut hand. A detailed experimental evaluation of the system is presented in paper [C] and the most

important results are summarized below.

4.1 Modeling and evaluation of automatic grasp generation by integrating human
demonstration experience and object shape primitives

Since it can be difficult to automatically acquire detailed models of complex objects, it is more reasonable to

represent objects by their shape primitives. The basic shape primitives are e.g. truncated cone, sphere, box,

cylinder, as shown in Figure 5. For the grasping process, it is assumed that the objects are placed on a table

and the pose is denoted by only three parameters, representing their position and orientation on the table.

More details can be found in [4-6].

Figure 5. First row: The real objects. Second

row: The modelled objects. Third row: The

object primitives used for training.

Page 8 of 22

IST-FP6- IP-027657 / PACO-PLUS Confidential

4.1.1 Grasp Mapping

An off-line learnt grasp mapping procedure maps the human grasps to robot grasps where grasp preshapes

are used to limit the large number of possible robot hand configurations. The current grasp recognition

system can recognize ten different grasp types, [5]. Due to the different kinematics between the robot and

human hand, the grasp demonstrated by the human has to be first mapped to the robot. Details about this can

be found in [C]. It has to be noted here that the robot grasp types do not refer only to hand postures, but to

grasp execution schemes. Such a scheme includes the initial position, the approach vector, the robot hand

closing sequence, controllers for corrective movements, etc. Hence, different strategies and initial hand

postures are used to grasp an object dependent on the grasp type, Figure 6.

Figure 6. Initial robot hand postures for different grasp types.

4.1.2 Grasp Control

Two basic grasp controllers in the system are developed, one for power and one for precision grasps. There

are eight variations of these, three for the Barrett hand and five for the Robonaut hand. The difference lies in

the initial grasping position and the finger control during closure.

• Power Grasp: First, the initial hand posture is set according to the grasp type recognized from the

human demonstrator. The hand then approaches the object until contact is detected upon which all

fingers close until contact. Depending on the grasp type, the joint angle speed may be different for

each joint, causing for example the thumb to close more slowly.

• Precision Grasp: This controller is similar to the Power Grasp, but with an added dimension. Once a

contact is detected, the hand retracts a predefined distance and then close all fingers simultaneously.

This allows the robot to better combine tactile sensing with visual input, as we previously

demonstrated in [11].

The grasp approach vector is defined relative to the object’s pose. The planning is performed using a simple

search technique where many different approach vectors are tested on the object. The training can be

performed on either the primitive object model or the full object model, and in the experiments we have

evaluated both methods.

For power grasps, three parameters (�, �, �) are varied describing the approach direction and hand rotation.

For precision grasps, a fourth parameter d, that describes the retract distance when contact is detected, is

added. The number of evaluated values for the variables are � = 9, � = 17, � = 9, d = 6. For the precision

grasps the search space was hence 8262 grasps, which required about an hour of training using kinematic

simulation. For the power grasp simulations, 1377 approach vectors were evaluated. The quality measures

for each grasp are stored in a grasp experience database. To evaluate grasps, the 6-D convex hull spanned by

the forces and torques that the grasp can resist is analyzed using GraspIt! [13].

At run-time, the robot retrieves the approach vector that result in the highest quality grasp from the grasp

experience database. As the highest quality grasp is not necessarily the most robust with respect to position

and model errors, the grasp should be chosen taking also those parameters into account. Because of robot

kinematic constraints and possible non-free paths toward the object, all approach directions are not suitable

at task execution time. Thus, the robot searches the database only for directions that are applicable in the

current situation.

Page 9 of 22

IST-FP6- IP-027657 / PACO-PLUS Confidential

4.1.3 Introducing Error in Pose Estimation

To evaluate the performance under imperfect pose estimation, we have simulated errors in pose estimation

by adding an offset to the object pose. In the experiment, the target object was placed on the table and the

robot performed 50 grasps using different approaches. The robot hand position was between each grasp

translated a certain distance in a random direction. As a result, the robot interpreted the situation as if the

object (and possibly table) was in another position than that for which the grasp was planned. This was

repeated for five different vector lengths: 0, 1, 2, 3, and 4 cm. In total, the robot grasped the object 250 times

from a total of 201 different positions.

Figure 7 and Figure 8 show the grasp success rates for various grasps and two objects, under increasing

error in position estimation. The hand is moved along the approach vector until contact and the grasp scheme

is initialized. A grasp is considered successful if it results in a force-closure. As expected, power grasps are

more robust to position errors than precision grasps. The precision grasps target details of an object, e.g., the

bottle cap or the ear of the mug. Thus, the grasps are much more sensitive to position inaccuracies. It is clear

that the Barrett hand is more robust than the Robonaut hand, likely due to its long fingers. The exception is

the grasping of the mug, Figure 8, where the Robonaut Four-finger Thumb grasp is the best.

The bottle and the mug have been trained both using a primitive model and using the real model (see Figure

5). Training on the primitive model does not decrease the grasp success rate much, especially not for the

bottle. However, the primitive model of the mug is, unlike the real mug, not hollow, which causes problems

for some of the precision grasps trained on the primitive.

Figure 7. Grasping the bottle.

Page 10 of 22

IST-FP6- IP-027657 / PACO-PLUS Confidential

Figure 8. Grasping the mug.

4.2 Modeling of corrective movements using tactile information once contact with
the object has been established

Once the hand has been placed into the appropriate position relative to the object and a suitable grasp type

has been chosen, the grasping sequence can be seen as comprised of two final phases; first closing the fingers

until contact and then maintaining the contact while applying corrective movements based on contact forces.

Before the initial contact with the object has been made, the velocity of each finger is individually controlled.

The contact is then detected by deriving the acceleration from the joint encoders. While the reference values

for position and force start to change, the velocity controller is smoothly switched off. A feed-forward loop

compensates for gravity. For this purpose, the Barrett hand is modelled as rigid bodies where the two joint

angles of each finger have a fixed relation. Control is performed by applying joint torque and thus position

control requires D-control or friction modelling.

4.2.1 Controller Design

To enable a more intuitive formulation of the controller – as opposed to decentralized control of reference

trajectories and torques – a control design is used that allows the controller to be specified in a more direct

way, as presented [21]. To exemplify the design process, we use the Barrett hand. The angle between the two

fingers on the one side, the spread, and the closure of each finger can be controlled by setting the joint

torques. Accordingly, the hand has four degrees of freedom. The basis for the controller is a linear transform

T relating the original joint angles q to new control variables x, see Figure 9. The transform is

x = Tq (3)

It is approximated that joint angle corresponds to finger position. The controller is designed as if the hand

was a parallel jaw gripper. The closing force is controlled using tactile force sensor data while joint encoder

data is used to control the finger positions. For now, spread angle is not controlled.

Figure 9. Grasp controllers: total grasp force, stability, centering, and spread.

To control the total grasp force, a variable is defined to control the hand closure:

Page 11 of 22

IST-FP6- IP-027657 / PACO-PLUS Confidential

x2 =
q2 + q3

2
+ q4 . (4)

To control centering, the next variable is defined as the difference between the average joint angle of the two

fingers on the one side and the single finger on the other side:

x3 =
q2 + q3

2
� q4 . (5)

Stability is added to the grasp by trying to keep the angles q2 and q3 equal. A control variable that is the

difference in joint angle between the two fingers on the one side is defined:

x4 = q2 � q3. (6)

Controlling the force, centering and stability according to the above and Figure 9, the transform becomes:

T =

1 0 0 0

0 1 / 2 1 / 2 1

0 1 / 2 1 / 2 �1

0 1 �1 0

�

�

�
�
�
�

�

�

�
�
�
�

. (7)

Figure 10. The placement of the tactile sensors.

The control forces f are computed using a P-controller f = De where D contains controller gains and e is an

error vector with force and position errors. The joint torques F are computed as

F = TTf = TTDe. (8)

In the current system, it is assumed that three extrinsic tactile sensors capable of detecting the normal force

only were mounted to the distal links, see Figure 10. These sensors are used to control the grasp force (x2)

and joint encoders to control the position (x3) and “stability” (x4).

The error e is computed using the desired [des] and actual [act] variable values as

e = e1 e2 e3 e4[]T
,

e1 = 0, e2 = 0 1 0 0[]e f , e3 = 0 0 1 0[]ex , e4 = 0 0 0 1[]ex
e f = fdes � fact = fdes � T

-TFact , ex = xdes � xact = xdes � Tqact

(9)

To focus on the displacement control, we use

D =

0 0 0 0

0 kp 0 0

0 0 5kp 0

0 0 0 kp

�

�

�
�
�
�

�

�

�
�
�
�

. (10)

Page 12 of 22

IST-FP6- IP-027657 / PACO-PLUS Confidential

4.2.2 Evaluating the Controller

Grasping of a polyhedral object was dynamically simulated using the proposed controller. As in the previous

case, 1377 initial hand grasping postures have been evaluated. 1035 were automatically discarded because

the hand interfered with the table upon which the box is placed while approaching the object, or that the

object was obviously out of reach. The remaining 342 initial robot hand positions were evaluated and

resulted in 172 force closure grasps and 170 failed grasps. The major reason for the low sucess rate is the fact

that the wrist position is not controlled once the corrective movements are initiated and the low number of

degrees of freedom of the hand do not offer much flexibility. Thus, a good initial posture of the hand is very

important for the grasp sucess.

The top three hand initial positions and the resulting grasps are shown in Fig. 7. These results show that it is

important to consider the dynamics when designing grasp execution schemes and for analyzing the grasp

formation process. In several simulations the fingers stop after contacting the box as they should, but when

the grasping force is increased, the box slides on the low friction proximal links until it comes in contact with

the high friction tactile sensors.

Some sample data from the third best simulation, Figure 11 c) and f), is shown in Figure 12. The first 1.3

seconds the fingers close under force control. The force at that time is used as the start value for the force

controller that ramps the grasp force to 5 N. The joint angle values show that the joint angles are getting

closer to equal as time passes. The controller output shows some undesirable peaks induced by collisions

between the fingers and the object.

Figure 11. The top three approach positions and the final grasps for the rice box.

(a) Best grasp – initial (b) Second best grasp – initial (c) Third best grasp – initial

(d) Best grasp – final (e) Second best grasp – final (f) Third best grasp – final

Page 13 of 22

IST-FP6- IP-027657 / PACO-PLUS Confidential

Desired grasp force Tactile sensors – filtered

Joint angles Joint torques

Figure 12. Data logged from the grasp simulation in Figure 11 c and f. The desired grasp force is set to 5 N.

Figure 13 shows the results of grasp

success rates with and without corrective

movements. Here, only a limited number

of samples were used in the evaluation

of dynamic grasping. For the 0, 1, 2, 3,

and 4 cm random displacement, the

number of trials was 50, 14, 18, 18, and

12 respectively (instead of 50). Still,

these samples were truly random and we

believe that the number of trials is high

enough to demonstrate the validity of the

proposed system.

5 Inverse Kinematics and

Reaching

To enable reaching for objects, we need

to represent robot kinematics in some

way. The classic Inverse Kinematics

(IK) mapping goes from joint angle values (�) to Cartesian coordinates (x). One of the challenges when

Figure 13. Grasp success rates with and without corrective

movements.

Page 14 of 22

IST-FP6- IP-027657 / PACO-PLUS Confidential

learning the IK is how to deal with the one-to-many property of the mapping. The formulation of the

problem determines which mapping is really learned:

1) x � �. Direct learning of IK [17]. Most learning systems deal with the uncertainty by averaging the

output. Unfortunately, averaging multiple IK solutions does not produce an IK solution in general. Thus,

with this strategy one can only learn the IK of non-redundant systems.

2) (�x, �) � ��. Learning how to modify slightly x by means of small movements in the joints [25]. In the

vicinity of a given �, the average is a truly IK solution. Therefore, incorporating � to the input allows

valid localized solutions. It is also possible to bias the movements of the robot towards configurations, so

that it becomes incorporated in the learned mapping.

3) � � x.1 This strategy consists of first

learning the Forward Kinematics. The

learned forward model can then be

processed in several ways to obtain the

IK information. One of them is based

on the Resolved Motion Rate Control

(RMRC) using the forward Jacobian

[19]. The second option is to use a

forward model like PSOMs do [26]. A

search in the joint space is made

looking for the values that best match

the Cartesian coordinates. The cost

function can include in a natural way

terms evaluating fixed joint values that

can change at any moment, and with

little more effort, arbitrary cost terms.

The important drawbacks of PSOMs

are that the samples must be

distributed on a regular grid making it

unfeasible for on-line learning.

We have developed a learning model that

is based on the third strategy, i. e, a model for the � � x mapping. The model is strongly biased, so that it is

only able to represent forward kinematics. That means that a lot of a priori knowledge is embedded into the

model, which allows the interpolation and even extrapolation with zero error using only 3n samples in the

absence of noise (Figure 14). The Jacobian of this forward model can be efficiently obtained for use with an

RMRC approach, in the PSOMs style. However, for the current implementation we prefer to use a standard

optimization algorithm to carry out the search directly in the model, in a way rather similar to PSOMs.

Unlike PSOMs, it is very easy to adapt gradually to changes (on-line learning capabilities) and it is possible

to cope with irregular sample distributions. Our current work deals with testing our algorithms for obtaining

the IK of the ARMAR robot.

Provided the robot learned its kinematics, it can reach for object using standard robotics methods. However,

just the reaching position is often not the only relevant parameter for action planning. We are therefore

looking at methodologies to generate reaching movements from a library of stored examples that can encode

the style and other properties of a given movement type. Our current experiments are geared towards the

generation of new movements by superposition of example movements, using for example locally weighted

regression [2], and the execution of these movements on the humanoid platform. The data we work with

consists of a library of reaching movements captured by a magnetic motion capture system.

1 Alternatively, it is possible to learn a self-organizing map that matches the arm joints directly with the eye

joints (when the eyes are locked on a 3-D target position) instead of with 3-D positions [7].

Figure 14. Example model that approximates exactly the

kinematics of a two-joint robot arm (whose workspace has the

form of a torus) from nine randomly chosen samples.

Page 15 of 22

IST-FP6- IP-027657 / PACO-PLUS Confidential

6 Exploratory sensorimotor primitves for learning object representations

Sensorimotor primitives described in the previous sections are rather general and can be used as such for the

initial search and manipulation of objects. However, it is often necessary to study more specific primitives to

solve difficult problems in cognition. One such example is the learning of representations for new objects;

once the robot found a “thing” in its environment and succeeded to grasp it, how can we discern the full

extent of the object from the background and learn a suitable viewpoint-independent representation for it? A

human would normally take the object in the hand, place it at the comfortable distance from the eyes and

rotate the hand in order to see the object from different viewpoints. We therefore developed the following

learning procedure:

- The beginning of learning is initiated by a user who places a new object into the robot's hand.

- Once the robot holds the object, it moves its hand away from the view of the foveal camera and starts

learning the stationary background. Typically, the robot first learns the mean values of pixels in a

significantly smoothed image for five seconds, followed by another five seconds of learning the variance

in color at each pixel.

- The robot moves its hand to the starting position for the observation of the object. Once it reaches the

starting point, the procedure for estimating the position and extent of the manipulated object is initiated

(see paper [A] attached to this report). Using the control algorithm described in Section 6.2, the optimal

configuration for learning is determined. At this configuration the object is placed in such a way that its

projection falls onto the center of the foveal image and the size of the object’s image is optimal for

learning (big enough to ensure decent resolution but not too close to the image boundary).

- Starting from this configuration, the robot begins to rotate the object about the axes that cause the object

to rotate in depth. At the same time the object is kept in the center of the foveal image and its size

remains constant. The images of object appearance are collected while manipulating the object. This

phase finishes once the hand covers the pre-specified range of motion for the two degrees of freedom.

- The object is placed into the robot hand again at a different configuration and the procedure is repeated.

- Once all of the objects were placed at all relevant configurations and all appearance images were

collected, a classifier for object recognition is learned by using a method based on nonlinear multi-class

support vector machines, which is described in the attached paper [A].

The visual processes necessary to implement the

above procedure are described in the attached paper.

Here we describe the motor parts of each primitive.

The above procedure requires the following motor

primitives:

- A movement that allows the robot to

determine the relationship between the image

and world coordinate system at the given

configuration of the eyes.

- An explorative movement primitive that can

be used to determine optimal distance and 3-

D position of the object from the robot’s eyes

so that the object will be in the image center

and have appropriate size for learning, i. e. it

will cover significant portion of the image

while being away from the image boundary.

- A primitive motion that can be used to

observe the grasped object from various

viewpoints. Due to the limited manipulation

capabilities of humanoid robots, it is unavoidable to regrasp the observed object to ensure that the

robot looks at it from all relevant viewpoints. However, the number of necessary grasps can be

Figure 15. Motion along jcam
u

and jcam
v

does not

produce any motion along the camera ray. Ncam is

the camera null space vector parallel to the camera

ray and orthogonal to both jcam vectors.

Page 16 of 22

IST-FP6- IP-027657 / PACO-PLUS Confidential

reduced by performing the exploratory movements in an optimal way so that the redundancy of the

humanoid is exploited and the manipulability of its arm is maximized.

Rotating an object to enable observation from various viewpoints can be quite a challenging task. When the

robot rotates the object, joint limits and self-collisions limit its range of movement. Sometimes we can

specify the trajectory of the movement in advance considering robot restrictions, but here this is not feasible

because the robot head and eyes could be positioned differently in different situations. Therefore the

movement trajectories should be adapted or generated on-line.

To observe the object from all sides, the robot should re-grasp the object using one or two robot hands.

However, this behavior has not been developed yet and will be implemented in the future.

6.1 Exploratory movements for calibration

We conducted our experiments using a fixed vision system and a robot arm Mitsubishi Pa-10, Figure 15. The

experiments on a humanoid platform are currently under development. In the following discussion we limit

ourselves to the second hardware system. Mitsubishi Pa-10 has 7 degrees of freedom (DOFs) and is equipped

with a gripper. To determine the position of the hand (but not of the object!), we used a previously developed

color tracking software [22]. The vision system uses one camera, which is fixed in space. Its position and

orientation as well as its intrinsic parameters are not known in advance. In order to position the object in

front of the camera, we need to first calibrate the system.

Neglecting the distortion effects, we can write the transformation between the world (= robot) and camera

coordinate systems as follows:

su

sv

s

�

�

�
�
�

�

�

	
	
	
=

� � u
0

0 � v
0

0 0 1

�

�

�
�
�

�

�

	
	
	
R t�� ��

x

y

z

1

�

�

�
�
�
�

�

�

	
	
	
	

=

a
11

a
12

a
13

a
14

a
21

a
22

a
23

a
24

a
31

a
32

a
33

a
34

�

�

�
�
�
�
�
�
�

�

�

	
	
	
	
	
	
	

A

� ���� ����

x

y

z

1

�

�

�
�
�
�

�

�

	
	
	
	

, (11)

where [x, y, z]
T

is the 3-D position of the point and [u, v]
T

is its projection in the image. The matrix A

incorporates extrinsic (position and orientation of the camera) and intrinsic (focal lengths, pixel size, image

center) camera parameters.

Assuming that we can acquire the position of the hand by vision (this is ensured by putting a marker on the

gripper), we can solve the calibration problem by performing a random arm motion observed by the robot’s

camera. Every point that differs enough from the previous points in the camera or world coordinate system is

saved. Once enough points have been acquired, the camera calibration problem can be solved.

Note that the point measurements and the camera calibration process are carried out also in all other phases.

When new points are found, the camera is re-calibrated and the calibration gets more precise.

6.2 Placing the object in the image center and determining the optimal distance

With calibrated camera we can place the object grasped by the robot in the center of the camera image. From

Eq. (11) we can analytically compute the camera Jacobian that defines relationship between 3-D point

velocities and image velocities:

�u

�v

�

�
�
�

�
� = Jcam

�x

�y

�z

�

�

�
�
�

�

�

�
�
�
=
j
11

j
12

j
13

j
21

j
22

j
23

�

�

�
�
�
�

�

�

�
�
�
�

�x

�y

�z

�

�

�
�
�

�

�

�
�
�
. (12)

Since the transformation is underdetermined, one redundant degree of freedom exists, i. e. we can find a

vector Ncam in the space of world velocities that does not produce any movement of the point in the image

(see Figure 15). This vector is directed along the ray from the projection center to the observed 3-D point.

Page 17 of 22

IST-FP6- IP-027657 / PACO-PLUS Confidential

Figure 15 also shows the two vectors jcam
u

and jcam
v
, which represent the vectors in the world coordinate

system that produce only the movement along u and v direction in the image, respectively, and do not

produce any motion along the camera ray. These two vectors are given by the rows of the Jacobian. We can

compute jcam
u

and jcam
v

by normalizing the two rows of the Jacobian

j
cam

u =

T

j
11

j
12

j
13

�� ��
j
11

j
12

j
13

�� ��
 and j

cam

v =

T

j
21

j
22

j
23

�� ��
j
21

j
22

j
23

�� ��
.

Vector Ncam, which does not produce any movement in the image, is in the null space of the camera Jacobian.

It can be calculated using vector product:

N
cam

=
j
cam

u � j
cam

v

|| j
cam

u � j
cam

v ||
. (13)

For the special case when the point projects onto the center of the image, Ncam is directed along the optical

axis and jcam
u

and jcam
v

lie in the plane parallel to the image plane.

6.2.1 The control algorithm

The controller is composed of two parts. The first part corresponds to the position control of the object and

the second part corresponds to the size control of the object. The task of the position controller is to bring the

object to the center of the image. The size controller should act in the null space of the camera Jacobian in

order not to disturb the position control. Once the object is in the center of the image, it is only moved

directly towards or away from the camera, changing the size while the position is kept constant. Hence the

following controller can be used:

�x
c
= J

cam

+ �i
c
+ N

cam
�d
c
, (14)

where �x
c
= [�x �y �z]T

is the control velocity in the world coordinate system, Jcam
+

is the pseudo-inverse

of the camera Jacobian, Jcam
+

= Jcam
T

* (Jcam * Jcam
T
)

-1
, and �i

c
and �d

c
are control velocity vectors which

correspond to the point positioning and size setting, respectively. These two vectors are defined by the

following P controllers:

c
�i = K

p

i
u
d
� u

v
d
� v

�

�
�
�

�

�
�
�

 and c
�d = K

p

d (size
d
� size) .

[ud, vd]
T

and [u, v] are the desired and the actual position of the point (or object) in the image coordinate

system, respectively, whereas sized and size are respectively the desired and the estimated size of the object

in the image. The size of the object in the image is inversely proportional to the distance of the object from

the eyes. Kp
d

and Kp
i
are the control gains.

To control a robot we have to define control velocities in the joint space. Since the task vector in this case

has three DOFs (position of all three coordinates in space) and the robot has seven DOFs, the degree of

redundancy is four. We applied the following controller:

c
�q = J

r

pos+
c�x + N

r

pos

manip
�q . (15)

Here Jr
pos +

is the pseudoinverse of the positional part of the robot Jacobian and Nr
pos

is the projection in the

null space of Jr
pos

. Due to the robot’s redundancy, we can generate additional movements on the robot in the

null space of Jr
pos

. Our choice for the null space motion is to optimize the robot’s manipulability.

To show the objects from different viewpoints, the robot needs to rotate it about both image coordinate axis,

which are given by jcam
u

and jcam
v

in the world coordinate system. It is therefore advantageous to optimize the

manipulability for the rotations about both image axes because high manipulability in a certain direction

Page 18 of 22

IST-FP6- IP-027657 / PACO-PLUS Confidential

usually corresponds to a higher ability of motion in the selected direction. Hence we define the null space

term as follows:

manip
�q = K

m
� det(J

r

dr
W

m
J
r

dr T)

where K
m

is the controller gain, Wm is the weight, and Jr
dr

is calculated by rotating the rotational part of the

robot Jacobian (Jr
rot

):

J
r

dr = j
cam

u
j
cam

v�� ��
+
J
r

rot
.

Here, Jr
dr

is the robot Jacobian, where first row corresponds to the rotation about vector jcam
u

and the second

row to the rotation about jcam
v
. These are the rotations that correspond to the coordinate axes of the image

plane.

In this phase the robot’s task is to place the object (center) onto the optical axis of the camera so that its

projection has a desired size. In addition to this task, the robot also optimizes the manipulability of the

configuration for both rotations. The goal is to position the robot in an appropriate configuration that enables

best showing of the object from different viewpoints. Note that additional conditions can be applied in the

null space, e. g. joint limits and / or self-collision avoidance.

6.3 Showing the object from different viewpoints

To acquire data about the object from different viewpoints, the robot needs to rotate it in depth with respect

to the camera system. Rotation in depth is defined as any rotation with the rotation axis not parallel to the

camera ray. Largest rotations in depth will therefore be caused by rotations about jcam
u

and jcam
v
. Note that the

rotation about the vector in the direction of the camera ray (Ncam) is not important and can be considered as

redundant. Due to the additional two DOFs for rotation, the task now has 5 DOFs and the degree of

redundancy is two. The task space control velocity in this case also includes the angular velocity:

c2
�q =

J
r

pos

J
r

dr

�

�
�
�

�

�
�
�

+

c�x

c�s

�

�
�

�

�
� + Nr

pos,dr

manip
�q , (16)

where c�s is the vector specifying the rotation in depth about both image axes and N
r

pos,dr
is the projection in

the null space of [Jr
pos T

, Jr
dr T

]
T
. In this way we ensure that the arm retains high manipulability while the

robot observes the object.

6.4 Extracting information about objects: Surface segmentation using 3D
clustering of stereo images

By manipulating an object, the robot can localize it in an image stream and learn appearance models like

described in [B]. However, the identification and segmentation of objects sometimes requires more advanced

representations involving combined information from different visual attributes, such as binocular disparity,

optic flow, texture, shape, and similarity. Our aim is to extract surfaces from stereo image pairs using

superparamagnetic clustering [15]. The method of superparamagnetic clustering represents image pixels by a

Potts model of spins, which interact so that neighboring spins corresponding to similar pixels tend to align,

given an appropriate similarity measure. Then, image segments are identified as clusters of aligned spins. We

have extended this method to 3-D images, i. e., stereo pairs and image sequences, by allowing spins

belonging to different frames to interact. Here, we use this method to segment stereo image pairs. The

technique uses both information about gray-value pixel similarity and disparity information obtained from

sparse and/or dense stereo algorithms. The disparities of the pixels are needed to localize the neighbors of

pixels in other frames. By this mechanism, correspondences between frames can be established and stereo

clusters can form. Usually, sufficiently accurate disparity values are not available for all pixels. At these

points, clustering is merely driven by spin interaction within a single frame. In this way, homogenous image

regions for which no disparity information is given can be filled in using disparity information from the

Page 19 of 22

IST-FP6- IP-027657 / PACO-PLUS Confidential

bounding edges.

We demonstrate the technique for a real stereo

image, which shows a paper box from two

different viewing positions, i.e., left and right

(Figure 16). The disparity map was computed

using a dense stereo algorithm provided by Karl

Pauwels. We only consider those disparity values

for which the corresponding amplitude value

exceeds a certain threshold. The resulting

amplitude map is given in (Figure 17). In the

clustering algorithm, spins are only allowed to

interact with spins in the other image if their

amplitude is equal to one, otherwise only

interactions within a single frame are allowed.

This has the advantage that (i) reliable disparity

information can be used to establish

correspondences between the stereo images, and

(ii) homogeneous image regions for which the

amplitude is zero can be filled in using 2D

interactions. The resulting spin states of the box

stereo pair are given in Figure 18. The 3-D

surfaces could be extracted despite incomplete

stereo information (Figure 17). The salt and

pepper noise visible in the segmented images is

largely caused by erroneous disparity estimates,

which lead to wrong correspondences. This effect

is particularly strong at the edges. In the future, we

aim to incorporate highly accurate but sparse

disparity information from primitives to improve

image segmentation at the edges.

7 Action Recognition and

Understanding Through Motor

Primitives

Neuroscientific and psychological literature states

that the core of developmental learning in humans

is by watching another person performing a task. This has also motivated the research in the robotics area of

learning by imitation and robot programming through demonstration. There is an extensive amount of work

dealing with issues of what, when and how to imitate. In robotics, recognition of human activity has been

used extensively for robot task learning through imitation and demonstration. However, there has not been

much work on modeling and recognition of activities that involve object manipulation and grasping. In [D],

we have modeled and evaluated single arm/hand actions which are very similar to each other in terms of

arm/hand motions. The approach is based on the hypothesis that actions can be represented as sequences of

motion primitives. The specific questions that the study aims to answer are: 1) Can individual actions be

considered as manipulation primitives? 2) If not, can these be broken down into primitives? and 3) How can

new actions emerge from known primitives? For this purpose, we consider five different manipulation

actions performed on an object: a) pick up, b) rotate, c) push forward, d) push to side, and e) move to side by

picking up. To increase the variability, each action is performed by 10 different people in 12 different

conditions. To model the process, we are using a combination of discriminative support vector machines and

generative hidden Markov models. The experimental evaluation, performed with 10 people, investigates both

definition and structure of primitive motions as well as the validity of the modeling approach taken. In [E],

Figure 16. Box stereo pair: Two images, taken from

two cameras, left and right view, are shown.

Figure 17. The spin states after 70 iterations: Each

color corresponds to a different spin state. Note that

the spin states are not identitical with the clusters.

Figure 18. A: Disparity map obtained with Karl

Pauwels dense stereo algorithm. B: The corresponding

amplitude (confidence values).

Page 20 of 22

IST-FP6- IP-027657 / PACO-PLUS Confidential

we perform an extensive statistical evaluation for learning and recognition of object manipulation actions.

We again concentrate on single arm/hand actions but study the problem of modeling and dimensionality

reduction for cases where actions are very similar to each other in terms of arm motions. For this purpose, we

evaluate linear and nonlinear dimensionality reduction techniques: Principal Component Analysis and

Spatio-Temporal Isomap. Classification of query sequences is based on different variants of Nearest

Neighbor classification. We thoroughly describe and evaluate different parameters that affect the modeling

strategies and perform the evaluation with a training set of 20 people.

8 Links to other Workpackages

Similarly to WP4.1, WP2 is also concerned with visual and motor primitives needed to explore new objects.

Both workpackages thus contribute directly to WP8.1. However, the main concern of WP4.1 was to define

visual primitives used to represent objects and to discover strategies for their integration into a coherent

object representation (see reference [16], which is included with D4.1.1). On the other hand, the focus in

WP2 was to define and implement optimal sensorimotor primitives that can be used to observe objects over a

complete view sphere in an optimal way and to build holistic, view-based representations suitable for

recognition. Our work on action recognition and understanding through motor primitives is directly linked to

WP3, but here the emphasis is on motor primitives. Through this work we also contribute to the

demonstration workpackage WP8.2, which is concerned with imitation and other aspects of human-robot

interaction.

9 Summary and Outlook

The research conducted until now nicely shows two parallel approaches we are taking towards incorporating

sensorimotor knowledge into OACs. On the one hand, we study general approaches to implement and

represent sensorimotor primitives in the context of our hardware systems. On the other hand, when necessary

we design highly optimized sensorimotor behaviors to accomplish specific tasks arising when learning OACs

(like for example the work described in Section 0 and 6). This ensures that the repertoire of available robot

actions is large and complex enough, thus avoiding the potential pitfalls of carrying out experiments only in

overly simplified environments.

It became clear from our studies that sensorimotor acts can differ significantly among each other. It is

unlikely that knowledge about eye movements conveys much information about reaching movements and

vice versa. It is therefore reasonable to organize fundamentally different motor acts, such as for example

reaching, grasping and eye movements, in separate modules. However, structure enabling interaction

between these separate modules needs to be imposed in the future. In addition, while eye movements are

pretty independent from the influences of the outside world, other sensorimotor acts, for example reaching

and grasping, vary greatly with respect to the target object and the condition of the environment. In the future

we intend to study general mechanisms that will allow us to memorize not just each sensorimotor primitive

separately, but also to represent the structural relationships among them in the context of the task (reaching

towards a target or grasping an object). While some first techniques on combining the existing primitives to

novel primitives by superposition have been investigated, more work is necessary to realize representations

suitable both for new primitive generation and for action recognition. Besides putting structure on the

sensorimotor knowledge (where this is reasonable), we shall also focus on other issues important for PACO-

PLUS, e. g. biasing the execution of sensorimotor acts based on the predicted future actions and sequencing

of primitives in the context of OACs.

Page 21 of 22

IST-FP6- IP-027657 / PACO-PLUS Confidential

Attached Papers

[A] A. Ude, K. Welke, J. Hale, and G. Cheng. Data Acqusition for Building Object Representations:

Discerning the Manipulated Objects from the Background. To be submitted to IEEE Int. Conf. on

Intelligent Robots and Systems, San Diego, California, 2007.

[B] A. Ude, C. Gaskett, G. Cheng, and M. Kawato. Foveated Vision and Object Recognition on a

Humanoid Robot. Submitted to IEEE Trans. Robotics and Automation.

[C] J. Tegin, J. Wikander, S. Ekvall, D. Kragic, and B. Illev. Experience based learning and control of

robotic grasping. In IEEE-RAS Int. Conf. on Humanoid Robots, Workshop "Towards cognitive

humanoid robots", Genova, Italy, December 2006.

[D] I. S. Vicente, V. Kyrki, D. Kragic and M. Larsson, Action Recognition and Understanding

Through Motor Primitives. Submitted to Journal of Advanced Robotics.

[E] I. S. Vicente and D. Kragic, Learning and Recognition of Object Manipulation Actions Using

Linear and Nonlinear Dimensionality Reduction. Submitted to 15
th
IEEE International

Symposiumon Robot and Human Interactive Communication, RO-MAN 2007

References

[1] M. A. Arbib. Perceptual structures and distributed motor control. In Handbook of Physiology,

Section 2: The Nervous System Vol. II, Motor Control, Part 1, V. B. Brooks, ed., American

Physiological Society, 1981, pp. 1449–1480.

[2] C. G. Atkeson, A. W. Moore, and S. Schaal. Locally weighted learning. Artificial Intelligence

Review, 11:11–73, 1997.

[3] A. Billard, Y. Epars, S. Calinon, S. Schaal, and G. Cheng. Discovering optimal imitation

strategies. Robotics and Autonomous Systems, 47:69–77, 2004.

[4] S. Ekvall, D. Kragic, and F. Hoffmann. Object recognition and pose estimation using color

cooccurrence histograms and geometric modeling. Image and Vision Computing, 23:943–955,

2005.

[5] S. Ekvall and D. Kragic. Grasp recognition for programming by demonstratio. In Proc. IEEE/ RSJ

Int. Conf. on Intelligent Robots and Systems, Edmonton, Canada, August 2005.

[6] S. Ekvall and D. Kragic. Receptive field cooccurrence histograms for object detection. In Proc.

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Edmonton, Canada, August 2005.

[7] C. Gaskett, A. Ude, and G. Cheng. Hand-eye coordination through endpoint closed-loop and

learned endpoint open-loop visual servo control. International Journal of Humanoid Robotics,

2(2):203–224, 2005.

[8] T. Inamura Y. Nakamura, and I. Toshima. Embodied symbol emergence based on mimesis

theory. The International Journal of Robotics Research, 23(4-5):363–377, 2004.

[9] L. Itti, C. Koch, and E. Niebur. A model of saliency-based visual attention for rapid scene analysis.

IEEE Trans. Pattern Anal. Machine Intel., 20(11):154-1259, 1998.

[10] O. C. Jenkins and M. J. Matari�. Performance-derived behavior vocabularies: Data-driven

acquisition of skills from motion. International Journal of Humanoid Robotics, 1(2):237–288,

2004.

[11] D. Kragic, S. Crinier, D. Brunn, and H. I Christensen. Vision and tactile sensing for real world

tasks. In Proc. IEEE Int. Conf. on Robotics and Automation, pp. 1545–1550, Taipei, Taiwan,

September 2003.

Page 22 of 22

IST-FP6- IP-027657 / PACO-PLUS Confidential

[12] M. J. Matari�, M. Williamson, J. Demiris, and A. Mohan. Behavior-based primitives for articulated

control. In Proc. Fifth Int. Conf. on Simulation of Adaptive Behavior, pp. 165–170, Zurich,

Switzerland, August 1998.

[13] A. T. Miller and P. K. Allen. Examples of 3D grasp quality computations. In Proc. IEEE Int. Conf.

on Robotics and Automation, pp. 1240–1246, Detroit, Michigan, USA, 1999.

[14] F. A. Mussa-Ivaldi and E. Bizzi. Motor learning through the combination of primitives. Phil.

Trans. R. Soc. Lond. B, 355:1755–1769, 2000.

[15] R. Opara and F. Wörgötter. A fast and robust cluster update algorithm. Neural Computation,

10(6):1547–1566, 1998.

[16] N. Pugeault, E. Baseski, D. Kraft, F. Wörgötter, and N. Krüger. Extraction of multi–modal object

representations in a robot vision system. In Robot Vision Workshop at the Int. Conf. on Computer

Vision Theory and Applications (VISAPP), 2007.

[17] H. Ritter, T. Martinetz, and K. J. Schulten. Neural Computation and Self-Organizing Maps.

Addison Wesley, New York, 1992.

[18] S. Schaal. Dynamic movement primitives – A framework for motor control in humans and

humanoid robotics. In Proc. 2nd Int. Symp. on Adaptive Motion of Anymals and Machines, Kyoto,

Japan, March 2003.

[19] G. Sun and B. Scassellati, Reaching through learned forward model. In Proc. IEEE/RAS Intl. Conf.

on Humanoid Robots, Los Angeles, California, USA, November 2004.

[20] J. Tani. Self-organization of neuronal dynamical structures through sensory-motor experiences of

Robots. In IEEE-RAS Intl. Conf. on Humanoid Robots, Workshop on Synergistic Intelligence

Dynamics, Tsukuba, Japan, December 2005.

[21] J. Tegin and J. Wikander. A framework for grasp simulation and control in domestic

environments. In IFAC-Symp. on Mechatronic Syst., Heidelberg, Germany, September 2006.

[22] A. Ude and C. G. Atkeson. Probabilistic detection and tracking at high frame rates using affine

warping. In Proc. Int. Conf. Pattern Recognition, Quebec City, Canada, August 2002.

[23] A. Ude, C. G. Atkeson, and M. Riley. Programming full-body movements for humanoid robots by

observation. Robotics and Autonomous Systems, 47:93–108, 2004.

[24] A. Ude, J. Moren, and G. Cheng. Visual attention and distributed processing of visual information

for the control of humanoid robots. In preparation for publication in a book chapter, Humanoid

Robots, ARS, 2007.

[25] S. Vijayakumar, A. D'Souza, T. Shibata, J. Conradt, and S. Schaal. Statistical learning for

humanoid robots. Autonomous Robots, 12(1):59–72, 2002.

[26] J. Walter and H. Ritter. Rapid learning with parametrized self-organizing maps. Neurocomputing,

12:131–153, 1996.

Data Acqusition for Building Object Representations: Discerning the
Manipulated Objects from the Background

Aleš Ude, Kai Welke, Joshua G. Hale, and Gordon Cheng

Abstract— Human vision is very effective at segmenting
images into their meaningful constituents and focusing onto
the perceptually relevant parts, but this property has proven
to be extremely difficult to replicate by machine vision. Unlike
static machine vision systems, robots are not passive and can
actively observe and manipulate objects. In this paper we
propose an approach to learning object representations by
manipulation. Taking control of the object allows the robot
to focus on the relevant part of the image, thus bypassing
potential pitfalls of pure bottom-up attention and segmentation,
which leads to a reliable extraction of representations for
object recognition. Some experimental results showing object
learning and recognition both on standard manipulators and
on humanoid robots are presented.

I. INTRODUCTION

Recent research has shown that object recognition on
humanoid robots can be substantially improved by making
use of foveated vision setups [1], [2]. Foveated visual sys-
tems described in [3]–[5] are useful because, firstly, they
enable the robot to monitor and explore its surroundings
in images with wider field of view and sparsely distributed
pixels, thereby increasing the efficiency of the search process.
Secondly, they make it possible to simultaneously extract
additional information – once the object of interest appears
in the fovea – from the foveal area, which has a denser pixel
distribution and contains more detail [6]. While the proposed
systems address many issues arising in object recognition
on humanoid vision setups, little has been done in using
the abilities of humanoid robots to learn complete repre-
sentations for object recognition from scratch, i. e. before
anything is known about the object. In our previous work
[1], [6], we have shown how representations for recognition
can be learned by actively observing objects manipulated
by people using rough prior knowledge about objects’ color
texture and shape. In this paper we propose to go beyond the
classic active vision paradigm that exploits the movement
capabilities of the visual system and to make use of the
robot’s arms as well when learning object representations.

Aleš Ude is with the Dept. of Automatics, Biocybernetics, and Robotics,
Jožef Stefan Institute, Ljubljana, Slovenia, and Dept. of Humanoid Robotics
and Computational Neuroscience, ATR Computational Neuroscience Labo-
ratories, Kyoto, Japan. ales.ude@ijs.si

Kai Welke is with the Institute of Computer Science and Engineering,
University of Karlstuhe, Germany. welke@ira.uka.de

Josh Hale is with the ICORP Computational Brain Project, Japan Science
and Technology Agency and Dept. of Humanoid Robotics and Computa-
tional Neuroscience, ATR Computational Neuroscience Laboratories, Kyoto,
Japan. josh@joshhale.com

Gordon Cheng is with the ICORP Computational Brain Project, Japan
Science and Technology Agency and Dept. of Humanoid Robotics and Com-
putational Neuroscience, ATR Computational Neuroscience Laboratories,
Kyoto, Japan. gordon@atr.jp

Fig. 1. Simultaneous view of the object from the peripheral and foveal
camera of a humanoid robot. The images from foveal camera are used for
learning object representations.

Finding objects in images without any prior knowledge
is a hard problem and is very difficult if not impossible
to achieve in a purely bottom-up manner. Passive computer
vision systems usually attempt to solve it by introducing top-
down processes, which convey the knowledge about objects
that assists the linking and grouping of early features into
larger aggregations and sets. It is hoped that groupings of
features are more likely to form constituent parts of an object
than simple features. At some higher level of the process-
ing hierarchy, the interplay between early features should
culminate in the scene decomposition into its meaningful
constituents (objects), which can then be used for further
scene analysis and interpretation (recognition) purposes.

Unfortunately, it is not easy to formulate the top-down
processes guiding the search for objects in a completely
general way. We take the view that statistical learning
approaches have hard time to learn how to generate such
image decompositions from example images because the
decomposition of images as done by people depends on the
experience we gain when we interact with the environment.
This information is not readily available in the images but
rather comes from the experience of how our actions affect
the external world. It is not clear how such information could
be brought into the learning process on a passive system.

A humanoid robot, however, has the potential to explore
its world using causality, by performing probing actions and
learning from the response [7]. It has been shown that poking
an object can be used to extract visual evidence for the
boundary of the object, which is well suited for segmentation
[8]. Our focus is after the initial, rough object segmentation
and is in a sense complementary to this work. We study
what the robot can do to facilitate the learning of object
representations after it grasps the object. While it is surely
possible to build object representations without manipulation,
for how could we otherwise learn to recognize large objects
like houses, we believe that manipulation can significantly

Fig. 2. The robot arm used in some of the experiments to manipulate the
objects.

aid and speed up the learning process.
Since object recognition is an essential prerequisite for

an autonomous robot, it has received a lot of attention in the
past. Most of the currently successful object recognition sys-
tems are view-based and build suitable representations from
snapshots of objects [9]–[13] . While early approaches used
the collected patterns of objects without much preprocessing,
most of the current works use local image features, e. g. scale
invariant feature transform (SIFT keys) [12], Gabor jets [14],
and others.

In this paper we propose a learning system that can be
used to generate views of objects suitable for the above
systems. We also propose our own classifier based on multi-
class support vector machines that can be used to classify
objects represented by collections of Gabor jets.

II. OUTLINE OF THE APPROACH AND
DISCUSSION

We designed the following learning procedure to extract
images of object appearance while the robot manipulates the
object (see also Fig. 2):

1) The beginning of learning is initiated by the user, who
places a new object into the robot’s hand.

2) Once the robot holds the object, it moves its hand
away from the view of the foveal cameras and starts
learning the stationary background. Typically, we first
learn the mean values of pixels in a significantly
smoothed image for five seconds, followed by another
five seconds of learning the variance in color at each
pixel.

3) The robot moves its hand to the starting position for
the observation of the object. Once it reaches the
starting point, the procedure for estimating the position
and extent of the manipulated object is initiated (see
Section III).

4) The robot moves the object along the predefined
straight-line trajectory, attempting to keep the object
within the fovea. Only the arm and hand degrees of
freedom are used in this stage. The position and the
extent of the object in each of the captured images
along the trajectory are estimated. After the hand
returns to the starting point, the optimal position on
the trajectory (with respect to the estimated positions
and sizes) for learning object appearance is determined.

5) The robot moves the object into the optimal position
for learning as determined in the previous step. After

reaching the desired hand position and orientation,
it starts exercising the hand along the two degrees
of freedom that cause the object to rotate in depth.
The images of object appearance are collected while
manipulating the object. This phase finishes once the
hand covers the prespecified range of motion for the
two degrees of freedom.

6) The object is placed into the robot hand again at a
different configuration and the procedure is repeated.

7) Once all of the object have been placed at all relevant
configurations and all appearance images have been
collected, a classifier for object recognition is learned
by using a method based on nonlinear multi-class
support vector machines, which is described in Section
IV.

The above outline needs several clarifications. While it is
certainly among of our future goals that the robot would
pick up the object by itself, this has not been implemented
yet. We envision a procedure similar to [8] for the automatic
generation of hypotheses about the existence and position
of the object. This needs to be followed by grasping of the
unknown object, which is a difficult task in its own right.
Instead of the user, who places the object into the robot
hand at different configurations, in the automatic mode the
robot would need to re-grasp the object by itself. While
difficult this opens a new possibility for associating the object
postures with the appearance images because the robot can
use proprioceptive information to estimate each pose of the
object with respect to the initial pose. Standard view-based
approaches for pose estimation can then be used [15].

Background models like the one we learn in step 2)
are subject to frequent changes due to factors like object
movements and variations in lighting conditions. This is,
however, of minor concern here because having full control
of the object, the robot can ensure that nothing else moves
in the environment during learning. In addition, the learned
background models are short-lived and are learned anew
every time the object is re-grasped.

The test movement towards and away from the eyes
described in step 4) is necessary to place the object in a
suitable posture for learning object appearances. This posture
should be close enough to the eyes so that the object does
not appear too small in the image, but also far enough so
that its projection does not fall outside of the image. Our
criterion is that the object should appear as big as possible
in the foveal view while its boundary needs to be at least
40 pixels away from the image boundary, where the image
size was 320 × 240 pixels. The ideal position based on this
criteria is determined by moving the object along the straight
line towards the center of the foveal image.

On an accurately calibrated humanoid robot, Cartesian
straight line trajectories can be designed easily. For the cases
when accurate models are not available, we developed an
automatic procedure based on a rough open loop and more
accurate closed loop control system described in [16]. To get
the objects into the center of the fovea based on information
from the peripheral images, the system is guided by foveation

principles governing the relationship between the foveal and
peripheral views [6]. The developed technique allows us to
start from a rough straight-line trajectory towards the fovea
as designed by the open-loop control system, which can then
be refined based on the closed-loop control system. This
procedure generates a number of postures on the trajectory,
which are then interpolated to generate an accurate joint
space trajectory resulting in a straight-line movement in the
Cartesian space.

The manipulation procedure designed to extract object
views for training purposes can also be used to determine
the ideal position for recognition. Snapshots of the object
are captured by executing steps 1) to 5). This approach
facilitates the invariance against scaling because the object
is always viewed from about the same distance. While it
is still necessary to carry out the warping step that results
in normalized snapshots such as the ones shown in Fig. 4,
various digitalization artifacts that could be introduced by
doing such a mapping on object images at different scales
are greatly reduced. By monitoring the results of the classifier
on snapshots of the object taken from slightly different
viewing angles, we can also improve the reliability of the
classification because classification results are usually stable
only when they are correct.

III. DISCERNING THE OBJECT

At the heart of our system is the ability to discern the
objects from the image while it is manipulated by the robot.
To achieve this goal, we need to model the following image
processes:

• the unknown object (denoted by process Θo),
• the background (Θb),
• the hand (Θh), and
• the outlier process ((Θt), modeling any unexpected

event in the scene.
We model the color intensity of each pixel in the stationary
background by Gaussian processes Θb = {Iu,Σu}u,
which are characterized by means Iu and covariance ma-
trices Σu at each pixel u with the associated probability
distributions

p(Iu,u|Θb) =
1

2π
√

det(Σu)
· (1)

exp
(
−1

2
(Iu − Iu)T Σ

−1

u (Iu − Iu)
)

.

To obtain a certain degree of robustness against the bright-
ness changes, we characterize the color intensities by either
hue and saturation or by the normalized RGB values

r =
R

R + B + G
, g =

G

R + B + G
, b =

B

R + B + G
.

Since these three values are not independent, we use in our
system only normalized red and normalized green, which
makes color a two dimensional value for both color spaces.
The means and the covariances are learnt by gathering
statistics of the background pixels just before the robot

brings the object into the fovea. We did not observe big
differences when using either of the two color spaces, but
more experiments are needed to confirm this point.

Even though the hand position in the image could be
calculated using proprioceptive information, this information
is not sufficient because we cannot know in advance which
part of the hand is visible and which part is covered by the
manipulated object. We thus need to model the appearance
of the hand in the image. For the modelling of the hand
appearance, we experimented with standard approaches from
the object tracking theory such as color histograms [17]
and Gaussian (mixture) models [18]. Unlike in tracking,
we are not really interested in computing the hand position
but only in estimating the probability that a particular pixel
belongs to the hand. Both color histograms and Gaussian
mixture models offer this ability. Gaussian mixture models
are defined as follows

p(Iu|Θh) =
K∑

k=1

ωk

2π
√

det(Σk)
· (2)

exp
(
−1

2
(Iu − Ik)T Σ−1

k (Iu − Ik)
)

.

In our experiments the hand could be characterized by one
color and we could thus use unimodal Gaussians (K = 1)
to model the appearance of the hand.

While motion cues could certainly help to extract the
object from the hand and background, such cues alone are not
sufficient for the extraction of the object appearance. When
the robot holds the object, the object motion is the same as
the motion of the robot hand. We can thus not distinguish
between the object and the hand based on the motion cue
only. In addition, motion estimates are normally calculated
by differential methods which makes them relatively noisy.
Hence motion should be used only as support for other cues
and not as the sole feature for segmentation.

Since we have no prior knowledge about the object, we
obviously cannot model its appearance, which is actually
what we want to learn. The open-loop trajectory that we
use to manipulate the object is, however, well defined and
we know approximately where the object is in the image.
We can thus model the probability that an image pixel falls
within the extent of the object by using the mean value u
and the covariance Σ of pixels belonging to the object in the
previous step. This results in the following distribution

p(u|Θo) =
1

2π
√

det(Σ)
exp

(
−1

2
(u − u)T Σ

−1
(u − u)

)
.

(3)
Since the robot attempts to move the object along the straight
line going through the projection center and the center of
the image, the object’s position is always close to the image
center and we can initialize the appearance extraction by
assuming that the object is centered in the image with an
initially small extent.

Fig. 1 shows that foveal images sometimes contain other
parts of the arm besides the hand. Having no prior infor-

Fig. 3. Example for the extraction of object appearance. From left to right we have images showing one of the images used for background learning,
the smoothed version of this image that we use for the collection of background statistics, the estimated extent of the object in the image while being
manipulated by the robot, and the binary image containing the largest connected component of object pixels after thresholding probabilities P(u|Θb) and
applying the morphological operation close. The image within the enclosing ellipse is used for learning object representations. The binary image is shown
only for presentations purposes and is never used in the calculations. Additional objects were placed in the scene to show that our system does not require
simple backgrounds.

mation about the outlook of the arm and other unexpected
objects that might appear in the scene, we model such events
in the image by an outlier process, which is assigned a small,
constant probability P(Θt) regardless of the position of the
pixel in the image or color intensity value at this pixel. The
interaction between this process and the object process Θo

occurs in such a way that an area with a texture different
from the background and the hand will be classified as an
object of interest if it is close to the expected object position
and outlier otherwise (see Eq. (7).

As for the arm, the part of the image containing it can be
excluded from calculations using proprioceptive information.
On a dynamic humanoid robot like CB proprioceptive infor-
mation provides only a rough estimate for the location of the
arm in the image. It is nevertheless sufficient to exclude from
the calculations most of the image containing the arm. Our
experiments showed that combined with the outlier process,
this is sufficient to filter out the arm when estimating the
extent of the object of interest in the image.

Assuming that every pixel in the image stems from one of
the mutually independent processes Θ = {Θb, Θh, Θo, Θt}
(closed-world assumption), we can write the probability
that color Iu was observed at location u using the total
probability law

P(Iu,u|Θ) = ωbP(Iu,u|Θb) + ωhP(Iu|Θh) +
ωoP(u|Θo) + ωtP(Θt), (4)

where ωx are the prior (mixture) probabilities to observe the
processes Θx and ωb + ωh + ωo + ωt = 1.

We need to estimate the current position of the unknown
object and its extent, which will provide us with an appear-
ance image for learning. This can be achieved by maximizing
the probability of observing image I given processes Θ =
{Θb, Θh, Θo, Θt}. Neglecting the correlation of assigning
neighboring pixels to processes, we can evaluate the overall
probability of observing image I as follows

P(I) = P(I|Θ) =
∏
u

P(Iu,u|Θ). (5)

Since the background and the color distribution of the hand
are assumed stationary, we can maximize (5) with respect
to the position u of the object, the covariance Σ of pixels

belonging to the object, and mixture probabilities ωb, ωh, ωo,
and ωt. Instead of maximizing (5), it is easier to minimize
the negative log likelihood

L(Θ,ω) = − log(P (I|Θ)) = −
∑
u

log (P(Iu,u|Θ)) .

(6)
where ω = (ωb, ωh, ωo, ωt). Using the Lagrange multipliers
theory, it is possible to show that the above log likelihood
can be minimized by an EM algorithm. Writing

P(Iu,u|Θx) =
ωxp(Iu,u|Θx)∑

y∈{o,h,b,t}
ωyp(Iu,u|Θy)

(7)

where x = o, h, b, t, the EM-algorithm consists of the
expectation step, in which pixel probabilities (7) are esti-
mated, and the maximization step, in which the probabilities
P(Iu,u|Θb) = P(u|Θb) are used to estimate the mean and
the covariance of the object pixels

u =
1∑

u P(u|Θb)

∑
u

P(u|Θb)u, (8)

Σ =
1∑

u P(u|Θb)

∑
u

P(u|Θb) (u − u) (u − u)T
.
(9)

Note that probabilities P(Iu,u|Θb) and P(Iu|Θh) remain
constant throughout the EM process and thus need to be
estimated only once for each image. This helped us to
implement the extraction of the object appearance at video
rate, i. e. at 30 Hz. The mixture probabilities can either be
assumed to be constant or we can estimate them as part of
the EM-process

ωx =
1
n

∑
u

P(Iu,u|Θx), (10)

where n is the number of pixels and x = o, h, b, t.

IV. LEARNING OBJECT REPRESENTATIONS

It remains to show how we learn the classifier for recog-
nition using the output of the object manipulation procedure
in conjunction with the technique for the extraction of object
appearance described in Section III. After estimating the
enclosing ellipse, the image is warped onto a window of

Fig. 4. Images of four objects used in the experiments after warping. Such
images are used as input to Gabor jet calculations and SVM training.

constant size. This ensures invariance against scaling and
planar rotations and also provides images of standard size,
which can be compared to each other. Fig. 4 shows the
warped images of four objects used in our experiments.

To ensure maximum classification performance the data
fed into general classifiers such as SVMs needs some kind
of preprocessing, which is especially important for high-
dimensional input data. Most modern view-based approaches
characterize the views by ensembles of local features. We
use complex Gabor kernels to identify local structure in the
images, which are first transformed to grayscale. Currently,
color is not used in our system for recognition, although
features like color histograms could certainly be beneficial
[2]. Gabor kernels are given by

Φµ,ν(x) =
‖kµ,ν‖2

σ2
· exp

(
−‖kµ,ν‖2‖x‖2

2σ2

)
·(

exp
(
ikT

µ,νx
)
− exp

(
−σ2

2

))
, (11)

where kµ,ν = kν [cos(φµ), sin(φµ)]T . A Gabor jet at pixel
x is defined as a set of complex coefficients {Jx

j } obtained
by convolving the image with a number of Gabor kernels
at this pixel. Gabor kernels are selected so that they sample
a number of different wavelengths kν and orientations φµ.
Wiskott et al. [14] proposed to use kν = 2−

ν+2
2 , ν =

0, . . . , 4, and φµ = µπ
8 , µ = 0, . . . , 7, but this depends

both on the size of the incoming images and the image
structure. They showed that the similarity between the jets
can be measured by

S
(
{Jx

i }, {Jy
i }

)
=

aT
x ∗ ay

‖ax‖‖ay‖ , (12)

where ax = [|Jx
1 |, . . . , |Jx

s |]T and s is the number of
complex Gabor kernels. This is based on the fact that the
magnitudes of complex coefficients vary slowly with the
position of the jet in the image.

In our system, feature vectors are built by sampling Gabor
jets on a regular grid of pixels XG. At each grid point
we calculate the Gabor jet and add it to the feature vector.
Naturally, the grid points need to be parsed in the same order
in every image. The grid size used in our experiments was
6 × 6, the warped image size was 160 × 120 with pixels
outside the enclosing ellipse excluded, and the dimension of
each Gabor jet was 40, which resulted in feature vectors of
dimension 16080. These feature vectors were supplied to the
SVM for training.

A. Nonlinear Multi-Class Support Vector Machines

Now we turn to the problem of finding a suitable classifier
for object recognition using nonlinear multi-class support
vector machines. Classification based on nonlinear multi-
class SVMs [19] is carried out using the following decision
function

H(x) = arg max
r∈Ω

{
m∑

i=1

τi,rK(xi,x) + br

}
. (13)

Here x is the input feature vector to be classified (in our case
a collection of Gabor jets), xi are the feature vectors supplied
to the SVM training, τi,r, br are the values estimated by
SVM training, and Ω = {1, . . . , N} are the class identities
(objects in our case). The feature vectors xi with τi,r �= 0
are called the support vectors. The SVM training consists of
solving a quadratic optimization problem which convergence
is guaranteed for all kernel functions K that fulfill the
Mercer’s theorem [20].

The similarity measure for Gabor jets (12) provides a
good motivation for the design of a kernel function for the
classification of feature vectors consisting of Gabor jets. Let
XG be the set of all grid points within two normalized
images on which Gabor jets are calculated and let JXG

and
LXG

be the Gabor jets calculated in two different images,
but on the same grid points. A suitable kernel function can
be defined as follows

KG(JXG
, LXG

) = exp

⎛⎝−ρ
1
M

∑
x∈XG

(
1− aT

x ∗ bT
x

‖ax‖‖bx‖

)⎞⎠ ,

(14)

where M is the number of grid points in XG. This function
satisfies the Mercer’s condition [20] and can thus be used
for support vector learning. Parameter ρ needs to be supplied
experimentally.

V. EXPERIMENTAL RESULTS

In our experiments we tested how effective is the manip-
ulation of objects as outlined in Section II combined with
the Bayesian technique of Section III at extracting views
for training and recognition. Based on what we believe are
reasonable assumptions about how the robot interacts with its
environment, we were able to collect the object views shown
in Fig. 4 without any prior knowledge about the objects. The
procedure for discerning the object from the rest of the scene
has proven to be reliable as long as the assumptions made
by the Bayesian approach were fulfilled.

To prove that the proposed approach can indeed be used
for learning object representations, we compared it to the
classification results achieved when known color textures
were used to discern the object from the rest of the image
[1]. To train the SVM, we collected 104 views of 14 dif-
ferent objects. The appearance images of four of them were
extracted using the proposed approach, while the images of
the rest were collected by applying models of color texture
for segmentation. For training of a fully rotationally and

TABLE I
CLASSIFICATION RESULTS

Correct Errors Recognition rate

Full library 7307 421 94.6 %

Objects detected
by color 4897 303 94.2 %

Objects detected
by manipulation 2410 118 95.3 %

scale invariant classifier on a library of 14 objects, we thus
employed 1456 feature vectors of dimension 16080. We use
the implementation of nonlinear multi-class SVMs by [21],
which allows for the user-defined kernels. Hence we were
able to make use of the specially designed kernel of Section
IV-A.

For testing we collected another 7728 appearance images
of objects from the library. Results in Tab. I prove that
the views collected by the proposed approach are just as
usable as the views that we collected using prior color
texture models. The recognition results with the proposed
approach were even a bit better, although this was caused
by a relatively bad classification rate for one the object
for which we used color texture segmentation to extract
the views. Excluding this object, the recognition rates were
almost identical.

VI. SUMMARY

The main result of this paper is the procedure for learning
complete object representations for recognition by a hu-
manoid robot without any prior knowledge about objects and
without manual tinkering with the images. To our knowledge
CB is the first humanoid that can collect the views fully
automatically provided that it can grasp the objects. Our
experiments showed that the built models are fully scale and
rotationally invariant in 3-D and that we achieve comparable
recognition rates on the proposed system as on the earlier
system that used prior knowledge about the object’s color
texture to discern its image from the rest of the scene.

We also developed a new kernel for the classification of
views represented by Gabor jets, which allowed us to classify
the images more reliably, especially when lighting conditions
in training and recognition phase differ. Note also that the
proposed approach for collecting the views is fully general
and is not limited to the developed classification technique.
We could as well apply it to other popular approaches such
as SIFT keys + Hough transform proposed in [12].

There are many issues that could be considered to improve
the system in the future. One of them is using motion
cues to make the Bayesian approach of Section III more
robust. Another interesting issue to consider is the use of
proprioceptive information to organize the training views by
orientation. It has been shown that dynamic information can
be useful for recognition [22]. The robot taking control of
the object can provide the necessary input for the view-based
dynamic object recognition. In addition, such information

can be used to estimate the orientation of an object after
recognition. We are currently working on these issues.

Acknowledgment: The work described in this paper was
partially conducted within the EU Cognitive Systems project
PACO-PLUS (FP6-2004-IST-4-027657) funded by the Euro-
pean Commission.

REFERENCES

[1] A. Ude, C. G. Atkeson, and G. Cheng, “Combining peripheral and
foveal humanoid vision to detect, pursue, recognize and act,” in
Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Las Vegas,
Nevada, 2003, pp. 2173–2178.

[2] M. Björkman and D. Kragić, “Combination of foveal and peripheral
vision for object recognition and pose estimation,” in Proc. IEEE Conf.
Robotics and Automation, New Orleans, Louisiana, 2004, pp. 5135–
5140.

[3] B. Scassellati, “Eye finding via face detection for a foveated, active
vision system,” in Proc. Fifteenth Nat. Conf. Artifficial Intelligence
(AAAI ’98), Madison, Wisconsin, 1998, pp. 969–976.

[4] C. G. Atkeson, J. G. Hale, F. Pollick, M. Riley, S. Kotosaka, S. Schaal,
T. Shibata, G. Tevatia, A. Ude, S. Vijayakumar, and M. Kawato,
“Using humanoid robots to study human behavior,” IEEE Intelligent
Systems, vol. 15, no. 4, pp. 46–56, 2000.

[5] G. Sandini and G. Metta, Sensors and Sensing in Biology and
Engineering. Wien-New York: Springer-Verlag, 2003, ch. Retina-
like sensors: motivations, technology and applications.

[6] A. Ude, C. Gaskett, and G. Cheng, “Foveated vision systems with two
cameras per eye,” in Proc. IEEE Int. Conf. Robotics and Automation,
Orlando, Florida, 2006, pp. 3457–3462.

[7] P. Fitzpatrick and G. Metta, “Grounding vision through experimental
manipulation,” Philosophical Transactions of the Royal Society: Math-
ematical, Physical, and Engineering Sciences, vol. 361, no. 1811, pp.
2165–2185, 2003.

[8] P. Fitzpatrick, “First contact: an active vision approach to segmen-
tation,” in Proc. 2003 IEEE/RSJ Int. Conf. Intelligent Robots and
Systems, Las Vegas, Nevada, 2003, pp. 2161–2166.

[9] T. Poggio and S. Edelman, “A network that learns to recognize three-
dimensional objects,” Nature, vol. 343, pp. 263–266, 1990.

[10] M. Turk and A. Pentland, “Eigenfaces for recognition,” Journal of
Cognitive Neuroscience, vol. 3, no. 1, pp. 71–86, 1991.

[11] B. Schiele and J. L. Crowley, “Recognition without correpsondence
using multidimensional receptive field histograms,” Int. J. Computer
Vision, vol. 36, no. 1, pp. 31–52, 2000.

[12] D. G. Lowe, “Local feature view clustering for 3D object recognition,”
in Proc. IEEE Conf. Computer Vision and Pattern Recognition, Kauai,
Hawaii, 2001, pp. 682–688.

[13] C. Wallraven, A. Schwaninger, and H. H. Bülthoff, “Learning from
humans: Computational modeling of face recognition,” Network: Com-
putation in Neural Systems, vol. 16, no. 4, pp. 401–418, 2005.

[14] L. Wiskott, J.-M. Fellous, N. Krüger, and C. von der Malsburg, “Face
recognition by elastic bunch graph matching,” IEEE Trans. Pattern
Anal. Machine Intell., vol. 19, no. 7, pp. 775–779, 1997.

[15] S. Srinivasan and K. L. Boyer, “Head pose estimation using view
based eigenspaces,” in Proc. 16th Int. Conf. Pattern Recognition, vol.
4, Quebec, Canada, 2002, pp. 302–305.

[16] C. Gaskett, A. Ude, and G. Cheng, “Hand-eye coordination through
endpoint closed-loop and learned endpoint open-loop visual servo
control,” International Journal of Humanoid Robotics, vol. 2, no. 2,
pp. 203–224, 2005.

[17] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based object track-
ing,” IEEE Trans. Pattern Anal. Machine Intell., vol. 25, no. 5, pp.
564–577, 2003.

[18] S. J. McKenna, Y. Raja, and S. Gong, “Tracking colour objects using
adaptive mixture models,” Image and Vision Computing, vol. 17, pp.
225–231, 1999.

[19] K. Crammer and Y. Singer, “On the algorithmic implementation
of multiclass kernel-based vector machines,” Journal of Machine
Learning Research, vol. 2, pp. 265–292, 2001.

[20] C. J. C. Burges, “A tutorial on support vector machines for pattern
recognition,” Data Min. Knowl. Discov., vol. 2, no. 2, pp. 121–167,
1998.

[21] T. Joachims, “Making large-scale support vector machine learning
practical,” in Advances in Kernel Methods - Support Vector Learning,
B. Schölkopf, C. J. C. Burges, and A. J. Smola, Eds. Cambridge,
MA: MIT Press, 1999.

[22] H. H. Bülthoff, C. Wallraven, and A. Graf, “View-based dynamic
object recognition based on human perception,” in Proc. Int. Conf.
Pattern Recognition, vol. III, Québec City, Canada, August 2002, pp.
768 – 776.

Foveated Vision and Object Recognition on a
Humanoid Robot

Aleš Ude1,2 Chris Gaskett2 Gordon Cheng2,3 Mitsuo Kawato2,3

1Jožef Stefan Institute
Dept. of Automatics, Biocyb.

and Robotics
Jamova 39, 1000 Ljubljana, Slovenia

2ATR Computational Neuroscience Lab.
Dept. of Humanoid Robotics

and Computational Neuroscience
2-2-2 Hikaridai, Seika-cho, Kyoto, Japan

3Japan Science and Technology Agency
ICORP Computational Brain Project

2-2-2 Hikaridai, Seika-cho, Kyoto, Japan

Abstract— In this paper we present a complete, biologically
motivated system for 3-D object recognition on a humanoid
robot with foveated vision. It includes an eye and body control
scheme, which enables the robot to maintain the object view
in the fovea, and image processing techniques necessary to
foveate on the objects and to recognize them. We show the
degree of precision that can be achieved by a foveated setup
that uses two cameras per eye to mimic the foveated structure
of a human eye. We demonstrate that tracking results can be
utilized to reduce the amount of training images necessary to
learn object representations from foveal views. The proposed
recognition approach is view-based and can learn truly three-
dimensional object representations. It is build around a classifier
based on multi-class support vector machines. The objects can
be represented by various features such as Gabor jets and color
histograms. To increase the classification rates, we designed a
special kernel function that can incorporate the segmentation
probabilities computed by the tracker.

The proposed system was fully implemented and runs in
real-time, which is essential for meaningful interaction with a
humanoid robot.

I. INTRODUCTION

A robot vision system can be called humanoid if it firstly
possesses an oculomotor system similar to human eyes, and
secondly if it is capable of simultaneously acquiring and pro-
cessing images of varying resolution. Designers of a number of
humanoid robots attempted to mimic the foveated structure of
the human eye. Foveation is useful because, firstly, it enables
the robot to monitor and explore its surroundings in images of
low resolution, thereby increasing the efficiency of the search
process, and secondly, it makes it possible to simultaneously
extract additional information – once the area of interest is
determined – from higher resolution foveal images that contain
more detail. There are several visual tasks that can benefit from
foveated vision. One of the most prominent among them is
object recognition. General object recognition on a humanoid
robot is difficult because it requires the robot to detect objects
in dynamic environments and to control the eye gaze to get
the objects into the fovea and to keep them there. Once these
tasks are accomplished, the robot can determine the identity
of the object by processing foveal views.

Approaches proposed to mimic the foveated structure of
biological vision systems include the use of two cameras

Fig. 1. Humanoid head with foveal cameras above the peripheral cameras.
The peripheral and foveal cameras are rigidly connected with parallel optical
axes. The motor system of each eye consists of two independent degrees of
freedom.

per eye [1]–[4] (Cog, DB, Infanoid, Kismet, respectively),
i. e. a narrow-angle foveal camera and a wide-angle camera
for peripheral vision; lenses with space-variant resolution [5]
(humanoid head ESCHeR), i. e. a very high definition area
in the fovea and a coarse resolution in the periphery; and
space-variant log-polar sensors with retina-like distribution of
photo-receptors [6] (Babybot). It is also possible to implement
log-polar sensors by transforming standard images into log-
polar ones [7], but this approach requires the use of high
definition cameras to get the benefit of varying resolution.
Systems with zoom lenses have some of the advantages of
foveated vision, but cannot simultaneously acquire wide angle
and high resolution images.

Our work follows the first approach (see Fig. 1) and explores
the advantage of foveated vision for object recognition over
current approaches which use equal resolution across the
visual field. While we acknowledge that log-polar sensors are
a closer match to biology, we note that using two cameras
per eye can be advantageous because cameras with standard
CCD/CMOS chips can be utilized. This makes it possible to
equip a humanoid robot with miniature cameras (lipstick size
and smaller), which facilitates the mechanical design of the
eye and improves its motion capabilities.

There has been extensive work both on controlling the
eyes to steer the gaze over salient areas and on processing

information acquired by a humanoid vision system. Studies on
oculomotor control in a humanoid robot included vestibulo-
ocular and optokinetic reflex, smooth pursuit, saccades, and
vergence control [5], [8]–[10]. Other researchers considered
head and arm movements for reaching [11]–[13] and mim-
icking behaviors [14], [15]. On the image processing side,
researchers studied humanoid vision for visual attention [4],
[16], segmentation [17], and tracking [5], [18], [19]. The
analysis of this work shows that the utilization of foveation for
the processing of visual information was not of major concern
in most of these papers. Even though any system implemented
on log-polar cameras or space variant lenses implies the
processing of foveal information, researchers who worked with
such systems appeared to have been more concerned with
oculomotor control issues than with how to exploit the benefits
of higher resolution in the fovea to solve specific visual prob-
lems. One notable exception is the early work of Scasselatti
[1], in which foveal images were used to detect the eyes of
people whose faces were first located by peripheral vision.
This is a very specialized problem and the authors relied on the
underlying behavioral context to simplify the computations.
In our recent work we demonstrated how foveation [20] can
be used for object recognition. Our initial system employed
LoG (Laplacian of the Gaussian) filters at a single, manually
selected scale and principal component analysis to represent
objects. The nearest neighbor approach was used to identify
objects from a database which was acquired by training. A
similar approach using foveation and PCA – extended by the
application of multi-modal cues for recognition – was later
described in [21].

Starting from our previous work, the goal of this paper is
to propose a comprehensive framework for object recognition
on a humanoid with foveated vision. It is important for the
humanoid robotics community to thoroughly study the design
of essential visual routines such as object recognition in hu-
manoids as opposed to being quickly satisfied with easily im-
plementable basic solutions. Otherwise higher-level cognitive
tasks that build upon such processes could be unnecessarily
limited by poor performance of lower-level visual routines.
Our system consists of three main integrated modules:

• attention and object tracking (peripheral vision);
• object recognition (foveal vision);
• oculomotor control (including the supportive head and

body movements).

To facilitate later analysis, we start by briefly presenting
our approach to visual attention and tracking. Section III
describes what kind of precision can be expected from a
foveated setup with two cameras per eye. It also presents a
motor control framework that enables the robot to bring the
objects of interest over the fovea. The section concludes with
experimental results showing that the accuracy of the proposed
motor control scheme is sufficient to make use of foveal vision
for recognition when observing objects manipulated by people
interacting with the robot. We continue by introducing a bio-
logically motivated view-based object representation scheme,

followed by a classification algorithm based on multi-class
support vector machines. We present a specially designed
kernel function that can accommodate multiple cues and
can make use of segmentation (tracking) probabilities. These
probabilities are used to reduce the amount of distractors from
the background that can negatively influence the classification
results and also to reduce the computing time. Finally, we test
the performance of the recognizer as it pertains to the domain
of object recognition for person-robot interaction.

II. PROBABILISTIC TRACKING AND ATTENTION

To direct its eyes towards objects and to classify them, a
robot must be able to identify areas of interest and to track
the interesting regions. Tracking and visual attention are not
of major concern for this paper, but since the results of these
subsystems are needed for foveated objected recognition, we
here briefly describe the tracking approach as it is necessary
for the understanding of the operation of the complete system.

We represent the observed environment by a number of
random processes, each process representing one of the cur-
rently observed objects. Our approach uses color and shape
properties to evaluate the probability that a pixel was generated
by one of these processes. What is important here for object
recognition is that we assume that 2-D shape of the tracked
objects is roughly ellipsoidal and can be approximated by the
center of the object’s image x and by the covariance matrix
Σ of pixels contained in it.

Given the appropriate probability distributions for objects
and background, we can use an expectation-maximization
(EM) algorithm to estimate the most probable location and
shape of the object in the image. The EM-algorithm alternat-
ingly estimates the posterior probabilities (expectation), and
the shape parameters and the object location (maximization).
The color distributions are learned off-line and are kept
constant in the tracking phase. We omit the details of the real-
time implementation and relate the reader to our earlier papers
[18], [22]. What is important for foveated recognition is that
the tracker not only estimates the object locations but also
its 2-D shape and orientation as well as the posterior pixel
probabilities evaluating the confidence that a pixel belongs to
the object.

One of the features utilized by the proposed tracker is
color. To make sense of the recognition task, we later consider
recognition of objects having same or similar color. This is,
however, solely due to the limitations of the segmentation and
tracking techniques. On the other hand, the recognition strat-
egy is fully general. The tracker and the following oculomotor
behaviors are initialized based on the results of a distributed
visual attention system, which also takes over if the object is
lost during pursuit.

III. MAINTAINING THE FOVEAL VIEWS OF OBJECTS

The results of the tracker enable the robot to direct its eyes
towards potential objects of interest. The main task of the
control system is to place a salient region over the field of view
of both foveal cameras so that further analysis and eventually

Fig. 2. Simultaneous views from the peripheral and foveal cameras. The high
resolution of object image and better localization makes foveal images suitable
for recognition (right), while the wide field of view from the peripheral camera
is suitable for smooth pursuit (left).

object recognition can be accomplished. Although the focus
of the task is to bring an object into the center of the fovea,
the control system uses the view from peripheral cameras as
the basis for control. Data from peripheral images is more
reliable for tracking and pursuit because objects can easily be
lost from the foveal views (see Fig. 2).

Two issues need to be considered when analyzing the
foveation setup with two cameras:

1) Given a 3-D point that projects onto the center of the
foveal image, where will the point be projected onto the
peripheral image? This will be the ideal position in the
periphery for foveation.

2) If a 3-D point projects onto the peripheral image away
from the ideal position described above, how far is the
projection of the point from the center of the foveal
image?

A. Camera Model

For the theoretical analysis, we model both cameras by a
standard pinhole camera model. We denote a 3-D point by
M =

[
X Y Z

]T
and a 2-D point by m =

[
x y

]T
.

Let M̃ =
[

X Y Z 1
]T

and m̃ =
[

x y 1
]T

be
the homogeneous coordinates of M and m, respectively. The
relationship between a 3-D point M and its projection m is
then given by [23]

sm̃ = A
[

R t
]
M̃ , (1)

where s is an arbitrary scale factor, R and t are the extrinsic
parameters denoting the rotation and translation that relate the
world coordinate system to the camera coordinate system and
A is the intrinsic matrix

A =

⎡⎣ α γ x0

0 β y0

0 0 1

⎤⎦ . (2)

α and β are the scale factors, γ is the parameter describing the
skewness of the two image axes, and (x0, y0) is the principal
point.

In the following we assume without loss of generality that
the origin of the image coordinate system coincides with
the principal point (x0, y0), thus x0 = y0 = 0. Note that
on a real camera the principal point does not coincide with
the image center in pixel coordinates exactly. However, since
the distortion effects are smallest around the principal point

and since making this assumption significantly simplifies the
equations, it makes sense to attempt to bring the point of
interest to the position that projects onto the principal point of
the foveal camera and not to the precise image center. Taking
a standard video camera producing 640 x 480 images, the
distance of the principal point from the image center in pixel
coordinates is usually less than 10 pixels.

The pinhole camera model (1) does not consider the effects
of lens distortion. Such an assumption is justified for foveal
cameras, which are equipped with lenses with relatively long
focal lengths that normally do not exhibit noticeable distortion
effects. This is especially true because the distortion function is
usually dominated by radial components [23], [24]. Hence the
distortion effects are larger at the edges than in the center of
an image and therefore have only limited effects on foveation.
Conversely, to achieve wide field of view, peripheral cameras
need to have lenses with shorter focal lengths. Cameras
with such lenses often produce significantly distorted images.
However, the distortion can be corrected in a preprocessing
step using a suitable distortion correction procedure, e. g. the
one described in [23]. Equation (1) is valid for the distortion-
corrected pixels and we conclude that we do not need to
consider the distortion effects in our analysis.

B. Principal point in the fovea and peripheral images

We denote by Af , Rf , tf and Ap, Rp, tp the intrinsic and
extrinsic parameters of the foveal and peripheral camera, re-
spectively. Lets now assume that the world coordinate system
is aligned with the coordinate system of the foveal camera. In
this case we have Rf = I , where I is the identity matrix, and
tf = 0. Let t̂ be the position of the origin of the peripheral
coordinate system expressed in the foveal coordinate system
and let R̂ be the rotation matrix that rotates the basis vectors
of the peripheral coordinate system into the basis vectors of
the foveal coordinate system. We then have

RpM + tp = R̂(M − t̂). (3)

The projections of a 3-D point M onto the foveal and
peripheral image are then given by

xf =
αfX + γfY

Z
, (4)

yf =
βfY

Z
, (5)

and

xp =
αpr1 · (M − t̂) + γpr2 · (M − t̂)

r3 · (M − t̂)
, (6)

yp =
βpr2 · (M − t̂)
r3 · (M − t̂)

, (7)

where r1, r2, and r3 are the rows of the rotation matrix R̂ =[
rT

1 rT
2 rT

3

]T
. M projects onto the principal point in

the fovea if xf = yf = 0. Assuming that M is in front of
the camera, hence Z > 0, we obtain from Eq. (4) and (5)
that X = Y = 0, which means that the point must lie on
the optical axis of the foveal camera. Inserting this into Eq.

(6) and (7), we obtain the following expression for the ideal
position (x̂p, ŷp) in the peripheral image that results in the
projection onto the principal point in the foveal image

x̂p =
αpr1 · t̂ + γpr2 · t̂ − (αpr13 + γpr23)Z

r3 · t̂ − r33Z
, (8)

ŷp =
βpr2 · t̂ − βpr23Z

r3t̂ − r33Z
, (9)

where
[

r13 r23 r33

]T
is the third column of R̂. Note

that the ideal position in the periphery is independent from the
intrinsic parameters of the foveal camera. It depends, however,
on the distance of the point of interest from the foveation setup.

C. Displacement from the ideal position

Lets assume now that the 3-D point of interest M projects
onto a pixel away from the principal point in foveal image by
displacement (Dx, Dy). From (4) and (5) we have

Dx =
αfX + γfY

Z
, (10)

Dy =
βfY

Z
, (11)

thus

X =
Dx − γfDy/βf

αf
Z, (12)

Y =
Dy

βf
Z. (13)

Point
[

0 0 Z
]T

is the point on the optical axis which is
closest to M . It projects onto (x̂p, ŷp) in the peripheral view.
We define (dx, dy) to be the displacement of the projection
of M from this point in the peripheral view and we would
like to express (Dx, Dy) in terms of (dx, dy). We have the
following relationship

s

⎡⎣ x̂p + dx

ŷp + dy

1

⎤⎦ = Ap

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(r11 (Dx − γfDy/βf) /αf +
r12Dy/βf + r13) Z − r1 · t̂

(r21 (Dx − γfDy/βf) /αf +
r22Dy/βf + r23) Z − r2 · t̂

(r31 (Dx − γfDy/βf) /αf +
r32Dy/βf + r33) Z − r3 · t̂

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(14)
By subtracting (8) and (9) from (14), we can obtain a rather

complex expression for the error in the periphery (dx, dy)
in terms of the error in the fovea (Dx, Dy). This expression
also depends on the distance Z of the point of interest from
the camera setup. Fortunately, the result can be simplified
by making some reasonable assumptions about the foveation
setup. It is common to construct a foveated camera system in
such a way that the optical axes of the peripheral and foveal
camera are parallel. No calibration is needed to achieve this,
only the cradles of both cameras must be built with suffi-
cient precision. Standard industrial cameras are constructed
precisely enough to support such an arrangement, which is
used in most fixed foveation systems (like in Fig. 1). In this

case we have r31 = r32 = r13 = r23 = 0, r33 = 1 and Eq.
(14) becomes

s

⎡⎣ x̂p + dx

ŷp + dy

1

⎤⎦ = Ap

⎡⎢⎢⎢⎢⎢⎢⎣
(r11 (Dx − γfDy/βf) /αf +

r12Dy/βf) Z − r1 · t̂
(r21 (Dx − γfDy/βf) /αf +

r22Dy/βf) Z − r2 · t̂
Z − tz

⎤⎥⎥⎥⎥⎥⎥⎦ ,

(15)
where t̂ =

[
tx ty tz

]T
. The denominator in (8) and

(9) coincides with the third component in Eq. (15), hence
subtracting (8) and (9) from (15) results in

dx =
Z

Z − tz

(
r11αp + r21γp

αf
Dx+ (16)

−r11αpγf + r12αpαf − r21γpγf + r22γpαf

αfβf
Dy

)
,

dy =
Z

Z − tz

(
r21βp

αf
Dx +

−r21βpγf + r22βpαf

αfβf
Dy

)
.

(17)

It is easy to invert this equation system to obtain the expression
for the error in the fovea in terms of the error in the periphery
and distance Z. We omit the details here and only present
results with further simplifying assumptions. Lets assume that
both cameras are completely aligned, i. e. r21 = r12 = 0 and
r11 = r22 = 1 (no rotation around the optical axis). In this
case we can calculate a simpler relationship between the error
displacements in the foveal and peripheral images

Dx =
Z − tz

Z
· αf

αp

(
dx +

αpγf − γpαf

αfβp
dy

)
, (18)

Dy =
Z − tz

Z
· βf

βp
dy. (19)

The skew parameters γp and γf are normally much smaller
than αp, αf , βp, and βf . Similarly, the displacement of the
camera tz is usually much smaller than the distance Z of the
point of interest from the camera. Note that it is difficult to
achieve tz = 0 on a practical camera system because it is not
easy to determine the exact positions of the projection centers
and to place the cameras accordingly. Thus, for totally aligned
cameras we have the following approximation

Dx ≈ αf

αp
dx, (20)

Dy ≈ βf

βp
dy. (21)

This means that the error from the ideal displacement in
the peripheral image is scaled in the fovea by the ratio of
focal lengths. This approximation is exact for perfect pinhole
cameras (γp = γf = 0) with precisely aligned coordinate
systems, i. e. R̂ = I and tz = 0. Since the focal length of the
foveal camera is always greater than the focal length of the
peripheral camera, i. e. αp, βp < αf , βf , the deviation from
the principal point in the fovea is greater than the deviation

0 500 1000 1500 2000 2500
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Distance from the camera system (millimeters)

P
os

iti
on

 a
lo

ng
 th

e
y−

ax
is

 (
pi

xe
ls

)

Fig. 3. Red curve: ŷp with respect to the distance of the object from
the camera system as calculated by Eq. (25) (totally aligned, ideal pinhole
cameras, R̂ = I, tx = tz = 0, ty = 25, αp = βp = 290.9). Blue curve: ŷp

determined experimentally by placing the object manually at various distances
so that it projects on the center of the foveal image. At each such configuration
we measured the object’s position in peripheral image and its distance from
the eye (using stereo vision). The blue circles show these measurements.

from the ideal position in the peripheral image. This is, of
course, an expected result.

D. Analysis of foveated vision systems

Making the same assumptions as when calculating (15), we
obtain from Eq. (8) and (9) the following expression for the
ideal position in the peripheral image

x̂p =
αpr1 · t̂ + γpr2 · t̂

tz − Z
≈ −αpr1 · t̂

Z
, (22)

ŷp =
βpr2 · t̂
tz − Z

≈ −βpr2 · t̂
Z

. (23)

We can again neglect the influence of γp, which is always
significantly smaller than αp and βp. Note, however, that it
is important that the cradles are built precisely and that the
optical axes are aligned accurately because in Eq. (8) and
(9) the zero terms r13 and r23 are multiplied by Z, which is
normally large. Hence if the system is not built precisely, the
above approximations are not valid. This is intuitive because
if optical axes diverge, the foveal image will not overlap
with the peripheral image as the distance increases and it is
impossible to get a point into the fovea based on information
from the peripheral image. The above equation system can be
further simplified by assuming totally aligned pinhole cameras
(r21 = r12 = 0 and r11 = r22 = 1, tz = 0, γp = 0), which
results in

x̂p = −αptx
Z

, (24)

ŷp = −βpty
Z

. (25)

For the head in Fig. 1, the peripheral cameras are equipped
with 3mm lenses and with CCD chips of size 6.6 × 4.4
millimeters, while the foveal cameras are equipped with 12mm
lenses and with CCD chips of size 3.3 × 2.2 millimeters.
The distance between them is about 25mm along the y-axis
(tx ≈ 0, ty ≈ 25). Theoretically, the scaling factors of such
cameras are αp = βp ≈ 290.9 and αf = βf ≈ 1306.8 when
the cameras are calibrated for images of size 640 × 480.

Fig. 3 shows the variation of ŷp with respect to Z under
such assumptions and proves that our system indeed exhibits
such characteristics. For Z = 1 meter, the ideal position in
the periperal image is given by x̂p = 0 and ŷp = −290.9 ×
25/1000 = −7.3 pixels. For objects further away, ŷp tends to
zero. From Eq. (25) it follows that the necessary displacement
doubles to −14.6 when Z ≈ 498mm. Hence, if we fix Z to
1 meter and observe objects more than 0.5m away from the
camera, the systematic error in the peripheral images will be
less than 7.3 pixels. Eq. (21) tells us that the displacement
from the central position in the foveal view will be at most
1306.8/290.9×7.3 ≈ 32.8 pixels, hence we are still relatively
close to the principal point in the foveal image. Note that
fixing the distance Z is equivalent to replacing the perspective
projection with the orthographic projection in our model.

IV. CLOSED-LOOP EYE, HEAD, AND TORSO CONTROL
SYSTEM

We developed a control system that is appropriate for the
tracking task and enhances the appearance of the humanoid
through mimicking aspects of human movement: human eyes
follow object movement, but without head and body movement
have a limited range; thus, the robot’s control system supports
its eye movements through head and body movements.

Our humanoid DB has 30 degrees of freedom; we used 10
degrees of freedom (4 on the eyes + 3 on the head + 3 on the
torso) to maintain the view of the object. It was important
for the control system not to rely on exact knowledge of
the robot’s kinematics since the action of the robot’s joints
varies over time due to joint and valve wear-and-tear and
maintenance activities.

The robot’s primary mechanism for maintaining the view
of the object of interest is eye movement: the control system
continuously alters the pan and tilt of each eye to keep the
object near the center of the corresponding view (i.e. visual
servo control [25]). Independent eye motion is acceptable
when the object is being tracked properly in both peripheral
views, but looks rather unnatural when one eye loses its view
of the object while the other eye continues to roam. Our
solution is to introduce a gentle cross-coupling between a
camera’s view and the control of the other eye. Thus, when
a camera’s view of the target is lost, its corresponding eye
continues to move, fairly slowly, under the influence of the
other camera’s view. As well as appearing natural, such eye
movements improve the likelihood of re-locating the object.

We consider that the task of the robot’s head is to assist the
eyes by increasing the viewable area and avoiding unnatural
eye poses. Similarly, we consider that the task of the robot’s
body is to assist the head, further increasing the viewable area
and avoiding unnatural head poses.

To aid in coordinating the joints, we assign a relaxation
position to each joint and vision blob 1. The relaxation position
for the blobs is near the center of the view, and the eyes’ task
is to bring the blobs to that position. The relaxation position

1Vision blobs give the hypothesized 2-D object locations in the image.

for the 4 eye joints is to face forward, and the head’s task is
to bring the eyes to that position. Further, the 3 neck joints
have a relaxation position, and the torso’s task is to bring the
head to that position. For example, if the object of interest is
up and to the left, the eyes would tilt up and pan left, causing
the head would tilt up and turn left, and the torso to lean back
and turn.

The complete control system is implemented as a network of
PD controllers expressing the assistive relationships. The PD
controllers are based on simplified mappings between visual
coordinates and joint angles, which are described below, rather
than on a full kinematic model. Such mappings are sufficient
because the system is closed-loop and can make corrective
movements to converge towards the desired configuration.

We define the desired change for self-relaxation, D, for each
joint,

Djoint =
(
θ∗joint − θjoint

)− Kdθ̇joint, (26)

where Kd is the derivative gain for joints; θ is the current joint
angle; θ̇ is the current joint angular velocity, and the asterisk
indicates the relaxation position. The derivative components
help to compensate for the speed of the blobs and assisted
joints.

The desired change for a vision blob is:

Dblob = (x∗
blob − xblob) − Kdvẋblob, (27)

where Kdv is the derivative gain for vision blobs; and x is
position in pixels.

The purpose of the left eye pan (LEP) joint is to move the
target into the center of the left camera’s field of view:

̂̇
θLEP = Kp ×

[
KrelaxationDLEP

− Ktarget→EP KvCLXtargetDLXtarget

+ Kcross-target→EP KvCRXtargetDRXtarget

]
, (28)

where ̂̇
θLEP is the new target velocity for the joint; L and R

represent left and right; X represents the x pixels axis; Kp is
the proportional gain; Kv is the proportional gain for vision
blobs; Cblob is the tracking confidence for that blob; and the
gain Kcross-target→EP < Ktarget→EP .

The purpose of the left eye tilt (LET) joint is to move the
target into the center of the left camera’s field of view:

̂̇
θLET = Kp ×

[
KrelaxationDLET

− Ktarget→ET KvCLYtargetDLYtarget

− Kcross-target→ET KvCRYtargetDRYtarget

]
. (29)

The equations for the right eye pan and tilt joints are the
same as for the left, except that L becomes R and vice versa.

Head nod joint (HN) assists the eye tilt joints:

̂̇
θHN = Kp ×

[
KrelaxationDHN

− KET→HN (DLET + DRET)
]
. (30)

0 10 20 30 40 50 60
−1

−0.5

0

0.5

1

Time (seconds)

A
n

g
le

 (
ra

d
ia

n
s)

Left eye pan
Right eye pan
Head rotation

0 10 20 30 40 50 60
−0.5

0

0.5

Time (seconds)

A
n

g
le

 (
ra

d
ia

n
s)

Left eye tilt
Right eye tilt
Head nod

Fig. 4. Eye (blue and green trajectories) and head (red trajectories) joints
during foveation. On DB both eye pans and head rotation represent rotations
around axes parallel to the vertical body axis (left - right change of viewing
direction), while both eye tilts and head nod represent rotations around axes
parallel to the shoulder axis (up - down change of view). These are the most
important movements for foveation. As expected left and right eye pans as well
as left and right eye tilts follow similar trajectories to maintain the direction
of view. Due to the assistive relationship between eye pans and head rotation,
the head rotation joint follows the pan angles of both eyes. There is a similar
relationship between eye tilts and head nod motion.

The head tilt joint (HT), which tilts the head from side to
side, moves to assist the pan (EP) and equalize the tilt (ET)
of the eyes:

̂̇
θHT = Kp ×

[
KrelaxationDHT

− KEP→HT (DLEP − DREP)

− KET→HT (DLET − DRET)
]
. (31)

The torso flexion-extension joint (TFE) assists the head
nod joint:

̂̇
θTFE = Kp×

[
KrelaxationDTFE−KHN→TFEDHN

]
. (32)

We omitted the control rules for head rotate joint (HR),
torso rotate joint (TR) and torso abduction-adduction joint
(TAA). These controllers are defined equivalently to the
controllers for the head nod joint and torso flexion-extension
joint, the only difference being that they support different
preceding degrees of freedom. We used a similar closed-loop
control scheme as part of a humanoid reaching system [13].

A. Control experiments

The graphs in Fig. 4 show the assistive relationships be-
tween different degrees of freedom. Even though the eye joints
often hit the joint limits, the robot could still maintain the view
of the object by making use of head movements. This is also
useful if one of the joints fails; the robot can still function,
although with degraded performance.

To demonstrate the reliability of the pursuit strategy, we
measured the velocity of object motion while the robot
attempted to maintain its view in the fovea. The object
was moved in front of the robot by an experimenter. For

0 10 20 30 40 50 60

280

300

320

340

360

Time (seconds)

x
 (

p
ix

el
s)

0 10 20 30 40 50 60
200

220

240

260

Time (seconds)

y
 (

p
ix

el
s)

0 10 20 30 40 50 60
0

200

400

600

Time (seconds)

L
in

ea
r

ve
lo

ci
ty

 n
or

m
 (

m
m

 /
 s

ec
)

Fig. 5. Effect of object velocity on accuracy of foveation. The upper two
graphs show object position in one of the peripheral images. The desired
image position was set at (320, 230.3). It was slightly displaced from the
image center, which was at (320, 240), to account for the displacement of
foveal cameras from the peripheral ones. The lower graph depicts the norm
of linear velocity of the tracked object.

this purpose we attached three active markers to the object
and measured their motion with an optical tracking system
Visualeyze. Since the rotational component of motion was
negligible, we estimated only linear velocity of object motion.
Not surprisingly, the robot was more successful at maintaining
the view of the object when the object motion was slower. In
the graphs the object velocity increases after approximately
23 seconds. Nevertheless, even with fairly fast motions (more
than 0.5 m/sec), the robot was still able to maintain the
view of the object using information from peripheral cameras.
Although the accuracy in this case is often not sufficient for
object recognition, the robot can at least restart the classifier
once the object appear in the fovea again. As shown in the
graphs, the robot quickly directs its eyes towards the object and
maintains its foveal view after the object comes to a standstill
(approximately at 60 seconds).

Our experiments demonstrate that the proposed control
strategy is successful at smoothly pursuing objects of interest
and that it can maintain the view of the object in the fovea.
In the following we propose a new classification approach to
object recognition that can be used once the object is stabilized
in the fovea.

V. OBJECT REPRESENTATION

Early approaches to object recognition in static images were
implemented predominantly around the 3-D reconstruction
paradigm of Marr [26], but many of the more recent recogni-
tion systems make use of viewpoint-dependent models [27]–

[29]. View-based strategies are receiving increasing attention
because it has been recognized that 3-D reconstruction is
difficult in practice (mainly due to difficulties in segmentation).
There is also psychophysical evidence that supports these
techniques [30].

In a view-based approach, each object is represented by a
number of images (or features extracted from 2-D images)
taken from different viewpoints. These model images are
compared to test images acquired by the robot. However, since
both a humanoid robot and objects can move in space, objects
appear in images at different positions, orientations and scales.
It is obviously not feasible to learn all possible views due
to the memory limitations. The number of required views
can, however, be reduced by normalizing the subimages that
contain objects of interest to images of fixed size. Here we
demonstrate how to accomplish this by exploiting the results
of the tracker.

A. Normalization through Affine Warping

As described in Section II, our tracker estimates the shape
of the tracked object using second order statistics of pixels that
are probabilistically classified as ”blob pixels”. By computing
the eigenvalue decomposition of the associated covariance
matrix Γ, we can estimate the object orientation in the image
and the extent of the object along its major and minor axes. In
other words, we can estimate the ellipse enclosing the object
pixels. As the lengths of both axes can differ significantly, it
makes sense to normalize each image along the principal axis
directions instead of image coordinate axes and to apply a
different scaling factor along each of these directions, taking
into account the length of the corresponding axis. By aligning
the object’s axes with the coordinate axes, we can also achieve
invariance against planar rotations. This reduces the number
of views that need to be stored to represent an object. The
estimation of planar orientation angle is often noisy, especially
for complex objects. In such cases, we need to collect more
training data to account for all possible views in the model,
but the number of necessary views is still significantly reduced
by this approach.

Normalization along the principal axes is implemented by
applying the following transformations: (1) translate the blob
so that its center is aligned with the origin of the image, (2)
rotate the blob so that its principal directions are aligned with
the coordinate axes, (3) scale the blob so that its major and
minor axis are as long as the sides of a predefined window, (4)
translate the blob so that its center is aligned with the center
of the new window. The resulting mapping in homogeneous
coordinates is given by the following affine transformation:

A =

⎡⎣ 1 0 wx

2
0 1 wy

2
0 0 1

⎤⎦
⎡⎢⎢⎣

wx

2a
0 0

0
wy

2b
0

0 0 1

⎤⎥⎥⎦[
R(θ)T 0

0 1

]
⎡⎣ 1 0 −u

0 1 −v
0 0 1

⎤⎦ =

⎡⎣ a11 a12 a13

a21 a22 a23

0 0 1

⎤⎦ , (33)

Fig. 6. Example images of ten objects. Scaling and planar rotations are accounted for by affine warping using the results of visual tracking.

where u = [u, v]T and θ are the position and orientation of
the blob, a and b are the half lengths of its major and minor
axis, and wx and wy are the predefined width and height of
the window onto which we map the window containing the
blob.

B. Gabor Jets

Early view-based approaches used raw grayscale images
as input to the selected classifier, e. g. principal component
analysis [31]. This kind of approaches turned out to be fairly
successful as long as the amount of noise in the images is small
and the illumination conditions do not change. To achieve ro-
bustness against brightness changes, it is necessary to compute
an improved, illumination insensitive characterization of the
local image structure. Some of the more recent recognition
systems therefore apply a bank of illumination-insensitive
filters to the original images before starting the recognition
process. We follow the biologically motivated approach of
Wiskott et al. [32], who proposed to apply a bank of Gabor
filters to the incoming images containing objects of interest.
Gabor filters are known to be good edge detectors and are
therefore robust against varying brightness. They have limited
support both in space and frequency domain and have certain
amount of robustness against translation, distortion, rotation,
and scaling [32].

Complex Gabor kernels are defined by

Φµ,ν(x) =
‖kµ,ν‖2

σ2
· exp

(
−‖kµ,ν‖2‖x‖2

2σ2

)
·(

exp
(
ikT

µ,νx
)
− exp

(
−σ2

2

))
, (34)

where kµ,ν = kν [cos(φµ), sin(φµ)]T . Gabor jet at pixel x
is defined as a set of complex coefficients {Jx

j } obtained by
convolving the image with a number of Gabor kernels at this
pixel. Gabor kernels are selected so that they sample a number
of different wavelengths kν and orientations φµ. Wiskott et
al. [32] proposed to use kν = 2−

ν+2
2 , ν = 0, . . . , 4, and

φµ = µπ
8 , µ = 0, . . . , 7, but this depends both on the size of

the incoming images and the image structure. They showed
that the similarity between the jets can be measured by

S
(
{Jx

i }, {Jy
i }

)
=

aT
x ∗ ay

‖ax‖‖ay‖ , (35)

where ax = [|Jx
1 |, . . . , |Jx

s |]T and s is the number of
complex Gabor kernels. This is based on the fact that the
magnitudes of complex coefficients vary slowly with the
position of the jet in the image.

The calculation of Gabor jets is computationally expensive
because the underlying Gabor kernel functions have large sup-
port. It is therefore advantageous to compute the convolutions
I ∗ Φµ,ν with the help of the Fast Fourier Transform

I ∗ Φµ,ν = F−1 (F(I) · F(Φµ,ν)) (36)

Using FFT we were able to compute 40 Gabor filters on
images of resolution 120x160 at 15 frames per second on a
dual processor 2.8GHz PC. This was essential for achieving
real-time operation of the system.

We use Gabor jets to generate feature vectors for recogni-
tion. To reduce the dimensionality of these feature vectors, we
did not make use of all jets. Ideally, one would calculate the
jets only at important local features. We did not attempt to
extract local features because it is often difficult to extract
them in a stable manner. Instead we decided to build the
feature vectors from Gabor jets positioned on a regular grid
of pixels (the selected grid size was 5 × 5). Normalized jets
{ax

j /‖ax‖}n
j=1 calculated on this grid and belonging to the

ellipse enclosing the object like in Fig. 7 were finally utilized
to build feature vectors.

It is important to note that we first scale the object images
to a fixed size and then apply Gabor filters. In this way we
ensure that the size of local structure in the acquired images
does not change and consequently we do not need to change
the frequencies kν of the applied filters.

C. Training

Our goal is to learn a three-dimensional representation for
each object of interest. To achieve this, it is necessary to
show the objects to the humanoid from all relevant viewing
directions. In computer vision this is normally achieved by

Fig. 7. Training images for one of the objects used in statistical experiments.
To take care of rotations in depth, we must collect a sufficient amount of
typical viewpoints.

accurate turntables that enable the collection of images from
regularly distributed viewpoints. However, this solution is not
practical for humanoid robotics, where on-line interaction is
often paramount. We therefore explored whether it is possible
to reliably learn 3-D descriptions from images collected while
a human teacher moves the object in front of the robot. Using
the previously described attention, tracking, and smooth pur-
suit systems, the robot acquires the foveal images of the object
in motion and collects feature vectors from many different
viewpoints. We show in the result section that such collection
of feature vectors is sufficient for 3-D object recognition.

VI. RECOGNITION WITH SUPPORT VECTOR MACHINES

Support vector machines (SVMs) are a relatively new clas-
sification system rooted in the statistical learning theory. They
are considered as state of the art classifiers because they deliver
high performance in real-world applications. To distinguish
between two different classes, a support vector machine draws
the (optimal) separating hyperplane between training data
points belonging to the two classes. The hyperplane is optimal
in the sense that it separates the largest fraction of points
from each class, while maximizing the distance from either
class to the hyperplane. First approaches that utilized SVMs
for object recognition used the basic form that deals with the
two-class classification problem. A binary tree strategy [33],
[34] was proposed to solve the multi-class problem. While
this approach provides a simple and powerful classification
framework, it cannot capture correlations between the different
classes since it breaks a multi-class problem into multiple
independent binary problems [35]. In addition, the result is
not independent of how the candidate objects are paired. There
were attempts to generalize SVMs to multi-class problems, but
practical implementation have started to emerge only recently.
In this paper we follow the generalization proposed in [35].
We made use of the implementation described in [36], [37].

In the following we explain the basic theory of multi-class
SVMs. We continue with the definition of suitable kernel
functions based on Gabor filtered images and color histograms.
We finally show how the segmentation probabilities can be
incorporated into the support vector learning and classification.

A. Multi-class Support Vector Machines

Multi-class classification addresses the problem of finding
a function defined from an input space Ψ ⊂ Rn onto a set of
classes Ω = {1, . . . , m}. Let S = {(x1, y1), . . . , (xn, yn)},
xi ∈ Ψ, yi ∈ Ω, be a set of n training samples. We look for
a function H : Ψ → Ω so that H(xi) = yi . Crammer and
Singer [35]2 proposed to look for H among classifiers of the
form

HM ,b(x) = arg max
r∈Ω

{M r ∗ x + br} , (37)

where b = [b1, . . . , bk]T , M ∈ Rm×n is a matrix of size
m × n and M r is the r-th row of M . Standard two-class
SVMs result in classifiers H = (w, b) that predict the label

2The bias parameters br were omitted in [35] to simplify the optimization
problem. Here we keep them in the interest of clarity of presentation.

of a data point x as 1 if w ∗x+ b ≥ 0 and 2 otherwise. They
can be expressed in the above form by taking a matrix M
with rows M1 = w, M2 = −w, and b1 = b, b2 = −b.

Crammer and Singer [35] showed that the optimal multi-
class support vector machine can be calculated by solving the
following optimization problem

min
M ,b,ξ

1
2
β

(
m∑

r=1

n∑
i=1

M2
ri +

m∑
r=1

b2
r

)
+

n∑
i=1

ξi (38)

subject to : Myi ∗ xi + byi + δyi,r−M r ∗ xi − br ≥ 1 − ξi

ξi ≥ 0,∀ i, r

Here ξi ≥ 0 are the slack variables that need to be introduced
to solve non-separable problems. This constrained quadratic
optimization problem is convex and can therefore be solved
efficiently. Note that in optimization problem (38) the data
points appear only in inner products M j ∗ xi. Moreover, it
can be shown that its solution can be written as

MT
r =

n∑
i=1

τirxi, τi,r ≥ 0, r = 1, . . . , m, (39)

and the corresponding decision function is

HM ,b(x) = arg max
r∈Ω

{
n∑

i=1

τi,rx
T
i ∗ x + br

}
. (40)

Again, the data points appear only in inner products xT
i ∗ x.

This makes it possible to transform the data points with a
nonlinear map Φ into a higher dimensional feature space
and to construct the optimal hyperplane in this space. The
nonlinear maps of interest are those that allow for an efficient
calculation of high-dimensional inner products via kernel
functions

K(x,y) = Φ(x) ∗ Φ(y). (41)

To find the optimal multi-class support vector machine in
a higher dimensional feature space, we need to solve a
constrained quadratic optimization problem in which inner
products Φ(xi) ∗Φ(xj) are replaced with the kernel function
K(xi,xj). The decision function (40) becomes

HM ,b(x) = arg max
r∈Ω

{
n∑

i=1

τi,rK(xi,x) + br

}
. (42)

The convergence of the optimization algorithm can be guar-
anteed for all kernel functions K that allow the construction
of nonlinear mapping Φ such that (41) holds. The condition
for this is given by the Mercer’s theorem [38].

B. Kernel Functions for Foveated Recognition

Now we turn to the problem of finding a suitable decision
function for object recognition. The similarity measure for
Gabor jets (35) provides a good starting point. Let XG be
the set of all grid points within two normalized images at
which Gabor jets are calculated and let JXG

and LXG
be

the Gabor jets calculated in two different images, but on the
same grid points

KG(JXG
, LXG

) = exp

⎛⎝−ρ1
1
M

∑
x∈XG

(
1− aT

x ∗ bT
x

‖ax‖‖bx‖

)⎞⎠ ,

(43)

where M is the number of grid points in XG. This function
satisfies the Mercer’s condition [38] and can thus be used for
support vector learning.

Kernel function 43 assumes that the sets of grid points
XG does not change from image to image. Wallraven at
al. [39], however, showed that it is possible to define kernel
functions using local feature detectors computed on sets of
image points that vary from image to image. They proposed
kernel functions defined on feature vectors of variable lengths
and with different ordering of features. While feature order
is not a problem for our system due to the affine warping
procedure, it would be advantageous to exclude some of
the grid points. Images presented in Fig. 6 and 7 make it
clear that some of the points in the warped images do not
belong to the object, even after clipping the parts outside
of the enclosing ellipse. We can, however, use the results
of the tracking/segmentation to exclude such points from the
calculation. For each pixel, the tracker described in Section II
can estimate the probability whether or not this pixel belong
to the tracked object. We can thus define the set XG on each
image to include only points for which these probabilities are
greater than a pre-specified threshold. Since we have not yet
tested the exclusion of feature points for kernel functions using
local color histograms, we here limit the discussion to Gabor
jets. Let X1

G and X2
G be two sets of grid points with tracking

probabilities greater than a pre-specified threshold. We can
define a new kernel function

K′
G(JX1

G
, LX2

G
) = KG(JX1

G

T

X2
G
, LX1

G

T

X2
G
)·

exp

⎛⎜⎝−ρ1
1
M

⎛⎜⎝ ∑
x∈X1

G

S

X2
G−X1

G

T

X2
G

2

⎞⎟⎠
⎞⎟⎠ , (44)

where M is the number of grid points in X1
G

⋃
X2

G. We
add the penalty of 2 for grid points that are not classified as
object points only in one of both images because this is the
highest possible value for one term in the criterion function
(43). While this kernel function assumes that the ordering
of grid points is the same in both images, it is much less
computationally expensive than the more general functions
proposed in [39]. This is important both for faster training
and for real-time recognition.

VII. EXPERIMENTAL RESULTS

We used a set of ten objects to test the performance of
the recognition system on a humanoid robot (6 teddy bears,
two toy dogs, a coffee mug, and a face, see Fig. 6). For
each object we recorded two or more movies using a video
stream coming from DB’s foveal cameras. The cameras were

controlled as described in Section III. In each of the recording
sessions the experimenter attempted to show one of the objects
to the robot from all relevant viewing directions. One movie
per object was used to construct the SVM classifier, while one
of the other movies served as input to test the classifiers. Each
movie was one minute long and we used at most 4 images per
second for training. Since slightly more than first ten seconds
of the movies were needed to initialize the tracker, we had
at most 208 training images per object. For testing we used
10 images per second, which resulted in 487 test images per
object. Except for the results of Table IV, all the percentages
presented here were calculated using the classification results
obtained from 4870 test images. Three types of classifiers
were used to test the performance of foveated recognition.
The first two were multi-class support vector machines based
on kernel functions KG and K′

G from Eq. (43) and (44),
respectively. They are denoted as SVM in Table I - VI. Gabor
jets were calculated at 8 different orientations and 5 different
scales and the grid size was 5 pixels in both directions. The
filters were scaled appropriately when using lower resolution
images. We did not use color for SVM learning because
all test objects had similar color. We utilized this feature to
construct a common color mixture model for tracking and
probabilistic segmentation. The third classifier was the nearest
neighbor classifier (NNC) that used the similarity measure
(35) – summed over all grid points – to calculate the nearest
neighbor based on the same Gabor jets as input data.

Results in Tables I - III demonstrate that foveation is
very useful for recognition. Kernel function (44) was used
here. The classification results clearly become worse with the
decreasing resolution. In fact, the data in Table III had to be
calculated differently because we could not estimate the planar
orientation accurately enough for affine warping, which made
the normalization procedure fail. This resulted in significantly
worse classification results. To calculate the results of Table
III, we sampled the Gabor jets on a 20 pixel grid, which
resulted in the same number of grid points as when the image
resolution is reduced from 160× 120 to 40× 30 and the grid
size is kept the same. Still, the recognition rate dropped even
with such data. Our results also show that we can collect
enough training data even without using accurate turntables
to systematically collect the images.

We also tested the performance of the system on data
captured under changed lighting condition (see Fig. 8) and
on noise corrupted data (see Fig. 9). We used two objects
(the last teddy bear and the toy dog from Fig. 6). The

Fig. 8. Images taken under different lighting conditions

Fig. 9. Images degraded with white Gaussian noise (std. dev. = 10)

TABLE I
CORRECT CLASSIFICATION RATE (IMAGE RESOLUTION 120× 160 PIXELS)

Training views per object SVM NNC

208 97.6 % 95.9 %

104 96.7 % 93.7 %

52 95.1 % 91.5 %

26 91.9 % 86.7 %

TABLE II
CORRECT CLASSIFICATION RATE (IMAGE RESOLUTION 60 × 80 PIXELS)

Training views per object SVM NNC

208 94.2 % 89.3 %

104 92.4 % 87.3 %

52 90.7 % 84.4 %

26 86.7 % 79.2 %

TABLE III
CORRECT CLASSIFICATION RATE (IMAGE RESOLUTION 30 × 40 PIXELS)

Training views per object SVM NNC

208 91.0 % 84.7 %

104 87.2 % 81.5 %

52 82.4 % 77.8 %

26 77.1 % 72.1 %

classification performance for these two objects on original
images was a bit higher than the combined performance, but
this was purely coincidental and we did not intentionally select
these two object to test the varying brightness condition. For
classification we used the same SVMs as in Tables I-III.
While the performance decreased slightly on darker images,
the results show that the method still performs well in such
conditions. This is due to the properties of Gabor jets and due
to the normalization of jets given by the similarity function
(35). Our experiments showed that the classification rate drops
significantly if one of the standard kernel functions, e. g. a
linear kernel, is used for the support vector learning.

Unlike in other tables, the results of Table V and VI were
calculated using SVMs based on kernel function KG from Eq.
(43), thus not taking into account the segmentation results. The
segmentation results were not used for the nearest neighbor
classification either. Comparing Tables V and VI we can say
that SVMs are robust against noise as well. The results of

TABLE IV
CORRECT CLASSIFICATION RATE FOR IMAGES WITH VARYING LIGHTING

CONDITIONS (SEE FIG. 8). ONLY TWO OBJECT WERE TESTED IN THIS

CASE (THE DATABASE STILL CONTAINED TEN OBJECTS) AND SVMS

CALCULATED BASED ON 208 VIEWS PER TRAINING OBJECTS WERE USED.

Image resolution normal dark very dark

120 × 160 99.5 % 97.7 % 97.9 %

60 × 80 96.7 % 93.5 % 95.0 %

30 × 40 93.6 % 89.3 % 88.2 %

Table VI can be directly compared to Table II, the only
difference being in the use of segmentation results. While both
types of SVMs performed well in this case, the performance of
the nearest neighbor classification dropped significantly when
all the data from the enclosing ellipse was used. This shows
that unlike nearest neighbor classification, SVMs can cope
well with outliers. Nevertheless, it is still advantageous to use
the kernel function that can include the segmentation results
because such an approach reduces the amount of data that
needs to be considered to calculate SVMs, hence resulting in
faster computing times. We expect that differences between the
two types of kernel functions would become more significant
for objects that cannot be accurately enclosed within an ellipse.

The presented results cannot be directly compared to the
results on standard databases for benchmarking object recog-
nition algorithms because here the training sets are much less
complete. Some of the classification errors are caused by the
lack of training data rather than by a deficient classification
approach. Unlike many approaches from the computer vision
literature that avoid the problem of finding objects, we tested
the system on images obtained through a realistic object track-

TABLE V
CORRECT CLASSIFICATION RATE FOR NOISE DEGRADED IMAGES (SEE

FIG. 9). THE IMAGE RESOLUTION WAS 60 × 80 AND SEGMENTATION

RESULTS WERE NOT USED.

Training views per object SVM NNC

208 91.5 % 79.8 %

104 90.7 % 74.5 %

52 90.5 % 68.0 %

26 87.1 % 60.3 %

TABLE VI
CORRECT CLASSIFICATION RATE WITHOUT NOISE DEGRADATION. THE

IMAGE RESOLUTION WAS 60 × 80 AND SEGMENTATION RESULTS WERE

NOT USED.

Training views per object SVM NNC

208 94.4 % 75.8 %

104 93.1 % 69.2 %

52 91.4 % 60.3 %

26 88.1 % 53.6 %

Fig. 10. DB in behavioral experiment. The task of the robot is to point
towards the desired object (toy dog in the right image) and to ignore the rest
of the objects.

ing and segmentation procedure. Only such data is relevant
for foveated object recognition because without some kind of
segmentation it is not possible to direct the fovea towards the
objects of interest.

Except for the training of SVMs, all the proposed methods
work in real-time and we used the system in interactive tasks
such as selecting the desired toy and reaching for it (see Fig.
10). In these experiments we exploited the dynamic nature of
the system and ran the recognition process on a time sequence
of images. The object was deemed recognized only if the
classification result does not change over a certain period
of time (few seconds in our experiments). This is based on
the assumption that correct classifications are stable whereas
misclassifications are not and change as the viewpoint changes.
Due to the high classification rates presented in Tab. I - VI,
this approach was efficient at filtering out the classification
errors.

VIII. CONCLUSIONS

Our experiments have shown that the proposed system is
effective for foveated object recognition. We presented the
first systematic study in humanoid robotics that takes into
account various factors influencing the performance of the
foveated object recognition. We showed both theoretically
and empirically what kind of accuracy we can expect from
the foveated setup using two cameras per eye. A closed-loop
control method that can be used to quickly direct the robot’s
eyes towards the object of interest was also presented. It does
not need accurate knowledge of eye and body kinematics and
can exploit the redundancies of the humanoid.

Most of the previous approaches that employed support
vector machines for object recognition used binary SVMs
combined with decision trees [33], [34], [39] to solve the
multi-class recognition problem. Our system is one of
the first (if not the first) object recognition systems that
makes use of multi-class SVMs to solve the multi-class
recognition problem. We developed a new kernel function
based on the Gabor jet similarity measure that can utilize the
results of bottom-up segmentation. Finally, we showed that
normalization based on affine warping effectively reduces
the amount of data needed to train the support vector
machines. Object representations can be effectively learned
just by collecting the data while the demonstrator attempts
to show the objects from all relevant viewing directions.

Experimental results show high recognition rates in realistic
test environments.

ACKNOWLEDGMENT

This work was supported in part by the EU Cognitive Sys-
tems project PACO-PLUS (FP6-2004-IST-4-027657) funded
by the European Commission.

REFERENCES

[1] B. Scassellati, “Eye finding via face detection for a foveated, active
vision system,” in Proc. Fifteenth Nat. Conf. Artifficial Intelligence
(AAAI ’98), Madison, Wisconsin, 1998, pp. 969–976.

[2] C. G. Atkeson, J. Hale, F. Pollick, M. Riley, S. Kotosaka, S. Schaal,
T. Shibata, G. Tevatia, A. Ude, S. Vijayakumar, and M. Kawato, “Using
humanoid robots to study human behavior,” IEEE Intelligent Systems,
vol. 15, no. 4, pp. 46–56, July/August 2000.

[3] H. Kozima and H. Yano, “A robot that learns to communicate with
human caregivers,” in Proc. Int. Workshop on Epigenetic Robotics, Lund,
Sweden, 2001.

[4] C. Breazeal, A. Edsinger, P. Fitzpatrick, and B. Scassellati, “Social con-
straints on animate vision,” IEEE Trans. Systems, Man, and Cybernetics,
vol. 31, no. 5, pp. 443–452, July/August 2001.

[5] S. Rougeaux and Y. Kuniyoshi, “Robust tracking by a humanoid vision
system,” in Proc. IAPR First Int. Workshop on Humanoid and Friendly
Robotics, Tsukuba, Japan, 1998.

[6] G. Sandini and G. Metta, Sensors and Sensing in Biology and Engineer-
ing. Wien-New York: Springer-Verlag, 2003, ch. Retina-like sensors:
motivations, technology and applications.

[7] G. Engel, D. N. Greve, J. M. Lubin, and E. L. Schwartz, “Space-variant
active vision and visually guided robotics: Design and construction of
a high-peformance miniature vehicle,” in Proc. 12th IAPR Int. Conf.
Pattern Recognition. Vol. 2 - Conf. B: Computer Vision & Image
Processing, Jerusalem, Israel, 1994, pp. 487 – 490.

[8] T. Shibata, S. Vijayakumar, J. Jörg Conradt, and S. Schaal, “Biomimetic
oculomotor control,” Adaptive Behavior, vol. 9, no. 3/4, pp. 189–208,
2001.

[9] F. Panerai, G. Metta, and G. Sandini, “Visuo-inertial stabilization in
space-variant binocular systems,” Robotics and Autonomous Systems,
vol. 30, no. 1-2, pp. 195–214, 2000.

[10] R. Manzotti, A. Gasteratos, G. Metta, and G. Sandini, “Disparity
estimation on log-polar images and vergence control,” Computer Vision
and Image Understanding, vol. 83, no. 2, pp. 97–117, 2001.

[11] G. Metta, F. Panerai, R. Manzotti, and G. Sandini, “Babybot: an artificial
developing robotic agent,” in Proc. Sixth Int. Conf. on the Simulation of
Adaptive Behaviors (SAB 2000), Paris, France, September 2000.

[12] G. Sun and B. Scassellati, “Reaching through learned forward model,”
in Proc. IEEE-RAS/RSJ Int. Conf. Humanoid Robots (Humanoids 2004),
Los Angeles, California, USA, 2004.

[13] C. Gaskett, A. Ude, and G. Cheng, “Hand-eye coordination through end-
point closed-loop and learned endpoint open-loop visual servo control,”
International Journal of Humanoid Robotics, vol. 2, no. 2, pp. 203–224,
2005.

[14] G. Cheng, A. Nagakubo, and Y. Kuniyoshi, “Continuous humanoid
interaction: An integrated perspective – gaining adaptivity, redundancy,
flexibility – in one,” Robotics and Autonomous Systems, vol. 37, pp.
161–183, 2001.

[15] A. Ude and C. G. Atkeson, “Online tracking and mimicking of human
movements by a humanoid robot,” Advanced Robotics, vol. 17, no. 2,
pp. 165–178, 2003.

[16] S. Vijayakumar, J. Conradt, T. Shibata, and S. Schaal, “Overt visual
attention for a humanoid robot,” in Proc. 2001 IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, Maui, Hawaii, USA, 2001, pp. 2332–
2337.

[17] P. Fitzpatrick, “First contact: an active vision approach to segmentation,”
in Proc. 2003 IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Las
Vegas, Nevada, 2003, pp. 2161–2166.

[18] A. Ude, T. Shibata, and C. G. Atkeson, “Real-time visual system for
interaction with a humanoid robot,” Robotics and Autonomous Systems,
vol. 37, no. 2-3, pp. 115–125, 2001.

[19] G. Metta, A. Gasteratos, and G. Sandini, “Learning to track colored
objects with log-polar vision,” Mechatronics, vol. 14, pp. 989–1006,
2004.

[20] A. Ude, C. G. Atkeson, and G. Cheng, “Combining peripheral and foveal
humanoid vision to detect, pursue, recognize and act,” in Proc. 2003
IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Las Vegas, Nevada,
2003, pp. 2173–2178.

[21] A. M. Arsenio, “Object recognition from multiple percepts,” in Proc.
IEEE-RAS/RSJ Int. Conf. Humanoid Robots (Humanoids 2004), Los
Angeles, California, USA, 2004.

[22] A. Ude and C. G. Atkeson, “Probabilistic detection and tracking at
high frame rates using affine warping,” in Proc. 16th Int. Conf. Pattern
Recognition, Vol. II, Quebec City, Canada, 2002, pp. 6–9.

[23] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Trans.
Pattern Analysis Machine Intell., vol. 22, no. 11, pp. 1330–1334, 2000.

[24] R. Y. Tsai, “A versatile camera calibration technique for high-accuracy
3d machine vision metrology using off-the-shelf tv cameras and lenses,”
IEEE J. Robotics and Automation, vol. 3, no. 4, pp. 323–344, 1987.

[25] S. Hutchinson, G. D. Hager, and P. I. Corke, “A tutorial on visual servo
control,” IEEE Trans. Robotics and Automation, vol. 12, no. 5, pp. 651–
670, 1996.

[26] D. Marr and H. K. Nishihara, “Representation and recognition of the
spatial organization of three-dimensional shapes,” Proc. R. Soc. of
London, B, vol. 200, pp. 269–294, 1978.

[27] T. Poggio and S. Edelman, “A network that learns to recognize three-
dimensional objects,” Nature, vol. 343, pp. 263–266, 1990.

[28] H. C. Longuet-Higgins, “Recognizing three dimensions,” Nature, vol.
343, pp. 214–215, 1990.

[29] P. Sinha and T. Poggio, “Role of learning in three-dimensional form
perception,” Nature, vol. 384, pp. 460–463, 1996.

[30] M. J. Tarr and H. H. Bülthoff, “Image-based object recognition in man,
monkey, and machine,” Cognition, vol. 67, no. 1-2, pp. 1–20, 1998.

[31] M. Turk and A. Pentland, “Eigenfaces for recognition,” Journal of
Cognitive Neuroscience, vol. 3, no. 1, pp. 71–86, 1991.

[32] L. Wiskott, J.-M. Fellous, N. Krüger, and C. von der Malsburg, “Face
recognition by elastic bunch graph matching,” IEEE Trans. Pattern Anal.
Machine Intell., vol. 19, no. 7, pp. 775–779, 1997.

[33] M. Pontil and A. Verri, “Support vector machines for 3D object
recognition,” IEEE Trans. Pattern Anal. Machine Intell., vol. 20, no. 6,
pp. 637–646, 1998.

[34] G. Guo, S. Z. Li, and K. L. Chan, “Support vector machines for face
recognition,” Image and Vision Computing, vol. 19, no. 9-10, pp. 631–
638, 2001.

[35] K. Crammer and Y. Singer, “On the algorithmic implementation of
multiclass kernel-based vector machines,” Journal of Machine Learning
Research, vol. 2, pp. 265–292, 2001.

[36] T. Joachims, “Making large-scale support vector machine learning
practical,” in Advances in Kernel Methods - Support Vector Learning,
B. Schölkopf, C. J. C. Burges, and A. J. Smola, Eds. Cambridge, MA:
MIT Press, 1999.

[37] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, “Support vec-
tor machine learning for interdependent and structured output spaces,” in
Proc. Twenty-first Int. Conf. Machine Learning, Banff, Alberta, Canada,
2004, article No. 104.

[38] C. J. C. Burges, “A tutorial on support vector machines for pattern
recognition,” Data Min. Knowl. Discov., vol. 2, no. 2, pp. 121–167,
1998.

[39] C. Wallraven, B. Caputo, and A. Graf, “Recognition with local feature:
the kernel recipe,” in Proc. Ninth IEEE Int. Conf. Computer Vision, Nice,
France, 2003, pp. 257–264.

Experience based Learning and Control of Robotic Grasping

Johan Tegin and Jan Wikander
Mechatronics Laboratory

Machine Design
KTH, Stockholm, Sweden

E-mail: johant, jan@md.kth.se

Staffan Ekvall and Danica Kragic
Computational Vision and Active

Perception Laboratory
KTH, Stockholm, Sweden

E-mail: ekvall, danik@nada.kth.se

Boyko Iliev
Biologically Inspired Systems Lab.

Applied Autonomous Sensor Systems
Örebro University, Örebro, Sweden

E-mail: boyko.iliev@tech.oru.se

Abstract— In this paper a method for automatic grasp gen-
eration for robotic hands is presented. Experience and shape
primitives are used in synergy and provide a basis not only for
grasp generation but also for a grasp evaluation process when
the exact pose of the object is not available. The problem is
studied in a Programming by Demonstration scenario where the
system first recognizes the human induced grasp and the object
it is applied to. Based on these, a suitable grasping scheme is
chosen for the robot so that it can perform a successful grasp.
In this work, the entire grasp sequence is thoroughly evaluated
in a simulated environment, from learning a grasp to actually
reaching it, including dynamic simulation of the grasp execution
with a focus on grasping objects whose pose is not perfectly
known. We also discuss the necessary requirements for evaluating
this approach in a real setting.

I. INTRODUCTION

One of the main challenges in the field of robotics is
to make robots ubiquitous. To intelligently interact with the
world, one of the key abilities that robots need to have is
to manipulate objects. Typical environments in which robots
will be deployed, such as a house or an office, are dynamic
and it is very difficult to equip robots with an ultimate and
general grasp planning capability. Planning a grasp is difficult
due to the large search space resulting from all possible
hand configurations, grasp types, and object properties that
occur in regular environments. Another important question
is how to equip robots with capabilities of gathering and
interpreting the necessary information for novel tasks through
interaction with the environment in combination with minimal
prior knowledge.

In relation to grasping, some recent approaches propose
the use of prehensile postures where object features and
experience is used to aid the selection of the pre-grasp posture
and grasp scheme. Such an approach significantly decreases
the size of the search space. This paper presents a method
for grasp generation for robotic hands where programming
by demonstration, experience and shape primitives are used
to provide a successful grasp. A top-down (experience) and
a bottom-up methodology are integrated to develop a more
natural grasp learning system. It is important to note that
the bottom-up methodology can be seen as semi-autonomous
grasping control. The proposed method is shown to work
for choosing the grasp approach vector, but can also be
used to choose other grasp control parameters that affect the
fingers’ closing sequence, controller switching, reactions to
tactile sensor inputs et cetera. The methods in this paper

are applicable to numerous grasping related problems but the
focus here is on one of the main challenges – choosing the
object approach vector, which is dependent both on the object
shape and pose as well as the grasp type. Using the proposed
method, the approach vector is chosen not only based on
perceptional cues but also on experience that some approach
vectors will provide useful tactile cues that finally result in
stable grasps. Moreover, a methodology for developing and
evaluating grasp schemes is presented where the focus lies on
obtaining stable grasps under imperfect vision.

Our longterm research is related to the design of the Pro-
gramming by Demonstration systems, [1], [2], where the user
teaches the robot new tasks by simply demonstrating them.
The robot can first imitate human behaviour and then improve
through continuous interaction with the environment. This
approach borrows some ideas from the field of teleoperation,
that provides a means of direct transmission of dexterity from
the human operator. Most of the work in this field focuses
however on low-level support such as haptic and graphical
feedback and deals with problems such as time delays, [3].
For instruction systems that involve object grasping and ma-
nipulation, visual and haptic feedback are necessary. The robot
has to be instructed what and how to manipulate, [4]. If the
kinematics of robot arm/hand system is the same as for the
human, a one-to-one mapping approach may be considered.
This is, however, never the case. The problems arising are
not only related to the mapping between different kinematic
chains for the arm/hand systems but also to the quality of
the object pose estimation delivered by the vision system.
Hence, the methods presented here should be considered in a
Programming by Demonstration setting where the system can
recognize the human induced grasp and the object it is applied
to. Based on these, a suitable grasping scheme is chosen for the
robot so that it can perform a successful grasp. Our previous
results related to these problems have been presented in [5],
[6], [7] and [8].

In this work, the entire grasp sequence is thoroughly eval-
uated in a simulated environment, from learning a grasp to
actually reaching it, including dynamic simulation of the grasp
execution. We also discuss the necessary requirements for
evaluating this approach in a real setting. It should be noted
here that the problems arising are not only related to the
mapping between different kinematic chains for the arm/hand
systems but also to the quality of the object pose estimation
delivered by the vision system.

The contributions of the work presented in this paper are:
• A suitable grasp is related to object pose and shape and

not only a set of points generated along its outer contour.
This means that we do not assume that the initial hand
position is such that only planar grasps can be executed as
proposed in [9]. In addition, grasps relying only on a set
of contact points may be impossible to generate on-line
since the available sensory feedback may not be able to
estimate the exactly same points on the object’s surface
once the pose of the object is changed.

• The choice of the suitable grasp is based on the experi-
ence, i.e. it is learned from the human by defining the
set of most likely hand preshapes with respect to the
specific object. A similar idea was investigated in [10]
but only one robotic hand and four grasp preshapes were
considered. We evaluate both Barrett [11] and Robonaut
hand, [12]. Since grasp preshapes are generated based
on recognition of human grasps it makes them more
natural. This is, of course, of interest for humanoid robots
where the current trend is to resemble human behaviour
as closely as possible.

• Finally, we evaluate the quality of different grasp types
with respect to inaccuracies in pose estimation. This is an
important issue that commonly occurs in robotic systems.
The reasons may be that the calibration of the vision
system or hand-eye system is not exact or that a detailed
model of the object is not available. We evaluate how big
pose estimation error different grasp types can handle.

This paper is organized as follows. In Section II we shortly
review the related work and in Section III a description of
the the whole system is given. In Section IV, our grasp
mapping strategy is presented in more detail followed by
the adopted control approach Section V. Planning and grasp
quality is discussed in Section VI and the results of the
conducted experimental evaluation are given in Section VII.
We summarize the paper in Section VIII.

II. RELATED WORK

Considering specifically object manipulation tasks, the work
on automatic grasp synthesis and planning is of significant
relevance, [10], [13], [9], [14]. The main issue here is the
automatic generation of stable grasps assuming that the model
of the hand is known and that certain assumptions about the
shape of the object can be made. Example of assumptions
may be that the full and exact pose of the object is known
in combination with its (approximate) shape, [10]. Another
common assumption is that the outer contour of the object
can be extracted and a planar grasp applied, [9]. The work on
contact-level grasps synthesis concentrates mainly on finding
a fixed number of contact locations with no regard to hand
geometry, [15], [16].

Taking into account both the hand kinematics as well as
some a-priori knowledge about the feasible grasps has been
acknowledged as a more flexible and natural approach towards
automatic grasp planning [17], [10]. In [17], a method for
adapting a given prototype grasp of one object to another

object, such that the quality of the new grasp would be at
least 75% of the quality of the original one was developed.
It has to be, however, pointed out that this process required a
parallel algorithm running on supercomputer to be computed
efficiently. The method proposed in [10] presents a system for
automatic grasp planning for a Barrett hand by modelling an
object as a set of shape primitives, such as spheres, cylinders,
cones and boxes in a combination with a set of rules to
generate a set of grasp starting positions and pregrasp shapes.

With respect to dynamic grasping and manipulation control,
previously presented results include catching a ball or playing
the piano using the robotic DLR Hand [18]. Exchanging a
light bulb has been shown using the Utah/MIT hand [19].
High speed grasping has also been demonstrated in [20]. In
terms of grasping systems, relevant ideas have been presented
in [21].

III. SYSTEM DESCRIPTION

In this paper, robotic grasping sequences are performed
combining a learning by demonstration framework with semi-
autonomous grasping. Let us start by a short motivation for the
system design. Consider a human and a robot each standing
in front of a table, on which a set of objects are placed,
Fig. 1. A specific task is then demonstrated to the robot. That
task may be moving (pick up/move/put down) an object. The
robot recognizes which object has been moved and where
using visual feedback. The magnetic trackers on the human
hand, provide information that enables the robot to recognize
the grasp type used. The robot should then reproduce or
imitate the action induced by the human, [5]. Recent work
has also evaluated how tasks can be learnt based on multiple
demonstrations, [6].

In this paper, we design and evaluate a system for automatic
grasp generation and fine control, that can be used in the
above scenario. The approach is evaluated in simulation using
two kinematically different hands, the Barrett hand and the
Robonaut hand. Using the Barrett hand as an example, a
methodology for designing a grasp controller for corrective
movements is outlined. In addition, it is shown how dynamic
simulation can be used for building grasp experience and for
the evaluation of grasp performance.

Fig. 1. Left: A human demonstrates object manipulation tasks to the robot.
A camera and data glove equipped with magnetic trackers provide sensory
input for task recognition. Right: The robot uses this information to reproduce
the demonstrated task using its own frame of reference.

Barrett Two−finger Thumb Robonaut Four−finger Robonaut Platform Robonaut Precision Disc

Four−finger Thumb Three−finger Thumb Light Tool Abducted Thumb Power Sphere Large Diameter Small Diameter Medium Wrap Platform Precision Disc

Barrett Precision DiscBarrett WrapRobonaut Wrap Robonaut Thumb Wrap

Fig. 2. Initial robot hand postures for different grasp types.

We shortly review the components currently used in our
system:

1) Object Recognition and Pose Estimation
Estimation of the objects’ poses before and after an
action enables the system to identify which object has
been moved where. For object recognition and pose
estimation, Receptive Field Co-occurrence Histograms
is used [7], [22]. In this study, it is assumed that the
objects are resting on a table. The pose can hence be
represented by three parameters (x, y and φ).

2) Grasp Recognition
A glove with magnetic trackers provides hand postures
to to a grasp recognition system [8]. The position of the
hand is used to segment the grasp task.

3) Grasp Mapping
An off-line learnt grasp mapping procedure maps the
human grasps to robot grasps as presented in Section IV.

4) Grasp Planning
The robot selects a suitable grasp controller. The object
will be approached from the direction that maximized
the probability of reaching a successful grasp. This is
presented in more detail in Section VI.

5) Grasp Execution
A semi-autonomous grasp controller is used to control
the hand from the planned approach position until a
force closure grasp is reached, Section V.

The evaluation of the system proposed in this work is
performed using a modified and extended version of the
robot grasp simulator GraspIt! [23] to allow for repetitive
experiments and statistical evaluation. We strongly believe
that the results of the experimental evaluation facilitate further
development of robot grasping systems.

IV. GRASP MAPPING

It has been argued that grasp preshapes can be used to limit
the large number of possible robot hand configurations. This
is motivated by the fact that, when planning a grasp, humans
unconsciously simplify the grasp choice by choosing from a
limited set of prehensile postures appropriate for the object
and task at hand [24]. Related to robotics, Cutkosky [25] clas-
sified human grasps needed in a manufacturing environment
and evaluated how the task and object geometry affect the
choice of grasp. The work on virtual fingers generalized the

existing grasp taxonomies, [26]. Based on the above work
and described in our previous work [8], the current grasp
recognition system can recognize ten different grasp types.
Due to the different kinematics between the robot and human
hand, the grasp demonstrated by the human has to be first
mapped to the robot. For this purpose, the mapping scheme
showed in Table I was defined.

Human Grasp Barrett Grasp Robonaut Grasp

Large Diameter Barrett Wrap Robo. Thumb Wrap

Small Diameter Barrett Wrap Robo. Thumb Wrap

Medium Wrap Barrett Wrap Robo. Thumb Wrap

Abducted Thumb Barrett Wrap Robonaut Wrap

Light Tool Barrett Wrap Robonaut Wrap

Four-finger Thumb Barrett Two-finger Thumb Robo. Four-finger

Three-finger Thumb Barrett Two-finger Thumb Robo. Four-finger

Power Sphere Barrett Wrap Robonaut Wrap

Precision Disc Barrett Precision Disc Robo. Precision Disc

Platform Barrett Wrap Robonaut Platform

TABLE I

THE MAPPING OF HUMAN GRASPS TO ROBOT GRASP CONTROLLERS. THE

LEFT COLUMN IS A SELECTION OF HUMAN GRASPS FROM CUTKOSKY’S

GRASP HIERARCHY.

It has to be noted here that the robot grasp types do not refer
only to hand postures, but to grasp execution schemes. Such
a scheme includes the initial position, the approach vector,
the robot hand closing sequence, controllers for corrective
movements, etc. Hence, different strategies are used to grasp
an object dependent on the grasp type. Fig. 2 illustrates the
initial hand postures for each of the controllers.

V. GRASP CONTROL

There are two basic grasp controllers in the system: Power
Grasp and Precision Grasp. There are eight variations of these,
three for the Barrett hand and five for the Robonaut hand.
The difference lies in the initial grasping position and the
finger control during closure. In this paper, all eight variations
are evaluated. As the the dynamics of the grasping process is
essential in deciding if a stable grasp was reached, the Barrett
Wrap grasp was simulated using rigid body dynamics and the
control scheme outlined in Section V-A.

• Power Grasp
First, the initial hand posture is set according to the grasp
type recognized from the human demonstrator. The hand
then approaches the object until contact is detected upon
which all fingers close until contact. Depending on the
grasp type, the joint angle speed may be different for
each joint, causing for example the thumb to close more
slowly.

• Precision Grasp
This controller is similar to the Power Grasp, but with an
added dimension. Once a contact is detected, the hand
retracts a predefined distance and then close all fingers
simultaneously. This allows the robot to better combine
tactile sensing with computer vision, as we previously
demonstrated in [27].

The grasp approach vector is defined relative to the object’s
pose and center. Other object shapes may require evaluation
of several approach vectors, e.g. the object top and bottom, or
one or more for each object feature.

A. Control Scheme

As previously mentioned, with the goal of making robots
ubiquitous, complete knowledge of the world cannot be ex-
pected. In addition, limited accuracy in computer vision or
effects such that objects or the hand itself may occlude vision,
requires a grasp control algorithm able to handle such uncer-
tainty. Here we show how to derive a low level controller that
is able to cope with some of these problems. The controller is
designed to cope with uncertainties and corrective movements,
but it does not communicate with higher level controllers.
Hence, the grasp control has no support for moving the wrist or
detecting object motion from vision. From start to completion
of the grasp, the grasp controller is autonomous.

The grasping sequence can be seen as comprised of two
phases; first closing the fingers until contact and then maintain-
ing the contact while applying proper contact forces. It is also
important to implement a contact displacement controller so
that the object position after finger contact can be controlled.
In other words, using position control we can also apply local
corrective movements. The need for such movements can be
exemplified by the Barrett hand where the grasp is often of
higher quality when all fingers have approximately the same
closing angle rather than when the object is far from the palm
center. This behaviour can be seen in the example task shown
in Fig. 4. Here, the Barrett hand is modelled as rigid bodies
where the two joint angles of each finger have a fixed relation.
Control is performed by applying torque joint. Hence position
control requires D-control or friction modelling. This and all
other control is performed in Matlab, see Fig. 3.

Before the contact, the velocity of each finger is individually
controlled. The contact is then detected by deriving the accel-
eration from the joint encoders. While the reference values
for position and force start to change, the velocity controller
is smoothly switched off. A feed-forward loop compensates
for gravity. Alternative controllers have been investigated in
e.g. [28].

Fig. 3. Software layout for the simulation environment.

Fig. 5. The box is grasped and lifted by the Barrett hand mounted on a
Puma arm.

B. Control Design

To enable a more intuitive formulation of the controller – as
opposed to decentralized control of reference trajectories and
torques – a control design is used that allows the controller to
be specified in a more direct way, as presented in our previous
work [29]. To exemplify the design process we use the Barrett
hand. The angle between the two fingers on the one side,
the spread, and the closure of each finger can be controlled
by setting the joint torques. Accordingly, the hand has four
degrees of freedom. The basis for the controller is a linear
transform T relating the original joint angles q to new control
variables x, see Fig. 6. The transform is

x = Tq. (1)

It is approximated that joint angle corresponds to finger
position. (The controller is designed as if the hand was a
parallel jaw gripper.) The closing force is controlled using
tactile force sensor data while joint encoder data is used to
control the finger positions. For now, spread is not controlled.

To control the total grasp force, a variable is defined to
control the hand closure:

x2 =
q2 + q3

2
+ q4. (2)

Fig. 4. Execution of a sample task where corrective movements are used to center the object.

Fig. 6. Grasp controllers: total grasp force, stability, centering, and spread.

To control centering, the next variable is defined as the
difference between the average joint angle of the two fingers
on the one side and the single finger on the other side:

x3 =
q2 + q3

2
− q4. (3)

Stability is added to the grasp by trying to keep the angles
q2 and q3 equal. A control variable that is the difference in
joint angle between the two fingers on the one side is defined:

x4 = q2 − q3. (4)

Controlling the force, centering and stability according to
the above and Fig. 6, the transform becomes:

T =

⎡⎢⎢⎣
1 0 0 0
0 1/2 1/2 1
0 1/2 1/2 −1
0 1 −1 0

⎤⎥⎥⎦ . (5)

The control forces f are computed using a P-controller
f = De where D contains controller gains and e is an error
vector with force and position errors. The joint torques F are
computed as

F = TT f = TT De. (6)

Tactile sensors, see Section V-C are used to control the
grasp force (x2) and joint encoders to control the position
(x3) and “stability” (x4). The error e is computed using the

desired [des] and actual [act] variable values as

e =
[

e1 e2 e3 e4

]T
e1 = 0
e2 =

[
0 1 0 0

]
ef

e3 =
[

0 0 1 0
]
ex (7)

e4 =
[

0 0 0 1
]
ex

ef = fdes − fact = fdes − T−T Fact

ex = xdes − xact = xdes − Tqact.

To focus on the displacement control, we use

D =

⎡⎢⎢⎣
0 0 0 0
0 kp 0 0
0 0 5kp 0
0 0 0 kp

⎤⎥⎥⎦ . (8)

C. Tactile Sensors

Most robots are equipped with sensors that measure joint
positions, but only tactile sensors are able to provide measure-
ments at the exact point of contact. In the current system, it is
assumed that three distributed extrinsic tactile sensors capable
of detecting the normal force only were mounted to the distal
links, see Fig. 7. This type of touch sensors are available at a
low cost and are easy to mount to an existing robot hand as
we have shown in our previous work [27]. Considerations on
different tactile sensors are put in to perspective in [30]. More
general overviews of sensors for grasping include [31], [32].

VI. GRASP PLANNING

The grasp planner assumes that an approximate model of
each object considered for grasping is available. Since it
can be difficult to automatically acquire detailed models of
complex shapes, it is more reasonable to assume that it will
be possible to extract shape primitives using computer vision

Fig. 7. The placement of the tactile sensors.

Fig. 8. Left: The real objects. Center: The modelled objects. Right: The
object primitives used for training.

or laser technology. Each object can be represented by its
appearance (textural properties) for visual recognition and its
object shape, or shape primitives, for grasp planning. The basic
shape primitives are e.g. truncated cone, sphere, box, cylinder
etc. Recent progress presented in [33] shows a promising
method for retrieving shape primitives using vision, although
the method currently is restricted to objects with uniform color.
To evaluate an object representation using primitives, primitive
representations were derived, see Fig. 8.

The planning is performed using a simple search technique
where many different approach vectors are tested on the object.
The training can be performed on either the primitive object
model or the full object model, and in the experiments we

have evaluated both methods. A more detailed model will in
general result in higher grasp quality on the real object.

For power grasps, three parameters (θ, φ, ψ) are varied
describing the approach direction and hand rotation. For
precision grasps, a fourth parameter d, that describes the retract
distance when contact is detected, is added. The number of
evaluated values for the variables are θ=9, φ=17, ψ=9, d=6.
For the precision grasps the search space was hence 8262
grasps which required about an hour of training using kine-
matic simulation. For the power grasp simulations, 1377 ap-
proach vectors were evaluated. The 5 s long grasping sequence
is dynamically simulated in 120 s (Intel P4, 2.5 GHz, Linux).
The quality measures for each grasp is stored in a grasp
experience database.

A. Grasp Quality Measures

To evaluate grasps, the 6-D convex hull spanned by the
forces and torques that the grasp can resist is analyzed
using GraspIt! [34]. The ε-L1 quality measure is the smallest
maximum wrench the grasp can resist and is used for power
grasps. For precision grasps, a grasp quality measure based on
the volume of the convex hull was used, volume-L1. These
grasp quality measures obviously require full knowledge of
the world, and can thus only be used in simulation.

B. Grasp Retrieval

At run-time, the robot retrieves the approach vector that
result in the highest quality grasp from the grasp experience
database. As the highest quality grasp is not necessarily
the most robust with respect to position and model errors,
the grasp should be chosen taking also those parameters
into account, see Section VII-B. Because of robot kinematic
constraints and possible non-free paths toward the object, all
approach directions are not suitable at task execution time.
Thus, the robot searches the database only for directions that
are applicable in the current situation. In a Programming by
Demonstration scenario, the mapping from human to robot
grasp is one-to-one. But if the robot acts autonomously, i.e.
explores the environment and performs grasp on unknown
objects, the grasp type is not defined and the best grasp can
be chosen from among all possible grasps.

VII. EXPERIMENTAL EVALUATION

This section provides experiments that demonstrate i) grasps
performed by the robot hand given the current state of the
environment and the grasp experience database, and ii) ex-
periments that show how errors in pose estimation affect the
success of the final grasping result.

The five objects shown in Fig. 8 were modelled and added
to the GraspIt! simulator. The real objects were placed on
a table, Fig. 9 (left). A camera monitors the world state
which consist of five objects placed at arbitrary positions. The
figure on the right shows the results of object recognition and
pose estimation process - the objects are placed at the same
positions in the simulator as they are in the world.

Fig. 9. Left: The human moves the rice box. The system recognizes what
object has been moved and which grasp is used. Right: The robot grasps the
same object using the mapped version of the recognized grasp.

The human teacher, wearing a data-glove with magnetic
trackers, moves one object. The move is recognized by the
vision system and so is the grasp the teacher used. This
information is used to generate a suitable robot grasp (grasp
mapping) that controls the movement of the robot hand in the
simulator.

A. Control

Fig. 10 shows a few examples of the best grasps obtained
during kinematic simulation when the robot is free to choose
any approach direction. Fig. 10 (i) shows an example of a
failed grasp, due to a simulated error in pose estimation.

Grasping the rice box was dynamically simulated using the
controller from Sections V-A and V-B. Of the 1377 worlds,
1035 were automatically discarded because the hand interfered
with the table upon which the box is placed while approaching
the object, or that the object was obviously out of reach. The
remaining 342 initial robot hand positions were evaluated and
resulted in 171 force closure grasps, 170 failed grasp attempts,
and one simulation error. The top three hand initial positions
and the resulting grasps are shown in Fig. 11.

Some sample data from the third best simulation, Fig. 11 c)
and f), is shown in Fig. 12. The desired grasping force is set
to 5 N. A low-pass filter is used for the tactile sensor signal.

B. Introducing Error in Pose Estimation

To evaluate the performance under imperfect pose estima-
tion, we have simulated errors in pose estimation by providing
an object pose with an offset. As pointed out in [35], the
robustness of a grasp to positioning the end-effector has not
been widely addressed in the literature.

In the experiment, the target object was placed on the table
and the robot performed 50 grasps using different approaches.
The robot hand position was between each grasped translated
a certain distance in a random direction. As a result, the robot
interpreted the situation as if the object (and possibly table)
was in another position than that for which the grasp was
planned. This was repeated for five different vector lengths: 0,
1, 2, 3, and 4 cm. In total, the robot grasped the object 250
times from a total of 201 different positions.

Fig. 13 - 17 show the grasp success rates for various grasps
and objects, under increasing error in position estimation.

(a) Barrett Preci-
sion Disc

(b) Barrett Wrap (c) Barrett Wrap

(d) Robonaut
Precision Disc

(e) Robonaut
Thumb Wrap

(f) Robonaut
Thumb Wrap

(g) Barrett
2-finger Thumb

(h) Robonaut 4-
finger Thumb

(i) Failed Barrett
Wrap

Fig. 10. Examples of grasp executions for various grasp types and objects.
(a)-(h) shows successful grasps, while (i) shows a failed grasp due to a
simulated error in pose estimation. The contact friction cones are plotted in
red.

The hand is moved along the approach vector until contact
and the grasp scheme is initialized. A grasp is considered
successful if it results in force-closure. As expected, power
grasps are more robust to position errors than precision grasps.
The precision grasps target details of an object, e.g., the
bottle cap or the ear of the mug. Thus, the grasps are much
more sensitive to position inaccuracies. It is interesting to
see that the dynamic simulation and the controller previously
outlined yields significantly better results than that from purely
kinematic simulation. This is a motivation for continuing the
investigations on the dynamics of the grasp formation process.

It is clear that the Barrett hand is more robust than the
Robonaut hand, likely due to its long fingers. The exception
is the grasping of the mug, Fig. 14, where the Robonaut Four-
finger Thumb grasp is the best.

The bottle and the mug have been trained both using a

0 1 2 3 4 5
0

2

4

6
fGrasp − desired grasp force

Time [s]

F
or

ce
 [N

]

(a) Desired grasp force

0 1 2 3 4 5
0

2

4

6
filtS

Time [s]
F

or
ce

 [N
]

Sensor 2

Sensor 3

Sensor 4

(b) Tactile sensors - filtered

0 1 2 3 4 5
0

0.5

1

1.5
qActual

Time [s]

Jo
in

t A
ng

le
 [r

ad
]

DOF 1

DOF 2

DOF 3

DOF 4

(c) Joint angles

0 1 2 3 4 5
0

2

4

6

x 10
8 Fbarret

Time [s]

Jo
in

t T
or

qu
e

[µ
N

m
m

]

DOF 1

DOF 2

DOF 3

DOF 4

(d) Joint torques

Fig. 12. Data logged from the grasp simulation in Fig. 11 c) and f). The first 1.3 seconds the fingers close under force control. The force at that time is
used as the start value for the force controller that ramps the grasp force to 5 N. The joint angle values show that the joint angles are getting closer to equal
as time goes by. The controller output shows some undesirable peaks induced by collisions between the fingers and the object.

(a) Best grasp –
initial

(b) Second best
grasp – initial

(c) Third best
grasp – initial

(d) Best grasp –
final

(e) Second best
grasp – final

(f) Third best
grasp – final

Fig. 11. The top three approach positions and the final grasps for the rice
box. These results show that it is important to consider the dynamics when
designing grasp execution schemes and for analyzing the grasp formation
process. In several simulations the fingers stop after contacting the box as
they should, but when the grasping force is increased, the box slides on the
low friction proximal links until it comes in contact with the high friction
tactile sensors.

primitive model and using the real model (see Fig. 8). Training
on the primitive model does not decrease the grasp success
rate much, especially not for the bottle. However, the primitive
model of the mug is, unlike the real mug, not hollow, which
causes problems for some of the precision grasps trained on
the primitive.

We have also evaluated how an error in rotation estimate
affects the result. For each object and grasp type, we tested
how much the object could be rotated before the grasp failed.
As expected, for symmetric objects like the orange and the
bottle this type of error has no effect. However, for the other
objects we found that the difference in rotation error tolerance
is large. Table II shows the rotation tolerance for various
objects and grasp types. For two of the Robonaut grasps on

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Position error (cm)

G
ra

sp
 S

uc
ce

ss
 R

at
e

Robonaut Thumb Wrap

Barrett Thumb Wrap

Fig. 15. Grasping the orange.

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Position error (cm)

G
ra

sp
 S

uc
ce

ss
 R

at
e

Robonaut Thumb Wrap
Barrett Thumb Wrap

Fig. 16. Grasping the zip disc box.

the mug, the rotation is not a problem, with a perfect success
rate. For one of the Barrett grasps on the mug, the rotation
estimation is absolutely crucial and cannot withstand a small
rotation inaccuracy. Thus, this type of grasp should be avoided
for this object.

C. Discussion

The success rate of the presented system depends on the
performance of four subparts: i) object recognition, ii) grasp
recognition, iii) pose estimation of the grasped object, and

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Position error (cm)

G
ra

sp
 S

uc
ce

ss
 R

at
e

Robonaut Thumb Wrap

Robonaut Thumb Wrap, trained on primitive

Robonaut Precision Disc

Robonaut Precision Disc, trained on primitive

Barrett Wrap

Barrett Wrap, trained on primitive

Barrett Precision Disc

Barrett Precision Doranisc, trained on primitive

Fig. 13. Grasping the bottle.

Fig. 14. Grasping the mug.

iv) grasp execution. As demonstrated in previous papers, [7],
[8], the object recognition rate for only five objects is around
100 %, and the grasp recognition ratio is about 96 % for ten
grasp types. Therefore, the performance in a static environment
may be considered close to perfect with respect to the first
steps. As the object pose and possibly the object model is not
perfectly known, some errors were introduced that indicate the
needed precision in the pose estimation given a certain grasp
execution scheme. Initial results suggest that for certain tasks
stable grasping is possible even when the object’s position is
not perfectly known.

If a high quality dynamic physical modelling is essential,

for example when grasping compliant objects or for advanced
contact models, other simulation tools may be more suitable,
see e.g. [36]. But since grasping often can be performed
rather slowly, and as model errors for mass properties, sensors,
friction, and in actuator and gear models are often quite large,
second order dynamic effects can be ignored in the control
design and instead considered as small disturbances [37].

VIII. CONCLUSIONS

Methods for generating robot grasps based on object mod-
els, shape primitives and/or human demonstration have been
presented and evaluated. While many factors are important, the
focus lies on one of the main challenges in automatic grasping;

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

Position Error [cm]

G
ra

sp
 S

uc
ce

ss
 R

at
e

Barrett Kinematic
Robonaut Kinematic
Barrett Dynamic

Fig. 17. Grasp success rates for different controllers and simulations. The
dynamic grasp is the one from Fig. 11 c) and f). (Due to some problems
with the simulator, a limited number of samples were used in the evaluation
of dynamic grasping. For the 0, 1, 2, 3, and 4 cm random displacement, the
number of trials were 50, 14, 18, 18, and 12 respectively (instead of 50). Still,
these samples were truly random and we believe that the number of trials is
high enough to draw conclusions.)

Object and Grasp Type: Rot. Err. Tolerance (degrees):

Mug, Robonaut Precision Disc 4

Mug, Robonaut Thumb Wrap 180

Mug, Robonaut Four Finger Thumb 180

Zip Disc Box, Robonaut Thumb Wrap 17

Rice Box, Robonaut Thumb Wrap 2

Zip Disc Box, Barrett Wrap 3

Rice Box, Barrett Wrap 17

Mug, Barrett Wrap 12

Mug, Barrett Precision Disc 0

Mug, Barrett Two Finger Thumb 6

TABLE II

THE ROTATION ERROR TOLERANCE FOR DIFFERENT OBJECTS AND GRASP

TYPES.

the choice of approach vector which depend on the object as
well as on the grasp type. Using the proposed methods, the
approach vector is chosen not only based on perceptional cues,
but on experience that some approach vectors will provide
useful tactile cues that result in stable grasps. Moreover, a
methodology for developing and evaluating grasping schemes
has been presented. Focus lies on obtaining stable grasps
under imperfect vision, something that has not been thoroughly
investigated in the literature.

Simulating results was necessary for generating insight into
the problem and for performing the statistical evaluation for
the grasp experience, since i) the world must be reset after each
grasp attempt, and ii) computing the grasp quality measure
requires perfect world knowledge.

The proposed strategies have been demonstrated in combi-
nation with tactile feedback and hybrid force/position control
of a robot hand. The functionality of the proposed framework
for grasp scheme design has been shown by successfully
reaching force closure grasps using a Barrett hand and dy-

namic simulation.
Future work include further grasp execution scheme de-

velopment and implementation. Furthermore, to ensure truly
secure grasping outside the simulator, the grasping scheme
must also comprise a grasp quality evaluation method that does
not use information available in simulation only. Preferably
such a measure would also depend upon the task at hand.

The grasp experience database contains not only a record
of success rates for different grasp controllers but also the
object-hand relations during an experiment. In this way, we
can specify under what conditions the learnt grasp strategy
can be reproduced in new trials.

The results of the experimental evaluation performed in a
simulated environment suggest that the outlined approach and
tools can be of great use in robotic grasping, from learning by
demonstration to robust object manipulation.

ACKNOWLEDGEMENT

This work was supported by EU through the project PACO-
PLUS, FP6-2004-IST-4-27657, by the Knowledge Foundation
through AASS at Örebro University, and by the Swedish
Foundation for Strategic Research through the Centre for
Autonomous Systems at KTH.

REFERENCES

[1] H. Friedrich, R. Dillmann, and O. Rogalla, “Interactive robot program-
ming based on human demonstration and advice,” in Christensen et al
(eds.):Sensor Based Intelligent Robots, LNAI1724, pp. 96–119, 1999.

[2] J. Aleotti, S. Caselli, and M. Reggiani, “Leveraging on a virtual
environment for robot programming by demonstration,” in Robotics and
Autonomous Systems, Special issue: Robot Learning from Demonstra-
tion, vol. 47, pp. 153–161, 2004.

[3] M. Massimino and T. Sheridan, “Variable force and visual feedback
effects on teleoperator man/machine performance,” in Proc. of NASA
Conference on Space Telerobotics, 1989.

[4] S. Calinon, A. Billard, and F. Guenter, “Discriminative and adaptative
imitation in uni-manual and bi-manual tasks,” in Robotics and Au-
tonomous Systems, vol. 54, 2005.

[5] S. Ekvall and D. Kragic, “Integrating object and grasp recognition for
dynamic scene interpretation,” in IEEE International Conference on
Advanced Robotics, ICAR’05, 2005.

[6] S. Ekvall and D. Kragic, “Learning task models from multiple human
demonstration,” in IEEE International Symposium on Robot and Human
Interactive Communication, RO-MAN’06, 2006.

[7] S. Ekvall and D. Kragic, “Receptive field cooccurrence histograms for
object detection,” in IEEE/RSJ IROS, 2005.

[8] S. Ekvall and D. Kragic, “Grasp recognition for programming by
demonstration,” in IEEE/RSJ IROS, 2005.

[9] A. Morales, E. Chinellato, A. H. Fagg, and A. del Pobil, “Using
experience for assessing grasp reliability,” International Journal of
Humanoid Robotics, vol. 1, no. 4, pp. 671–691, 2004.

[10] A. T. Miller, S. Knoop, and H. I. C. P.K. Allen, “Automatic grasp plan-
ning using shape primitives,” in In Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 1824–1829, 2003.

[11] W. Townsend, “The barretthand grasper – programmably flexible part
handling and assembly,” Industrial Robot: An International Journal,
vol. 27, no. 3, pp. 181–188, 2000.

[12] C. Lovchik and M. Diftler, “The Robonaut hand: a dexterous robot hand
for space,” in Robotics and Automation, IEEE International Conference
on, vol. 2, pp. 907–912, 1999.

[13] N. S. Pollard, “Closure and quality equivalence for efficient synthesis
of grasps from examples,” International Journal of Robotic Research,
vol. 23, no. 6, pp. 595–613, 2004.

[14] R. Platt Jr, A. H. Fagg, and R. A. Grupen, “Extending fingertip grasping
to whole body grasping,” in Proc. of the Intl. Conference on Robotics
and Automation, 2003.

[15] A. Bicchi and V. Kumar, “Robotic grasping and contact: A review,”
in Proceedings of the IEEE International Conference on Robotics and
Automation, ICRA’00, pp. 348–353, 2000.

[16] D. Ding, Y.-H. Liu, and S. Wang, “Computing 3-d optimal formclosure
grasps,” in In Proc. of the 2000 IEEE International Conference on
Robotics and Automation, pp. 3573 – 3578, 2000.

[17] N. S. Pollard, “Parallel methods for synthesizing whole-hand grasps
from generalized prototypes,” 1994.

[18] C. Borst, M. Fischer, S. Haidacher, H. Liu, and G. Hirzinger, “DLR
hand II: Experiments and experiences with an antropomorphic hand,” in
IEEE Int. Conf. on Robotics and Automation, vol. 1, pp. 702–707, Sept.
2003.

[19] M. Jägersand, On-line Estimation of Visual-Motor Models for Robot
Control and Visual Simulation. PhD thesis, Univ. of Rochester, 1997.

[20] A. Namiki, Y. Imai, M. Ishikawa, and M. Kaneko, “Development of a
high-speed multifingered hand system and its application to catching,” in
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, vol. 3, pp. 2666–
2671, Oct. 2003.

[21] I. Horswill, Behavior-Based Robotics, Behavior Design. Technical report
CS 395, Northwestern University, 2000.

[22] S. Ekvall, D.Kragic, and F. Hoffmann, “Object recognition and pose es-
timation using color cooccurrence histograms and geometric modeling,”
Image and Vision Computing, vol. 23, pp. 943–955, 2005.

[23] A. T. Miller and P. Allen, “Graspit!: A versatile simulator for grasp-
ing analysis,” in Proceedings of the of the 2000 ASME International
Mechanical Engineering Congress and Exposition, 2000.

[24] J. Napier, “The prehensile movements of the human hand,” in Journal
of Bone and Joint Surgery, vol. 38B(4), pp. 902–913, 1956.

[25] M. Cutkosky, “On grasp choice, grasp models and the desing of
hands for manufacturing tasks,” IEEE Transactions on Robotics and
Automation, vol. 5, no. 3, pp. 269–279, 1989.

[26] T. Iberall, “Human prehension and dextrous robot hands,” The Int. J. of
Robotics Research, vol. 16, no. 3, 1997.

[27] D. Kragic, S. Crinier, D. Brunn, and H. I. Christensen, “Vision and
tactile sensing for real world tasks,” Proceedings IEEE International
Conference on Robotics and Automation, ICRA’03, vol. 1, pp. 1545–
1550, September 2003.

[28] R. Volpe and P. Khosla, “A theorethical and experimental investigation
of explicit force control strategies for manipulators,” IEEE Trans.
Automatic Control, vol. 38, pp. 1634–1650, Nov. 1993.

[29] J. Tegin and J. Wikander, “A framework for grasp simulation and
control in domestic environments,” in IFAC-Symp. on Mechatronic Syst.,
(Heidelberg, Germany), Sept. 2006.

[30] R. D. Howe, “Tactile sensing and control of robotic manipulation,”
Advanced Robotics, vol. 8, no. 3, pp. 245–261, 1994.

[31] M. H. Lee and H. R. Nicholls, “Tactile sensing for mechatronics - a
state of the art survey,” Mechatronics, vol. 9, pp. 1–31, Oct. 1999.

[32] J. Tegin and J. Wikander, “Tactile sensing in intelligent robotic manip-
ulation – a review,” Industrial Robot, vol. 32, no. 1, pp. 64–70, 2004.

[33] F. Bley, V. Schmirgel, and K. Kraiss, “Mobile manipulation based on
generic object knowledge,” in IEEE International Symposium on Robot
and Human Interactive Communication, RO-MAN’06, 2006.

[34] A. Miller and P. Allen, “Examples of 3D grasp quality computations,”
in Proceedings of the of the 1999 IEEE International Conference on
Robotics and Automation, pp. 1240–1246, 1999.

[35] A. Morales, P. J. Sanz, A. P. del Pobil, and A. H. Fagg, “Vision-based
three-finger grasp synthesis constrained by hand geometry,” Robotics
and Autonomous Systems, vol. 54, no. 6, pp. 494–512, 2006.

[36] G. Ferretti, G. Magnani, P. Rocco, and L. Viganò, “Modelling and
simulation of a gripper with dymola,” Mathematical and Computer
Modelling of Dynamical Systems, 2006.

[37] D. Prattichizzo and A. Bicchi, “Dynamic analysis of mobility and
graspability of general manipulation systems,” IEEE Trans. on Robotics
and Automation, vol. 14, no. 2, pp. 241–257, 1998.

Action Recognition and Understanding

Through Motor Primitives

Isabel Serrano Vicente†, Ville Kyrki‡, Danica Kragic† and Martin Larsson†

† Royal Institute of Technology, Computational Vision and Active Perception lab,

Centre for Autonomous Systems, S-100 44 Stockholm, Sweden

‡ Lappeenranta University of Technology, Department of Information Technology, Finland

isabelsv@nada.kth.se,kyrki@lut.fi,danik@nada.kth.se,martinla@nada.kth.se

Abstract

In robotics, recognition of human activity has been used extensively for robot task learning

through imitation and demonstration. However, there has not been much work on modeling and

recognition of activities that involve object manipulation and grasping. In this work, we deal with

single arm/hand actions which are very similar to each other in terms of arm/hand motions.

The approach is based on the hypothesis that actions can be represented as sequences of motion

primitives. Given this, a set of 5 different manipulation actions of different levels of complexity are

investigated. To model the process, we are using a combination of discriminative support vector

machines and generative hidden Markov models. The experimental evaluation, performed with 10

people, investigates both definition and structure of primitive motions as well as the validity of the

modeling approach taken.

keywords: action recognition, primitive actions, Hidden Markov Models, Support Vectors Machines,

object manipulation

1 INTRODUCTION

Neuroscientific and psychological literature states that the core of developmental learning in humans is

by watching another person performing a task. This has also motivated the research in the robotics area

of learning by imitation and robot programming through demonstration. There is an extensive amount

of work dealing with issues of what, when and how to imitate.

Human-computer interaction, surveillance, video retrieval are just a few examples of areas that

require human activity recognition [1]. In robotics, recognition of human activity has been used ex-

tensively for robot task learning through imitation and demonstration, [14, 23, 3, 18, 19, 16, 13, 7, 4].

For humans, one of the fundamentals of social behaviors is the understanding of each others’ intentions

1

through perception and recognition of performed actions. However, the neural and functional mecha-

nisms underlying this ability in human are still poorly understood [11] which makes it difficult to develop

the necessary models needed for designing a robot system that can learn just by observing a human or

another robot performing an action. The recent discovery of mirror neurons in monkey’s brain [22, 9]

has nevertheless introduced new hypotheses and ideas about the process of imitation and its role in the

evolution.

It has been shown in [8] that an action perceived by a human can be represented as a sequence

of clearly segmented action units. This motivates the idea that the action recognition process may

be considered as an interpretation of the continuous human behaviors which, in its turn, consists of a

sequence of action primitives [13] such as reaching, picking up, putting down. In relation, learning what

and how to imitate has been recognized as an important problem, [4]. It has been argued that the data

used for imitation has statistical dependencies between the activities one wishes to model and that each

activity has a rich set of features that can aid both the modeling and recognition process.

Most of the actions that the future service robot needs to perform are non-cyclic in nature. In this

work, we are investigating non-cyclic actions, with a focus on manipulation actions, which have not

been studied extensively earlier. The specific questions that the study aims to answer are: 1) Can

individual actions be considered as manipulation primitives? 2) If not, can these be broken down into

primitives? and 3) How can new actions emerge from known primitives? For this purpose, we consider

five different manipulation actions performed on an object: a) pick up, b) rotate, c) push forward, d)

push to side, and e) move to side by picking up. To increase the variability, each action is performed

by 10 different people in 12 different conditions. We strongly believe that the findings of the study will

facilitate imitation learning in robots, both in terms of what vocabulary of primitives to learn and how

to combine the individual primitives in order to form more complex actions.

To model the process, we are using a combination of discriminative and generative models. A support

vector machine (SVM) is used to model and recognize individual primitives, while the sequences of

primitives are modeled using a hidden Markov model (HMM). The measurements are based on magnetic

pose sensors. Experimental evaluation demonstrates the feasibility and validity of the adopted approach.

This paper is organized as follows. First, we review related work in Sec. 2. Then, the theoretical

basis for the work and two different approaches for primitive based modeling of manipulation actions

are described in Sec. 3. Section 4 describes our experimental system. Experiments and their results are

reported in Sec. 5. Finally, the results are discussed and a conclusion given in Sec. 6.

2 RELATED WORK

In [18, 19], a framework for acquiring hand-action models by integrating multiple observations based

on gesture spotting is proposed. [16] present a gesture imitation system where the focus is put on the

coordinate system transformation so that the teacher induced gesture is transformed into the robot’s

egocentric system. This way the robot observes the gesture as it was generated by the observer himself.

2

[13] approaches the task learning problem by proposing a system for deriving behavior vocabularies or

simple action models that can be used for more complex task extraction and learning. [4] presents a

learning system for one and two-hand motions where the robot’s body constraints are considered as

a part of the optimal trajectory generation process. An interesting trend to note here is that most

of the studies are based on a single user generated motion. A natural question to pose here is how

the underlying modeling methods scale and apply for cases when the robot is supposed to learn from

multiple teachers. The experimental evaluation conducted in our work is based on 10 people.

Related to the theoretical framework used in this work, support vector machine (SVM) has been

applied to several different application areas. Two very common data types are visual and speech data

[10, 5, 2]. SVMs have also been used with success in computational biology, for example in protein

classification [15]. Most of the work dealing with SVMs and time-series data has been done in speech

recognition. Earlier work with SVMs [10] presented one drawback when working with sequential data,

namely that SVM lacks a way of handling the time dependencies in the data. In order to use time

sequences as SVM input, variable length time sequences can be either normalized to same length before

applying the SVM. Another approach is to embed dynamic time warping (DTW) directly into the SVM

kernel function [24]. Third, probably most common way to handle the “time problem” is to combine a

SVM with Hidden Markov Models (HMM) [2, 10, 25]. SVM is still used to classify single points or brief

time windows, but the output of the SVM is then used an input to a HMM which then finds the most

probably path or sequence in consideration of time. It is also well known that the choice of the SVM

kernel function has a significant effect on the results but unfortunately the best choice is application

dependent.

In action recognition and understanding, it is most common to take a holistic approach, that is, to

consider all measurements as a single feature. This in contrast to speech recognition where it is common

to divide the data into individual phonetics or words. From the point of view of imitation learning or

“learning by showing”, the primitives are an attractive option since they can alleviate mapping motion

from humans to robots which differ in their embodiment. In addition, having a common vocabulary of

primitives can aid in task understanding and planning as the task can be then described as a sequence

of events. For this reason, we now concentrate on this body of work. Ogawara et al. [20] propose

to extract primitive actions by learning several HMMs and then cluster these HMMs such that each

cluster represents one primitive. Thus, variability within each primitive can be modeled as each cluster

can contain several examples. Vecchio et al. [6] model two-dimensional drawing actions as dynamical

systems and classify and segment motions according to a priori known motion classes. Representation

and segmentation of repetitive movements has been studied by Lu et al. [17] using an auto-regressive

model and detecting changes in the model parameters. Finally, stochastic parsing has been proposed

for primitive-based action recognition and understanding [12, 26].

3

3 MODELING METHODS

Next, we present the theoretical basis on recognizing individual primitives using SVMs and the time

sequence modeling using hidden Markov models. Then, two different approaches of primitive based

modeling of manipulation actions are described.

3.1 Support vector machines

Support vector machines (SVMs) are a popular margin maximizing classification method for tasks

involving two or more classes. The aim of support vector classification is to separate two classes,

mapped into a high dimensional feature space, by a hyperplane with a maximal margin to both classes.

The hyperplane is the decision boundary of the classifier with feature vectors on one side belonging to a

first class and vectors on the other side to a second one. To represent complex decision boundaries, the

mapping from the original feature space to the high dimensional space is nonlinear. Instead of using the

nonlinear mapping explicitly, a kernel function can be used to implicitly map from the original feature

space to the high dimensional space. This makes the use of high dimensional mappings computationally

feasible.

Let us define the input data as a set of N feature vectors xi which belong to either of two classes.

The dataset can then be written as {(x1, y1), ..., (xN , yN)} where yi ∈ {−1, 1} represents the class

corresponding to xi.

The classifier having maximum margin to both classes can be discovered by solving the constrained

minimization problem

Q(α) =
N∑

k=1

αk −
1
2

N∑
k=1

N∑
j=1

αkαjykyjK(xk,xj) (1)

subject to constraints

∀k : 0 ≤ αk ≤ C,
N∑

k=1

αkyk = 0. (2)

Here, αi are the support vector weights, which represent the contribution of each training sample to the

resulting decision boundary. Each sample xi with αi greater than zero is called a support vector as it

affects the classification result. K(·, ·) is the kernel function corresponding to the dot product of two

vectors in the high dimensional space, and C is a penalty parameter for misclassified samples.

The kernel function used in this work is the Gaussian kernel function

K(xi,xj) = e
−‖xi−xj‖2

2σ2 (3)

where σ is the bandwidth parameter of the Gaussian kernel. Using the kernel function, the classification

is performed by

f(x) = sign

(
N∑

i=1

αiyiK(x,xi) + b

)
(4)

where x is the feature vector to be classified and b = 1 −
∑N

k=1 αkykK(x1,xk) where x1 is any of the

support vectors belonging to class 1.

4

To extend the above for more than two classes, we take the one-against-one approach. That is, by

denoting the number of classes by k, k(k − 1)/2 classifiers are trained using all pairs of classes. To

classify a sample from an unknown class, it is classified by all classifiers, and each result is a vote for

the class. Majority voting is then used to decide the class of the sample. The one-against-one approach

has been found very successful with SVMs but it suffers from increased number of individual classifiers

when the number of classes is very high.

3.2 Markov chain and hidden Markov models

A hidden Markov model (HMM) is one of the most common statistical models for time-series data,

having applications in speech, gesture, and handwriting recognition, as well as bioinformatics. An

HMM can be considered a probabilistic version of a finite state machine. The time evolution of states

is modeled as a Markov chain, a discrete-time stochastic process with the Markov property, that is, the

probability distribution of the future states depend only on the current state and not on any of the

past states. In this work, we are interested in time-homogeneous Markov chain models, that is, the

state transition probabilities are invariant over time. Denoting the state i by ωi, the time evolution

of states can then be described using the state transition probabilities P (ωj(t + 1)|ωi(t)) = aij . The

states themselves are hidden, not directly observable. Instead, in each state, an observation x(t) is

made. The observation depends only on the current state according to a selected probabilistic model,

that is, P (x(t)|ωi(t)) = P (x|ωi). If the set of observations X is discrete and finite, X = {x1, . . . ,xM},

the observation probabilities can be written more shortly as P (xj |ωi) = bij . Finally, the probability of

starting in state ωi can be defined as πi = P (ωi(1)). Thus, the parameters can be collected to matrices

A and B and a vector π.

In this study, the objective is to model actions based on motor primitives. The motor primitives

correspond to individual states of the HMM. A typical approach for using HMMs in recognition is to

build a single HMM for each class to be recognized and then determine the class of an unknown sample

by using the maximum likelihood method to identify the most likely class. In this work, we take another

approach and represent the whole set of actions with a single HMM, such that different paths through

the HMM correspond to different actions. This is because many actions contain similar parts. For an

example, see Fig. 1 where both rotating and pushing an object both require first the hand to approach

the object. Our hypothesis is also that more complex actions can be modeled using a set of motor

primitives. Thus, in recognition, instead of making a choice between several HMMs, the most probable

path through the HMM is sought.

The Viterbi algorithm [21] is a dynamic programming based algorithm for determining the maximum

likelihood path through a HMM given a sequence of observations (x(1),x(2), . . .). That is, it finds the

state sequence (ω(1), . . .) for which

P (x(1), . . . ,x(T)|ω(1), . . . , ω(T)) (5)

is maximal. The solution by enumerating all possible state sequences is not computationally tractable.

5

Figure 1: Modeling two actions (rotate, push) using primitives.

Instead, the solution is based on defining (5) recursively as

P (x(t),x(t − 1), . . . |ω(t), ω(t − 1), . . .) = P (x(t)|ω(t)) P (ω(t)|ω(t − 1))P (x(t − 1), . . . |ω(t − 1), . . .)

(6)

and noting the optimal substructure of the problem. The expression P (x(t)|ω(t))P (ω(t)|ω(t − 1))

defines a cost term for a single state transition. Therefore, the optimization problem can be transformed

to minimum length path search, solvable in O(TN 2) time.

The most common approach to learn HMMs is the Baum-Welch algorithm, an iterative expectation

maximization (EM) approach to learn the observation and transition probabilities. However, the ap-

proach is only guaranteed to converge to a local optimum, not a global one. In this study, we take an

alternative approach. We use labeled examples as training data, that is, for each time step, the current

motor primitive is known. Then, the transition probability matrix A can be directly estimated from

the training data, as if in the case of Markov chain model instead of a HMM. We use the maximum

likelihood estimate, in other words, the transition probabilities are calculated directly from the training

data. The output of the SVM is used as the observations of the HMM. The observation probabilities

need also be estimated as it is not expected that the classifier will be able to classify all samples correctly.

Maximum likelihood estimation using the known correct classes is also used to estimate the observation

probabilities. Therefore, the observation matrix B corresponds to the confusion matrix of the classifier.

3.3 Action modeling

The hypothesis in the modeling is that each of the manipulation primitive is generic and that their

number is limited. The limited number of primitives is supported, for example, by the knowledge that a

limited number of different grasp types are possible. However, the best applicable set of primitives is not

known and one of the goals of this study is to inspect, how the manipulation actions can be considered

in terms of primitives.

We investigate two different models of action representation. These are shown in Fig. 2. Approach 1

considers each of the manipulation actions as a primitive. In addition to the manipulation actions, two

assisting actions, approach and remove are inherent in all action sequences (see Fig. 2). The assisting

6

actions alleviate the segmentation of the manipulation part of the action. Approach 2 considers that the

manipulation part of the action can be composed of multiple primitives. The model on right in Fig. 2

can be chosen based on the knowledge that the rotation and moving the object require grasping. Our

working hypothesis is that Approach 2 would be more effective in recognizing actions compared to the

first approach. In addition it would allow learning of new actions based on the known primitives.

Figure 2: (left) Approach 1: Actions as primitives; (right) Approach 2: Composite actions.

In both approaches, each action is represented by a separate path through the left-to-right Markov

model. Considering Approach 2, to learn a new composite action, it is enough to learn the new sequence

of primitives, if the primitives are already known. If a hypothesis of the sequence (and order) of primitives

is available, the only parameters that have to be learned are the transition probabilities of the model.

However, having an unknown sequence, the only available information is the sequence of observations

(SVM output) which contains uncertainty. As the transition probabilities are inherent to the underlying

hidden states, not the symbols that are observed, the learning must be performed by considering the

Baum-Welch re-estimation (forward-backward algorithm) in the case of hidden Markov models [21]. It

should be noted that by initializing the estimation with non-zero probabilities only along the desired

path, the estimation process will find the locally optimal probabilities within the path such that no new

states will be introduced. If the observation probabilities of the primitives are also known in advance,

only the transition matrix of the HMM needs to be updated in the estimation.

Upper part of Fig. 3 shows the composite action model without the move to side primitive. The

lower part of the same figure demonstrates now a single possible representation of the move to side

primitive. Note that now the new primitive is described fully by existing primitives. The transition

probabilities for the new primitive can be estimated as discussed above. After learning a model for a new

action, the state transition probabilities of the model containing all actions must be updated according

to that of the new action. During the process, new state transitions will be introduced in the model.

This is illustrated in Fig. 4. The probabilities can be updated by weighted averaging of the transition

probabilities from a state given the two models, with weights given by the number of actions using that

state in that particular model. Thus, the upper model of Fig. 3 would have twice the weight compared

7

Figure 3: Learning new composite actions.

Figure 4: Embedding a new action.

8

to the lower one for paths leaving grasp because in the upper one there are two actions using the state.

To determine the best sequence of primitives for a new action, exhaustive search can be used if the

number of primitives is relatively low. Otherwise, search and pruning techniques would be necessary.

However, the classification results of individual time instants give a strong cue as to which primitives

are present in an unknown action.

4 SYSTEM AND IMPLEMENTATION

The approach for action recognition and understanding is next described, starting with the description

of the sensors and the modeled actions. Then, system overview is presented and finally, implementation

details are described in more detail.

4.1 Sensors and data

Our aim is to study the modeling and understanding of manipulation actions performed by humans.

Five different actions are considered: a) pick up an object from a table, b) rotate an object on a table,

c) push an object forward, d) push an object to the side, and e) move an object to the side by picking

it up.

To include variation in the actions, each action is performed in 12 different conditions, namely on

two different heights, two different locations on the table, and having the demonstrator stand in three

different locations (0, 30, 60 degrees) (see Fig. 5). Furthermore, all actions are demonstrated by 10

different people.

Figure 5: (left) The demonstrator locations; (right) Glove with sensors attached and markers on the

table.

9

The movement is measured using the Nest-of-Birds magnetic sensors. The test subject is endowed

with four sensors each registering their full 3-dimensional pose with respect to a reference, which can be

seen in the upper left corner of Fig. 5. The sensors are located on: a) chest, b) back of hand, c) thumb,

and d) index finger. Figure 6 show the positioning of the sensors. The chest sensor is used to provide

a reference to the demonstrator position while the back of the hand can be used as a reference for the

thumb and index finger. The measured sequences have been annotated by hand such that the current

action primitive is known for training.

Figure 6: Sensor locations.

4.2 System overview

The goal of the system is to recognize actions, while this study also tries to reveal, how suitable primitive

based techniques are for action description of manipulation actions. An overview of the system is given

in Fig. 7. First step is to preprocess the data for noise removal. This is necessary as the sensor

measurements are corrupted by spurious noise peaks. The primitives are recognized by an SVM and its

output is then fed to an HMM which describes the time evolution. SVMs were chosen as they have been

demonstrated with great success in many multidimensional classification problems where the training

set is relatively sparse. As the true action primitives are known, SVMs can be directly trained. Regular

and hidden Markov models are then used to describe the temporal sequence of primitives. Regular

Markov models can be used in the training phase since the true class is observable, while in the test

phase the action is recognized by the Viterbi algorithm as the true states are then hidden and only

the SVM output is available. The lower part of the system in Fig. 7 is concerned with the recognition

of new actions based on known primitives. In that case, the models are learned through the standard

Baum-Welch re-estimation process of HMM learning.

10

Figure 7: System Overview.

4.3 Pre-processing

We are not using all of the 24 measurements from the Nest-of-Birds sensor were not used because they

are highly redundant. For example, the thumb position with respect to the back of the hand correlates

with the orientation of the hand. To describe temporal trajectories, also the velocity of the hand was

estimated. Thus the following 12 measurements were used:

• position of the hand relative to the chest: x, y and z

• position of the index relative to the hand: x, y and z

• position of the thumb relative to the hand: x, y and z

• velocity of the hand: vx, vy and vz .

Starting from the raw data, the procedure illustrated in Fig 8 was used to preprocess the data before

SVM classification. First, median filter was applied for both the position and the orientation of the

three sensors were filtered with a median filtered so to eliminate the noise peaks. The length of the filter

was 7 and it was applied twice. After filtering, the hand and finger locations were transformed into the

chest reference frame. Next, the position of both the thumb and index was calculated with respect to

the back of the hand. A Gaussian filter was then applied for the finger positions to reduce the noise,

which was found to be most apparent in the finger position measurements. The velocity was estimated

by time differences between two consecutive time instants. It was then filtered by a Gaussian filter to

decrease the noise due to the differential nature of the estimation process. Finally, every dimension was

linearly scaled. First, the minimum and maximum value of each dimension was found for each sequence

and then the average of the minima and maxima were calculated. Then, the scaling was performed as

xscaled = (x − xmin)/(xmax − xmin).

The effect of the preprocessing before scaling is illustrated in Figs. 9 and 10. Figure 9 demonstrates

that while the spurious peaks are removed, the overall shape of the trajectory is not changed. Figure

10 demonstrates the statistics of the index finger location with respect to the hand. The center graph

shows the histogram for measurements between -15 and 15 cm while the left (right) graph shows the

histogram for measurements under -15 (over 15). The values over 15 and under -15 are measurement

outliers which should be removed by the filtering. The lower graph shows that the outliers are removed

but that the shape of the histogram for valid measurement values is not changed in filtering.

11

Figure 8: Preprocessing step overview.

Figure 9: Filtering for noise removal.

12

Figure 10: Performance of the pre-processing step before scaling. Upper row: Position of the index (x,

y and z) respect to the hand after filtering. Lower row: Position of the index (x, y and z) respect to the

hand before filtering.

5 EXPERIMENTS

Experiments and their results are next reported. First, Approach 1, where each action is considered a

separate primitive, is considered. Then, the actions are modeled as sequences of primitives, Approach

2. Finally, we study the capabilities of modeling a new action based on learned primitives.

All actions were performed by 10 people in 12 different conditions, such that for each action there

were 120 different samples. The demonstrators were given only oral explanations of the task and for that

reason, the inter-personal variance in the trajectories was high. This approach was taken to emphasize

our goal of understanding actions instead of just tracking the movement. For SVM learning the training

sequences were classified and segmented by a human. That result was also used as a ground truth

for the experiments. In the following results, leave-one-out testing is always used where not indicated

otherwise. Thus, one person was left out of the training set, that person was used to test the system,

and this was repeated for all persons. Average performance is then reported.

5.1 Actions as primitives

In this approach (Approach 1), each manipulation action is a separate primitive. In addition, the

assisting primitives for approach and remove are present in all actions. The action model used can be

seen in Fig. 2. The results of experiments are presented in Fig. 11. The upper table shows the confusion

matrix for the SVM classification for each time instant. The rows correspond to the ground truth and

13

the columns are the SVM output. It can be seen that some primitives (push forward, rotate, remove)

are classified quite well for even considering only one time instant at a time. In contrast, two primitives,

push side, move side seem to be overlapping in their representation as they are often confused with

each other. This confusion is not surprising as the training data was overlapping for the two different

primitives due to the high inter-personal variance of how the actions were performed. For that reason,

it is possible that one person’s move side was very similarly to another’s push side.

Also the assisting primitives approach, remove were confused quite much with each other. A more

detailed analysis of the results revealed that this happened particularly when the movement was very

slow. This explains the confusion, because with slow movements the velocity can not be estimated

reliably enough in order to be used for discriminating between these two. Finally, the grasp primitive

was confused quite often with rotate, move side. This is most likely the result that both of these two

primitives also involve grasping. Thus, these primitives can not be recognized reliably considering single

time instants.

Figure 11: Approach 1. Actions as primitives.

Next, the recognition results were used as an input to the HMM. The results of Viterbi based

recognition of actions of the HMM are given in the lower table of Fig. 11. The ground truth is given

again in the first column. Note that here each sequence is recognized as belonging to one of the actions

instead of labeling all time instants. However, the Viterbi algorithm also gives the most probable

primitive for each time instant such that the manipulation part can be segmented from the assisting

primitives. The confusion matrix in Fig.11 again supports our earlier results that the pair push side-

move side is difficult to recognize from each other. However, it can be argued that because also the

semantic meanings of the two actions are similar, these errors could be tolerated, at least to some extent,

in action understanding. Another finding is that grasp action could not be recognized individually as

the same primitive also exists in other actions.

14

5.2 Actions as composites

It is evident from the previous experiment that considering the actions themselves as individual primi-

tives did not yield good results. Next, the actions were modeled in a composite structure of primitives.

Our approach was to model the individual primitives such that they had semantic meaning. The model

is shown on right in Fig. 2. One new state, remove with object, was introduced by the argument that the

end state of the environment is different in the case the person is holding the object in the end. This is

the end state only for the grasp action. In addition, the structure of the model was changed such that

all actions requiring grasping employ first the grasp primitive before the second manipulation primitive.

Figure 12 presents the confusion matrix for SVM classification as well as the recognition result by

the HMM. The SVM classification results change significantly for two primitives, grasp, remove. The

results of recognizing grasp increase significantly, as it is no longer confused with other actions requiring

grasping. Based on this result, we can hypothesize that motion primitives exist and that grasp can be

considered as one. For the remove primitive the recognition rate decreases, because a very similar new

primitive remove with object was introduced. It should be noted that SVM still confuses push side with

move side.

Figure 12: Approach 2: Composite actions.

The confusion matrix for the HMM (Fig. 12) has improved significantly for two actions, grasp, move

side, compared to Approach 1. For move side, this result can be explained by the fact that grasp

primitive is required for all actions in this class, making it easier to discriminate between push side and

move side. An important note is that the SVM classification result did not improve from Approach

1, but this results from enforcing a particular time sequence of events for the action. It should be,

nevertheless, noted that push side, move side are still confused, for the reason given in Sec. 5.1. For

grasp primitive, the improvement is due to improvement in the SVM classification discussed above.

5.3 Modeling a new action

We now try to investigate if new actions can be modeled using learned primitives. From the earlier

results it is known that the move side action is similar to push side. We performed the investigation by

removing the move side actions from the training data of the SVM. Thus, the SVM only learned the

15

other primitives. Our goal was then to see which sequential model using the other primitives would be

optimal for modeling the move side actions. The experiment was begun by modeling the system (without

move side) in the way shown in upper part of Fig. 3. Thus, the SVM was also trained without any of

the move side data. The performance results for this model are shown in Fig. 13. The classification

performance improves for those primitives, which were earlier confused with the move side primitive.

Figure 13: Modeling a new action: Before new action.

The best left-to-right state model for move side was found among all 3 and 4 state models. The

starting state was fixed to approach and the end state to remove in order to constrain the problem to

determining the manipulation primitives used. Exhaustive search was used by enumerating all possible

models. Each model was trained using the Baum-Welch re-estimation as described in Sec. 3.3 using

all of the move side sequences as input. Note that now the sequence was not segmented by hand into

primitives but the underlying states were considered hidden, and the SVM confusion matrix in Fig. 13

was used as the model for the measurement uncertainty of the HMM. The goodness of fit for each

model was evaluated by calculating the joint probability of observing all the training sequences given

the new model, where the forward-algorithm [21] was used for each individual sequence. These results

are given in Fig. 14 where the upper part show the log-probabilities for each of the 12 different 3 and 4

state models. The model that fits the data best is approach - grasp - push side - remove, shown in the

bottom of Fig. 3. This model seems to grasp the semantic meaning of the action very well. If the new

model is embedded into the existing HMM, as described in Sec. 3.3, the lower part of Fig.14 presents

the classification results of this HMM. The recognition rate of 62.5% is good considering that no data

of the action sequences was used in the SVM training.

To further examine the inter-personal variance in motion primitives, we repeated the experiment

such that now all persons, including the test person, were used in the training of the SVM. Thus, it

was supposed that if the hypothesis of actions consisting of primitives is valid, the recognition rate of

individual primitives would increase also for the unknown actions where known primitives are used in

unknown contexts. The results of this experiment are shown in Fig. 15. The recognition rate for the move

side action increased from 62.5% to 77.5%. This result can be considered remarkable because it suggests

that to learn good models for complex actions for a wide variety of people, it is important to learn the

16

Figure 14: Modeling new action: Best action, Classification in combined HMM.

individual ways of each person executing a certain primitive and that the sequences of primitives for

particular semantic actions can be learned in general from data from other people demonstrating the

same action.

Figure 15: Modeling new action: Classification with personal learning of primitives.

6 DISCUSSION

In this paper, we have studied the recognition and understanding of manipulation actions performed by

humans. While the literature in action recognition is large, there are not many extensive studies on the

modeling of the manipulation actions, which have the characteristic of being typically very similar to each

other. Similar to some other studies, we have considered a framework where the actions are composed

of primitives. However, in contrast to others, we consider two alternative hypotheses: 1) individual

actions can be considered manipulation primitives, and 2) manipulation actions should be broken down

into primitives. Based on initial results, we have realized that even quite simple manipulation actions

consist of several primitives, which, however, might be common with other actions. The idea of composite

actions is thus result of initial evaluation of the model “actions as primitives”. We have also considered

assisting primitives, such as approaching the object, which might not serve directly in the recognition

of the action but which still can be useful in segmenting the manipulation.

Rather than using generative models for the whole action, SVM based discriminative models have

been used for the recognition of individual primitives. This is because our focus is on action recognition

and understanding rather than action synthesis. It should be noted that although in this paper the

classification is done each time instant, the considerations apply to the case when short time windows

17

are used instead of instants. Also, the ideas presented are by no means limited to a particular classifier

(such as SVM) for the primitives.

The data for experiments was collected from 10 different demonstrators, each demonstrating the

actions in several different conditions, and with only an oral explanation of the action given. Thus, the

data had significant intra- and inter-personal variation. The most important findings of the experiments

are that a) sequences of simple semantic primitives can be used in describing actions, b) inter-personal

variations in primitives are significant, and c) actions learned as sequences of primitives from other

demonstrators can be combined with knowledge of personal primitives to recognize new actions.

Future work will study what new actions can be modeled with our current primitives, and more

importantly, what set of primitives would be appropriate to model a large variety of manipulation tasks

typically performed by humans. Finally, we hope to study the model in the context of visual data.

REFERENCES

[1] J. K. Aggarwal and Q. Cai. Human motion analysis: A review. Computer Vision and Image

Understanding: CVIU, 73(3):428–440, 1999.

[2] M.S. Bartlett, G. Littlewort, B. Braathen, T.J. Sejnowski, and J.R. Movellan. A prototype for

automatic recognition of spontaneous facial actions. In Advances in Neural Information Processing

Systems, NIPS 2003, pages 1271–1278, 2002.

[3] A. Billard. Imitation: A review. Handbook of brain thory and neural network, M. Arbib (ed.), pages

566–569, 2002.

[4] Sylvain Calinon, Aude Billard, and Florent Guenter. Discriminative and adaptative imitation in

uni-manual and bi-manual tasks. In Robotics and Autonomous Systems, volume 54, 2005.

[5] Philip Clarkson and Pedro J. Moreno. On the use of support vector machines for phonetic classifi-

cation. Compaq Computer Corporation, Cambridge Research Laboratory USA, 1999.

[6] D. Del Vecchio, R. M. Murray, and P. Perona. Decomposition of human motion into dynamics-

bbased primitives with application to drawing tasks. Automatica, 39(12):2085–2098, 2003.

[7] Staffan Ekvall and Danica Kragic. Grasp recognition for programming by demonstration tasks. In

IEEE International Conference on Robotics and Automation, ICRA’05, pages 748 – 753, 2005.

[8] D. Newton et al. The objective basis of behavior unit. Journal of Personality and Social Pshychol-

ogy, 35(12):847–862, 1977.

[9] Luciano Fadiga, Leonardo Fogassi, Vittorio Gallese, and Giacomo Rizzolatti. Visuomotor neurons:

Ambiguity of the discharge or ’motor perception’? International Journal of Psychophysiology,

35(2-3):165–177, 2000.

18

[10] Steven E. Golowich and Don X. Sun. A support vector/hidden Markov model approach to phoneme

recognition. In ASA Proceedings of the Statistical Computing Section, pages 125–130, 1998.

[11] Marco Iacoboni, Istvan Molnar-Szakacs, Vittorio Galles, Giovanni Buccino, John Mazziotta, and

Giacomo Rizzolatti. Grasping the intentions of others with one’s own mirror neuron system. PLOS

Biology, 3(3), 2005.

[12] Y. Ivanov and A. Bobick. Recognition of visual activities and interactions by stochastic parsing.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8):852–872, 2000.

[13] Odest Chadwicke Jenkins and Maja J. Mataric. Performance-derived behavior vocabularies: Data-

driven acqusition of skills from motion. International Journal of Humanoid Robotics, 1(2):237–288,

Jun 2004.

[14] Y. Kuniyoshi, M. Inaba, and H. Inoue. Learning by watching. In IEEE Transactiond on Robotics

and Automation, volume 10(6), pages 799–822, 1994.

[15] Li Liao and William Stafford Noble. Combining pairwise sequence similarity and support vector

machines for remote protein homology detection. Journal of Computational Biology, pages 857–868,

2003.

[16] Manuel Cabido Lopes and Jose santos Victor. Visual transformations in gesture imitation: What

you see is what you do. In IEEE International Conference on Robotics and Automation, ICRA04,

pages 2375– 2381, 2003.

[17] C. Lu and N. Ferrier. Repetitive motion analysis: Segmentation and event classification. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 26(2):258–263, 2004.

[18] Koichi Ogawara, Soshi Iba, Hiroshi Kimura, and Katsushi Ikeuchi. Recognition of human task

by attention point analysis. In IEEE International Conference on Intelligent Robot and Systems

IROS’00, pages 2121–2126, 2000.

[19] Koichi Ogawara, Soshi Iba, Hiroshi Kimura, and Katsushi Ikeuchi. Acquiring hand-action models

by attention point analysis. In IEEE International Conference on Robotics and Automation, pages

465–470, 2001.

[20] Koichi Ogawara, Jun Takamatsu, Hiroshi Kimura, and Katsushi Ikeuchi. Modeling manipulation

interactions by hidden Markov models. In IEEE/RSJ International Conference on Intelligent Robots

and Systems, pages 1096–1101, 2002.

[21] Lawrence R. Rabiner. A tutorial on hidden Markov models and selected applications in speech

recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[22] V.S. Ramachandran. Mirror neurons and imitation learning as the driving force behind the gerat

leap forward in human evolution. Edge, 69, 2000.

19

[23] S. Schaal. Is imitation learning the route to humanoid robots? Trends in Cognitive Sciences,

3(6):233–242, 1999.

[24] Hiroshi Shimodaira, Ken ichi Noma, Mitsuru Nakai, and Shigeki Sagayama. Dynamic time-

alignment kernel in support vector machine. In Advances in Neural Information Processing Systems

14, NIPS2001, pages 921–928, 2001.

[25] Dinoj Surendran and Gina-Anne Levow. Dialog act tagging with support vector machines and

hidden Markov models. In Interspeech 2006 — ICSLP, Pittsburgh, PA, USA, 2006.

[26] M. Yamamoto, H. Mitomi, F. Fujiwara, and T. Sato. Bayesian classification of task-oriented actions

based on stochastic contxt-free grammar. In International Conference on Automatic Face and

Gesture Recognition, Southampton, UK, April 10–12 2006.

20

Learning and Recognition of Object Manipulation Actions Using Linear
and Nonlinear Dimensionality Reduction

Isabel Serrano Vicente and Danica Kragic
Computational Vision and Active Perception Laboratory

Centre for Autonomous Systems
Royal Institute of Technology, Stockholm, Sweden

497600@celes.unizar.es, dani@kth.se

Abstract— Neuroscientific and physiological literature states
that the core of developmental learning in humans is by watch-
ing another person performing a task. This has also motivated
the research in the robotics area of learning by imitation
and robot programming through demonstration. There is an
extensive amount of work dealing with issues of what, when
and how to imitate.

In this work, we perform an extensive statistical evaluation
for learning and recognition of object manipulation actions.
We concentrate on single arm/hand actions but study the
problem of modeling and dimensionality reduction for cases
where actions are very similar to each other in terms of arm
motions. For this purpose, we evaluate a linear and a nonlin-
ear dimensionality reduction techniques: Principal Component
Analysis and Spatio-Temporal Isomap. Classification of query
sequences is based on different variants of Nearest Neighbor
classification. We thoroughly describe and evaluate different
parameters that affect the modeling strategies and perform the
evaluation with a training set of 20 people.

I. INTRODUCTION

Human-computer interaction, surveillance, video retrieval
are just a few example areas that require human activity
recognition, [1]. In robotics, recognition of human activity
has been used extensively for robot task learning through
imitation and demonstration, [2], [3], [4], [5], [6], [7], [8],
[9], [10]. For humans, one of the fundamentals of social
behaviors is the understanding of each others intentions
through perception and recognition of performed actions.
However, the neural and functional mechanisms underlying
this ability in human are still poorly understood, [11] which
makes it difficult to develop the necessary models needed
for designing a robot system that can learn just by observing
a human or another robot performing an action. The recent
discovery of mirror neurons in monkey’s brain [12], [13] has
nevertheless introduced new hypotheses and ideas about the
process of imitation and its role in the evolution.

It has been shown in [14] that an action perceived by a
human can be represented as a sequence of clearly segmented
action units. This motivates the idea that the action recog-
nition process may be considered as an interpretation of the
continuous human behaviors which, in its turn, consists of a
sequence of action primitives [8] such as reaching, picking
up, putting down. In relation, learning what and how to
imitate has been recognized as an important problem, [10]. It
has been argued that the data used for imitation has statistical

dependencies between the activities one wishes to model
and that each activity has a rich set of features that can
aid both the modeling and recognition process. While in the
computer vision community, most work on modelling human
motion has concentrated on cyclic motions such as walking
or running, [1], examples in robotics consider mainly non-
cyclic actions. In [5], [6], a framework for acquiring hand-
action models by integrating multiple observations based
on gesture spotting is proposed. [7] present a gesture im-
itation system where the focus is put on the coordinate
system transformation (View-Point Transformation) so that
the teacher induced gesture is transformed into the robot’s
egocentric system. This way the robot observes the gesture
as it was generated by thye observer himself. [8] approaches
the task learning problem by proposing a system for deriving
behavior vocabularies or simple action models that can be
used for more complex task extraction and learning. [10]
presents a learning system for one and two-hand motions
where the robot’s body constraints are considered as a part
of the optimal trajectory generation process. An interesting
trend to note here is that most of the studies are based on
a single user generated motion. A natural question to pose
here is how the underlying modeling methods scale and apply
for cases when the robot is supposed to learn from multiple
teachers. The experimental evaluation conducted in our work
is based on 20 people.

In robotics, many of the systems used for imitation are
based on generative models such as Hidden Markov Mod-
els, [5], [10]. Generative models define a joint probabil-
ity distribution over observations and state variables. For
modeling of the observation process and enumerating all
possible sequence of observations, it is commonly assumed
that these are atomic and independent. This affects the infer-
ence problem which makes generative models intractable for
multiple overlapping features of the observation or complex
dependencies of observations at multiple time steps. One of
the solutions to this problem may be the use of discriminative
models such as Conditional Random Fields, [15].

In this work, we perform an extensive statistical evaluation
for learning and recognition of object manipulation actions.
Single arm/hand actions are considered with a specific focus
on the problem of modeling and dimensionality reduction for
cases where actions are very similar to each other in terms

of arm motions. For this purpose, we evaluate a linear and
a nonlinear dimensionality reduction techniques: Principal
Component Analysis and Spatio-Temporal Isomap. Classi-
fication of query sequences is based on a combination of
clustering and different variants of Nearest Neighbor classi-
fiers. For both methods, we thoroughly describe and evaluate
different parameters that affect the modeling strategies and
perform the evaluation with a training set of 20 people. To
our knowledge, there are no examples in the field of robotics
where such a large set of people was considered. Similar to
[16], the results can be used to enable a more sophisticated
probabilistic modeling and recognition of actions an provide
a modeling basis for methods such as those presented in [8],
[10].

Thus, the questions we wanted to answer with the current
study were:

• What modeling strategies are suitable for action repre-
sentation and recognition purposes?

• Is it possible to learn action when we do not have the
knowledge of the task or the embodiment (kinematic
structure) of the teacher?

• Is it possible to distinguish between very similar actions
such as pick up and push an object?

• Is it enough to only observe the motion of the arm/hand
or does the motion of the object have to be included in
the modeling process?

This paper is organized as follows. In Section II we
describe the experimental setting and collection of training
data. In Section III we give a short overview of dimen-
sionality reduction techniques and present details of their
implementation in Section IV. Experimental evaluation is
summarized in Section V and paper concluded in Section VI.

II. DATA COLLECTION AND PREPROCESSING

We follow the classical approach to activity recognition
through training and testing steps. Training step refers to a
learning step where the data is collected, labelled and used
to find an appropriate representation space for the data. The
system learns a model for each activity which is then used
for the classification of new actions in the testing step. The
four activities considered in this work are:

1) Push forward an object placed on a table (P);
2) Rotate an object placed on table (R);
3) Pick up the object placed on the table (PU) and
4) Put down an object on a table (PD).
Notations P, R, PU, PD are used to denote different actions

in the experimental evaluation in Section V.
Fig. 1 shows two example images stored during a push

activity training - the activity is performed with the object
being placed at two different heights. To motivate the choice
of these activities, let us consider a robot being a part of
a coffee drinking scenario. A pick up activity could be
representing the fact of picking up the cup to take a swig
of coffee; put down an object could represent leaving the
cup of coffee after taking a swig, rotate an object would be
similar to fold a napkin placed on the table, and finally, let

Fig. 1. Left) An example of pushing forward an object on the table and
Right) An example of pushing forward an object on the box

us suppose that the person who sat down in front of you
taking a coffee asks for the sugar bowl close to you and
you push the bowl sliding over the table to bring it closer
to him/her. The activities considered in this work are major
buliding blocks of any similar task.

To generate the measurements for the training data, a Nest
of Birds sensor was used, see Fig. 2 (right). The Nest of Birds
simultaneously tracks the position and orientation of four
sensors, referred to transmitter emitting pulsed DC magnetic
field. The placement of the sensors is shown Fig. 1: thumb,
hand, lower arm and upper arm. The persons involved in
the study were not trained in any special way - each action
started by having an arm in a relaxed, vertical position.
Apart from the variation in their height and velocity with
which an action was performed, the following variations
were introduced to the training data:

• The objects were put on two different heights
• The person was standing at three different angles with

respect to the table: 0, 30 and 60 degrees

Each action was performed three times for all combina-
tions of the above heights and orientations resulting in total
18 training sequences per person and action thus 360 training
sequences for each action.

(x, y, z, a, b, g)

Fig. 2. Left) Nest of Birds sensor, and Right) Glove with the four sensors.

0 50 100
20

30

40

50

60

70

80

t

x

0 50 100
50

45

40

35

30

25

20

15

t

y

0 50 100
60

50

40

30

20

10

0

10

t

z

Sensor placed on

the triceps muscle

Sensor placed

at the forearm

Sensor placed in

the center of the hand

Sensor placed on

the thumb

Sensor placed on

the triceps muscle

Sensor placed on

the thumb
Sensor placed

at the forearm

Sensor placed in

the center of the hand

Fig. 3. Sensor measurements retrieved for three trials of a ”rotate” activity.

III. DIMENSIONALITY REDUCTION

Finding low-dimensional data model hidden in the high-
dimensional observations is one of the key problems in
the area of activity modeling and recognition. In the cur-
rent study, we have evaluated two dimensionality reduction
methods. The first is the classical PCA which finds a low-
dimensional embedding of the input data where the principal
components are chosen such that they maximally explain the
variance in the data. Since each data point is reconstructed
by a suitable linear combination of the principal components,
this method is applicable for cases where the assumption of
linearity holds. However, for cases where the data represents
essential nonlinear structures, PCA and similar techniques
fail to detect the intrinsic dimensionality and model for the
data. Therefore, we also evaluate a nonlinear dimensionality
reduction approach proposed in [8] which is based on the
isometric feature mapping or Isomap, [17].

A. Principal Component Analysis - PCA

PCA is commonly used for data dimensionality reduction,
[18]. This method retains those characteristics of the data
set that contribute most to its variance, by keeping lower-
order principal components and ignoring higher-order ones.
The idea is that such low-order components often contain
the ”most important” aspects of the data and the high-order
components often introduce more redundant information than
new one. Therefore, the error introduced by ignoring the
higher-order components is not significant if the assumption
of linearity holds.

In relation to human motion modeling, the use of PCA for
representation of temporal curves is common. It provides a
statistical model of the variation present in the training set
and can thus be used to construct a probabilistic prior for
motion tracking based on Bayesian methods, [16].

B. Isometric Feature Mapping - Isomap

The main idea of Isomap, [17] is to find the intrinsic
geometry of the data by computing the geodesic manifold
distances between all pairs of data points. Once the geodesic
distances are estimated, multidimensional scaling is applied
which removes nonlinearities in the data and produces a
coordinate space intrinsic to the underlying manifold.

Since the training data in our system are represented in a
global coordinate system (robot centered), the system should
be able to perform disambiguation of spatially proximal data
that are structurally different (pick up and put down) as
well as model the correspondence of spatially distal data
points that share common structure (actions performed at
different heights). An extension of the classical Isomap, the
ST-Isomap, proposed in [8] is a method that satisfies the
above requirements. Implementation details are presented in
Section IV-C.

C. Clustering Methods

We have evaluated two clustering techniques in connection
to PCA based action classification: k-means clustering and
Gustafson-Kessel clustering. k-means clustering [18] is a
partitioning method in which clusters are mutually exclusive
(hard partitioning method). Clustering algorithms group sam-
ple points, m j into c clusters. The set of cluster prototypes
or centers is defined as C =

[
c(1), . . . ,c(c)

]
where

c(i) =
∑d

j=1 ui j m j

∑d
j=1 ui j

i = 1,2, . . . ,c (1)

where ui j ∈ U denotes the membership of m j in the ith
cluster and U is known as the partition matrix.

For the classical k-means clustering, the hard partitioning
space is defined as:

Mh = {U∈Vcd : ui j ∈{0,1},∀(i, j);
c

∑
i=1

ui j = 1;0 <
d

∑
i=1

ui j < d,∀i}

(2)
The objective function we have to minimize is:

Jh(M;U,C) =
c

∑
i=1

d

∑
j=1

ui jd
2
A

(
m j,c(i)

)
(3)

where A is a norm-inducing matrix and d2
A represents the

distance measure

d2
A =

(
m j,c(i)

)
= ‖m j−c(i)‖2

A =
(

m j − c(i)
)T

A
(

m j − c(i)
)

(4)
The above condition of hard membership can be relaxed

so that each sample point has some graded or “fuzzy”
membership in a cluster. The incorporation of probabilities
(or graded memberships) may improve the convergence of
the clustering method compared to the classical k-means
method. In addition, we do not have to assume anymore
that the samples belong to spherical clusters.

We shortly describe the method used in our work also
known as Gustafson-Kessel (GK) clustering. First, we define
a fuzzy partition space as:

M f = {U∈Vcd : ui j ∈ [0,1] ,∀(i, j);
c

∑
i=1

ui j = 1;0 <
d

∑
i=1

ui j < d,∀i}

(5)
Here, fuzzy objective function is a least-squares func-

tional:

J f (M;U,C) =
c

∑
i=1

d

∑
j=1

(ui j)wd2
A

(
m j,c(i)

)
(6)

where w is a weighting factor w = [1,∞). Gustafson-Kessel
method is a variation of fuzzy clustering algorithms which
allows the samples to belong to several clusters simultane-
ously, with different degrees of membership. It employs an
adaptive distance norm in order to detect clusters of different
geometrical shapes in the data set. Specifically, each cluster
has its own norm-inducing matrix A(i):

d2
A(i) =

(
c(i)

l −m j

)T
A(i)

(
c(i)

l −m j

)
(7)

where
A(i) = (|F(i)|)1/(r+1)(F(i))−1 (8)

and

F(i) =
∑d

j=1(ui j)w
(

m j − c(i)
)(

m j − c(i)
)T

∑d
j=1(ui j)w

(9)

IV. IMPLEMENTATION

We give a short overview and implementation details for
the methods used in this study.

A. PCA without temporal dependencies

The basic idea investigated here was that each action
consists of a set of discrete poses that are represented in some
high-dimensional space since. These action are gathered by
1,2,3 or 4 sensors where each sensor provides a full pose
estimate (3 translations and 3 rotations). Since the sensor
used to capture the training data provides Euler angles in
the reference coordinate system, we represent each angle by
its sine and cosine value resulting in 9 measurements in total
per sensor. This then defines the dimension of the covariance
matrix, estimated in the PCA process, [18].

Our reasoning here was that different actions will vary
differently along different directions. If we are able to find
this directions, each action may be represented only with
those ones along which the data varies the most, precisely
what PCA gives us. The implementation follows the classical
PCA approach: we first estimate the mean of the data,
subtract it from all the samples, estimate the covariance
matrix and estimate its SVD, [18]. Finally, we keep only the
eigenvectors that for which eigenvalues λn > 0.005λmax.
In our evaluation, dependant of the number of sensors used
to measure an action, the dimensionality reduction was
following: single sensor (from 9 to 3), two sensors (18 to
5), three sensors (27 to 6) and four sensors (36 to 7). These
values are easy to understand due to the constraints posed
by the kinematic structure of the arm. Once the basic set of
eigenvectors is chosen, the training data is projected to this
reduced action representation space. This is done for each
action separately. To ease the classification, we cluster each
action representation space. For this purpose, we have used
k-means and GK clustering presented in Section III-C.

In the classification stage, each testing sequence is first
projected to the reduced action representation space. For
each sample point in an action, the distance to the closest
cluster center is estimated and the classification is based on
the minimum Euclidean distance sum.

B. PCA with Temporal Dependencies

We have also evaluated a PCA approach where, similar
to the studies performed on cyclic motions, [1], we took
into account the temporal dependencies of the activities.
To be able to estimate the covariance matrix using whole
sequences, we normalized them to equal length - 85 sample
points per sequence. According to the procedure described
in the previous section, the dimensionality reduction was
following: single sensor (from 765 to 17), two sensors (1530
to 22), three sensors (2225 to 24) and four sensors (3060
to 26). Training sequences are then projected to separate
decreased spaces where each represents one of the actions.
Classification of a new sequence is performed based on the
minimum Euclidean distance sum.

C. ST-Isomap

For the implementation of Isomap, we adopted the ap-
proach proposed in [8]. As in the case of temporal PCA, the
sequences are first normalized to equal length of 85 sample
points. We shortly explain the basic idea behind the method.

• Calculate a distance matrix Dl between N local neigh-
bors using Euclidean distances. In the current imple-
mentation, N = 10. For each data sample, identify com-
mon temporal neighbors (CTN) and adjacent temporal
neighbors (ATN). We refer to [8] and [19] for a more
detailed definition of these.

• Reduce the distances in the original matrix taking into
account spatio-temporal correspondences

D0
Si,S j

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Dl

Si,S j
/(cCT NcATN) if S j ∈CT N(Si) and j = i+1,

Dl
Si,S j

/cCT N if S j ∈CTN(Si),

Dl
Si,S j

/cATN if j = i+ 1,

penalty(Si,S j) otherwise.
(10)

where cATN and cCT N are scalar parameters and CT N()
denotes common temporal neighbors. In the current
implementation, we set cATN = 1 and varied value for
cCT N = [2 5 10 100] . Fig. 4 shows the effect
of cCT N parameter to the resulting embedding of the
activities.

• Use D0 to compute shortest path distance matrix Dg
using Dijkstra’s algorithm, [20]

• Use Multidimensional Scaling [21] to embed Dg to a
lower dimensional space. We have evaluated the system
for [3 4 5 6] dimensions.

V. EXPERIMENTAL EVALUATION

We present the results for i) PCA without temporal de-
pendencies, ii) PCA with temporal dependencies and iii) ST-
Isomap.

A. PCA without temporal dependencies

We have trained the system with 1, 5, 10 or 20 people. In
case of a single person, we split the data in three possible
combinations of two trials for training and one trial for
evaluation. Similarly, this was done for the case of five and

Fig. 4. Training data after estimating ST-Isomap and MDS embedding in 3 dimensions. The figures show the influence of the cCT N parameter to the
embedding: higher cCT N brings sequences closer to each other.

ten people. For the case of twenty people, we split the trials
in the three possible combinations of two for training the
system and one for testing it, so we test the system three
times with the demonstrations of all people. As we evaluated
the system for each person three times and twenty people
demonstrated the actions, it made a total of sixty tests.

Furthermore, in all cases we clustered the data using two
both k-means and GK-clustering algorithm. We clustered the
data to three, five and eight clusters in both cases. Here,
we show only the resulting average of all the experiments
and refer to [19] for a more detailed evaluation. In the
forthcoming tables, the actions in the upper row are the tested
sequences and the actions in the left column are the result
of the classification. The results are expressed in percentage.

As explained in Section II, for each action, we have varied
the position of the object (two heights) and the relative
orientation of the person with respect to the table. The
first experimental evaluation considered only two actions
(push and rotate) where training and testing was performed
on sequences captured under the same conditions (same
orientation and height of the object). The average results
considering different number of people in the training set
as well as different numbers of sensors are summarized
in Table I. We note here that we present the results for 5
clusters in more detail since it gave the highest classification
rate on average. It can be seen that for only two actions, a
classification rate of close to 90% is achieved. The presented
results use are based on k-means clustering. GK- clustering
gave approximately the same classification rate.

The second experiment to conduct was to consider all four
actions, again considering the same conditions for training
and testing. Due to the limited space, we show only the
average classification rates for all four actions. In Table II
we show how the size of the training set affects the rate given
that the number of clusters is kept constant. In Table III we
show how the number of clusters affect the classification
rate given that the training set consist of all 20 people.
Compared to the previous experiment, we can see that by
adding two additional actions, the recognition rate is 30%
lower on average. Again, similar results are obtained for both
clustering methods.

Finally, we have evaluated the method considering all the

5 clusters
push rot push rot push rot push rot

1pers 1s 2s 3s 4s
push 91.8 1.6 90.5 1.3 91.5 2 92.1 2
rot 8.2 98.4 9.5 98.7 8.5 98 7.8 98

5pers 1s 2s 3s 4s
push 80 34.4 83.3 27.8 83.3 19 87.8 30
rot 20 65.6 16.7 72.2 16.7 81 12.2 70

12pers 1s 2s 3s 4s
push 79.6 18.5 74.5 14.8 82.4 18 82.4 14.8
rot 20.4 81.5 25.5 85.2 17.6 82 17.6 85.2

20pers 1s 2s 3s 4s
push 83 14.7 91.4 16.7 92.5 11.9 93.1 10.8
rot 17 85.3 8.6 83.3 7.5 88.1 6.9 89.2

3 clusters
20pers 1s 2s 3s 4s
push 89.7 28.9 88.6 21.7 93.1 26.4 91.7 21.1
rot 10.3 71.1 11.4 78.3 6.9 73.6 8.3 78.9

8 clusters
20pers 1s 2s 3s 4s
push 88.1 15.6 86.9 12.5 90.6 10.6 91.1 8.9
rot 11.9 84.5 13.1 87.5 9.4 89.4 8.9 91.1

TABLE I
CLASSIFICATION RATES FOR TWO ACTIONS (PUSH, ROTATE) WHEN THE

TRAINING AND TESTING WAS DONE UNDER SAME CONDITIONS (OBJECT

HEIGHT, PERSONS ORIENTATION) USING k-MEANS CLUSTERING.

1 pers 1s 2s 3s 4s
average 91.4 91.1 90.2 90
5 pers 1s 2s 3s 4s

average 61.9 65 68.6 61.1
12 pers 1s 2s 3s 4s
average 60.8 60.8 63.1 61.7

TABLE II
CLASSIFICATION RATES FOR FOUR ACTIONS TRAINED AND TESTED IN

SAME CONDITIONS (HEIGHT AND ORIENTATION), WITH VARYING SIZE

OF THE TRAINING SET.THE NUMBER OF CLUSTERS IN k-MEANS IS 5.

variance in the data, namely that each action was performed
on two different heights and in three orientations. The results
are summarized in Table IV. It is obvious that, with the
the recognition rates of about 40%, the simple approach
considered here is not able to scale accordingly with the
variation in the data. The next section presents the results of

3 clusters 1s 2s 3s 4s
average 59.4 61.4 62.2 64.1

5 clusters 1s 2s 3s 4s
average 64.7 68.4 70.6 69.8

8 clusters 1s 2s 3s 4s
average 66.5 68 68.9 70

TABLE III
CLASSIFICATION RATES FOR FOUR ACTIONS AND 20 PEOPLE TRAINED

AND TESTED IN THE SAME CONDITIONS /HEIGHT AND ORIENTATION),
WITH VARYING NUMBER OF CLUSTERS.

1 pers 1s 2s 3s 4s
average 37.5 30.6 37.5 37.5
5 pers 1s 2s 3s 4s

average 34.7 33.9 38.1 38.9
12 pers 1s 2s 3s 4s
average 34.3 33.7 37.5 35.6
20 pers 1s 2s 3s 4s
average 35.4 37.2 37.3 37.4

TABLE IV
CLASSIFICATION RATES FOR FOUR ACTIONS TRAINED AND TESTED IN

DIFFERENT CONDITIONS, WITH VARYING SIZE OF THE TRAINING SET.
THE NUMBER OF CLUSTERS USED IN k-MEANS IS FIXED TO FIVE.

the method where temporal dependencies between the data
points are taken into account.

1 pers 1s 2s 3s 4s
average 41.7 36.1 38.9 27.8
5 pers 1s 2s 3s 4s

average 35.8 35.8 33.6 36.9
12 pers 1s 2s 3s 4s
average 35.2 38.1 40 40.1
20 pers 1s 2s 3s 4s
average 41 34.3 36.7 36.3

TABLE V
CLASSIFICATION RATES FOR FOUR ACTIONS TRAINED AND TESTED IN

DIFFERENT CONDITIONS, WITH VARYING SIZE OF THE TRAINING SET.
THE NUMBER OF CLUSTERS USED IN GK CLUSTERING IS FIXED TO FIVE.

B. Temporal PCA

We present here only the results with all four actions,
where the training and testing was performed given all
20 people and actions performed in all combinations of
orientations and heights. As above, as each action sequence
was performed three times in all conditions, we evaluated
the system taken all combinations of two testing and one
training action sets.

Table VI summarizes the results for one (1s, hand), two
(2s, thumb and hand), three (3s, thumb, hand, forearm) and
all four (4s) sensors considered. The important thing to note
is that the recognition rate is somewhat higher compared to
the results in the previous section but the system still has
the difficulty of discriminating between some of the actions.
We believe that this is an important result. Implementing
PCA with temporal dependencies requires aligned and equal
length sequences which may be difficult to obtain in an

1s 2s
P R PD PU P R PD PU

P 50.1 42.5 12.5 29.2 50 43.3 12.5 32.5
R 8.3 33.3 3.3 10 9.2 35 3.3 15

PD 15 3.3 69.2 22.5 15 5.8 69.2 20
PU 25.8 20.8 15 38.3 25.8 15.8 15 32.5

3s 4s
P R PD PU P R PD PU

P 51.7 42.5 12.5 30 51.7 42.5 12.5 29.2
R 7.5 35 3.3 1.5 8.3 30 3.3 11.7

PD 14.2 5 69.2 21.7 14.2 4.2 66.7 25
PU 26.7 17.5 15 35.8 25.8 23.3 17.5 34.2

TABLE VI
CLASSIFICATION RATES FOR PCA WITH TEMPORAL DEPENDENCIES FOR

FOUR ACTIONS AND 20 PEOPLE IN THE TRAINING SET.

online process where we would like to perform recognition
during and not after an action has been executed. A simple
“voting” approach presented in the previous section may be
as suitable. Another issue that we have investigated was if the
number of sensors affects the classification rate. The results
are summarized in Fig. 5. We note that the difference is only
marginal and that almost equal results are obtained with a
single or all four sensors. This means that for actions which
are very similar in arm motion placing only a single sensor
on the hand or tracking only the position and orientation of
the hand may be sufficient.

Fig. 5. The effect of number of sensors used to the classification rate.

C. ISOMAP

A non-linear dimension reduction, ST-Isomap was applied
to extract a low dimensional representation for the activities.
Shepard interpolation [22] was used map a query sequence
to the estimated embedding. For classification, minimum Eu-
clidean distance sum between the query samples and samples
representing each activity in the embedding was used. From
the training set of 20 people, we formed subsets of one,
two and three persons. For each person, all four activities
were considered using three trials for all combinations of
three orientations and two heights. The classification was
performed with the queries not included in the training set.

We have evaluated to the system with different numbers
and sensors placements. In the forthcoming tables, this is
denoted as: sensors placed on the i) hand (s1), ii) hand
and thumb (s14), iii) hand, thumb and forearm (s142).

s1 s14 s142
p r pd pu p r pd pu p r pd pu

ct=2 p 55,6 0,0 11,1 11,1 61,1 11,1 5,6 22,2 50,0 50,0 33,3 50,0

3dimensions r 5,6 77,8 0,0 0,0 5,6 61,1 61,1 38,9 44,4 50,0 50,0 16,7

3dimensions pd 16,7 11,1 38,9 44,4 16,7 27,8 5,6 38,9 5,6 0,0 16,7 33,3

3dimensions pu 22,2 11,1 50,0 44,4 16,7 0,0 27,8 0,0 0,0 0,0 0,0 0,0

ct=5 p 77,8 0,0 0,0 0,0 33,3 0,0 0,0 0,0 50,0 55,6 5,6 44,4

3dimensions r 0,0 88,9 5,6 5,6 5,6 94,4 22,2 16,7 33,3 44,4 66,7 38,9

3dimensions pd 22,2 0,0 66,7 11,1 61,1 5,6 33,3 33,3 0,0 0,0 0,0 0,0

3dimensions pu 0,0 11,1 27,8 83,3 0,0 0,0 44,4 50,0 16,7 0,0 27,8 16,7

ct=10 p 83,3 0,0 11,1 27,8 38,9 33,3 11,1 5,6 77,8 33,3 55,6 83,3

3dimensions r 16,7 61,1 5,6 0,0 0,0 50,0 5,6 16,7 5,6 44,4 22,2 16,7

3dimensions pd 0,0 0,0 0,0 0,0 61,1 0,0 38,9 33,3 5,6 22,2 5,6 0,0

3dimensions pu 0,0 38,9 83,3 72,2 0,0 16,7 44,4 44,4 11,1 0,0 16,7 0,0

ct=100 p 100,0 0,0 0,0 0,0 27,8 11,1 0,0 22,2 61,1 11,1 50,0 50,0

3dimensions r 0,0 88,9 0,0 11,1 0,0 50,0 5,6 0,0 33,3 50,0 0,0 0,0

3dimensions pd 0,0 5,6 61,1 16,7 33,3 0,0 5,6 0,0 0,0 0,0 11,1 0,0

3dimensions pu 0,0 5,6 38,9 72,2 38,9 38,9 88,9 77,8 5,6 38,9 38,9 50,0

s1 s14 s142
p r pd pu p r pd pu p r pd pu

ct=2 p 94,4 5,6 11,1 5,6 94,4 0,0 0,0 11,1 94,4 44,4 33,3 44,4

6dimensions r 0,0 94,4 0,0 5,6 5,6 100,0 72,2 72,2 0,0 55,6 16,7 27,8

6dimensions pd 0,0 0,0 38,9 0,0 0,0 0,0 0,0 0,0 5,6 0,0 50,0 22,2

6dimensions pu 5,6 0,0 50,0 88,9 0,0 0,0 27,8 16,7 0,0 0,0 0,0 5,6

ct=5 p 94,4 0,0 11,1 0,0 77,8 0,0 0,0 0,0 11,1 0,0 5,6 0,0

6dimensions r 0,0 88,9 11,1 33,3 11,1 100,0 0,0 22,2 5,6 55,6 16,7 0,0

6dimensions pd 0,0 0,0 27,8 0,0 11,1 0,0 50,0 38,9 0,0 0,0 50,0 50,0

6dimensions pu 5,6 11,1 50,0 66,7 0,0 0,0 50,0 38,9 83,3 44,4 27,8 50,0

ct=10 p 83,3 0,0 0,0 0,0 100,0 0,0 11,1 5,6 55,6 22,2 0,0 0,0

6dimensions r 0,0 88,9 0,0 50,0 0,0 83,3 5,6 22,2 11,1 77,8 33,3 77,8

6dimensions pd 0,0 0,0 11,1 0,0 0,0 0,0 38,9 0,0 0,0 0,0 44,4 16,7

6dimensions pu 16,7 11,1 88,9 50,0 0,0 16,7 44,4 72,2 33,3 0,0 22,2 5,6

ct=100 p 100,0 0,0 0,0 0,0 72,2 0,0 0,0 0,0 83,3 0,0 0,0 0,0

6dimensions r 0,0 100,0 0,0 16,7 0,0 55,6 0,0 0,0 11,1 77,8 11,1 0,0

6dimensions pd 0,0 0,0 38,9 22,2 0,0 0,0 33,3 5,6 5,6 0,0 33,3 0,0

6dimensions pu 0,0 0,0 61,1 61,1 27,8 44,4 66,7 94,4 0,0 22,2 55,6 100,0

Fig. 6. ST-Isomap results with training based on one person and testing it with another one. The results show how the dimension of the embedding and
sensor number affect the classification result.

s1 s14
p r pd pu p r pd pu

ct=2 p 72,2 33,3 33,3 16,7 16,7 33,3 27,8 11,1

3dimensions r 27,8 55,6 11,1 44,4 83,3 55,6 44,4 72,2

3dimensions pd 0,0 0,0 50,0 11,1 0,0 5,6 11,1 0,0

3dimensions pu 0,0 11,1 5,6 27,8 0,0 5,6 16,7 16,7

ct=5 p 77,8 5,6 22,2 33,3 61,1 50,0 27,8 50,0

3dimensions r 0,0 77,8 5,6 16,7 0,0 11,1 5,6 5,6

3dimensions pd 5,6 0,0 50,0 33,3 38,9 16,7 50,0 11,1

3dimensions pu 16,7 16,7 22,2 16,7 0,0 22,2 16,7 33,3

ct=10 p 94,4 50,0 50,0 44,4 77,8 22,2 22,2 16,7

3dimensions r 0,0 38,9 11,1 11,1 0,0 50,0 0,0 0,0

3dimensions pd 0,0 0,0 33,3 27,8 11,1 22,2 55,6 44,4

3dimensions pu 5,6 11,1 5,6 16,7 11,1 5,6 22,2 38,9

ct=100 p 77,8 16,7 16,7 38,9 77,8 11,1 61,1 50,0

3dimensions r 16,7 66,7 11,1 11,1 5,6 55,6 33,3 16,7

3dimensions pd 5,6 11,1 50,0 27,8 16,7 22,2 5,6 22,2

3dimensions pu 0,0 5,6 22,2 22,2 0,0 11,1 0,0 11,1

s1 s14
p r pd pu p r pd pu

ct=2 p 100,0 22,2 16,7 50,0 66,7 22,2 16,7 11,1

6dimensions r 0,0 77,8 0,0 0,0 16,7 61,1 5,6 27,8

6dimensions pd 0,0 0,0 66,7 27,8 5,6 16,7 55,6 22,2

6dimensions pu 0,0 0,0 16,7 22,2 11,1 0,0 22,2 38,9

ct=5 p 100,0 5,6 11,1 22,2 27,8 0,0 0,0 11,1

6dimensions r 0,0 88,9 5,6 5,6 0,0 61,1 38,9 27,8

6dimensions pd 0,0 0,0 72,2 27,8 50,0 5,6 44,4 11,1

6dimensions pu 0,0 5,6 11,1 44,4 22,2 33,3 16,7 50,0

ct=10 p 88,9 11,1 16,7 22,2 55,6 0,0 0,0 5,6

6dimensions r 0,0 77,8 5,6 11,1 0,0 44,4 0,0 0,0

6dimensions pd 11,1 5,6 50,0 27,8 38,9 27,8 44,4 0,0

6dimensions pu 0,0 5,6 27,8 38,9 5,6 27,8 55,6 94,4

ct=100 p 88,9 5,6 0,0 11,1 83,3 5,6 0,0 16,7

6dimensions r 0,0 83,3 0,0 0,0 0,0 61,1 55,6 5,6

6dimensions pd 0,0 5,6 61,1 33,3 16,7 16,7 5,6 22,2

6dimensions pu 11,1 5,6 38,9 55,6 0,0 16,7 38,9 55,6

Fig. 7. ST-Isomap results with training based on 3 persons and testing it with another one. The results show how the dimension of the embedding and
sensor number affect the classification result.

Thorough experimental evaluation with different values for
cCT N parameter and dimensionality of the embedding space
was conducted.

Fig.6 shows the results obtained by ST-Isomap with train-
ing based on a single person. The results show how the
dimension of the embedding and sensor number affect the
classification result. Here, parameter cCT N = 2. Fig.7 shows
a similar experiment, but here the size of the training set was
three. It is interesting to notice that best results are obtained
based on the sensor placed on the hand. For the future, this
would motivate that only the position of the user’s hand and
not the complete arm joint motion is needed to recognize
object manipulation sequences when ST-Isomap is used. The
effect of changing the values of parameter cCT N is shown in
Table V-C. On average, the best results are obtained with
cCT N = 5 and the average values per action are shown in
Fig. 8. From the above results, it can be seen that, compared
to the PCA, ST-Isomap gives better classification results.

VI. CONCLUSION

In this work, we have performed an initial study on
recognition of four object manipulation actions: pick up, put
down, rotate and push. Training and testing was performed
with 20 people where the manipulated object was placed
on two different heights and people performing the actions
multiple times at three different orientations. We believe
that this study is important and shows how the variation in
the training data affects the recognition rate. Most of the
current systems that utilize robot imitation learning use a
single person to train or teach tasks to the robot. Since the

push rot pd pu
ct = 2 push 88.9 22.2 29.2 36.1
ct = 2 rot 11.1 70.9 8.3 16.7
ct = 2 pd 0 0 51.4 16.7
ct = 2 pu 0 6.9 11.1 30.5
ct = 5 push 88.9 6.9 19.4 25
ct = 5 rot 0 79.2 4.2 9.7
ct = 5 pd 1.3 0 62.5 27.8
ct = 5 pu 9.7 13.9 13.9 37.5

ct = 10 push 90.3 18.1 25 29.2
ct = 10 rot 1.4 72.2 8.3 13.9
ct = 10 pd 2.8 2.8 50 30.5
ct = 10 pu 5.5 6.9 16.7 26.4
ct = 100 push 84.7 8.3 6.9 23.6
ct = 100 rot 5.6 80.6 5.6 4.2
ct = 100 pd 2.8 6.9 65.3 36.1
ct = 100 pu 6.9 4.2 22.2 36.1

TABLE VII
CLASSIFICATION RESULTS USING A SINGLE SENSOR PLACED ON THE

HAND. TRAINING WAS PERFORMED WITH 3 PERSONS. THE

RECOGNITION RATES SHOW THE DEPENDENCY ON THE PARAMETER

cCT N .

intention for the future is that robots will be able to learn
from observing different and multiple people that perform
same actions, we believe that it is important to study how
different methods scale with respect to this.

In this work, we have concentrated on evaluation of di-
mensionality reduction using linear and nonlinear techniques.
We have shown how the number of sensors and different
parameters affect the classification rate. We are aware of the

Fig. 8. Analysis of the recognition results when changing cCT N =
2,5,10,100 with a single sensor placed on the hand and training with three
persons.

Fig. 9. Analysis of the recognition results when changing the dimension
of the embedding space (3,4,5,6) with a single sensor placed on the hand
and training with three persons.

fact that PCA and nearest neighbor classification are very
simple techniques but we hope that our future work and
work of other we evaluate more advanced techniques on the
same data (which will be soon available for public access)
and compare it to the results obtained in this work. We also
believe that this data and evaluation follows the current trend
of designing different benchmarking criteria in robotics.

Regarding the four questions posed in Section I we be-
lieve that for recognition of actions that are very similar,
dimensionality reduction has to be performed with significant
care in order to preserve the true variance in the data. We
also believe that using the explicit knowledge of kinematic
chains (arm model) may not be necessary in order to achieve
satisfactory recognition rates. Finally, for some actions it
is enough to provide only the measurements of the hand
motions while distinguishing between pick-up and put-down
would gain from including the motion of the object as well.

ACKNOWLEDGMENT

This work has been supported by EU through the project
PACO-PLUS, FP6-2004-IST-4-27657. We also thank Odest
Chadwicke Jenkins for the valuable input on the implemen-
tation of ST-Isomap.

REFERENCES

[1] J. K. Aggarwal and Q. Cai, “Human motion analysis: A review,”
Computer Vision and Image Understanding: CVIU, vol. 73, no. 3,
pp. 428–440, 1999.

[2] Y. Kuniyoshi, M. Inaba, and H. Inoue, “Learning by watching,” in
IEEE Transactiond on Robotics and Automation, vol. 10(6), pp. 799–
822, 1994.

[3] S. Schaal, “Is imitation learning the route to humanoid robots?,” Trends
in Cognitive Sciences, vol. 3, no. 6, pp. 233–242, 1999.

[4] A. Billard, “Imitation: A review,” Handbook of brain thory and neural
network, M. Arbib (ed.), pp. 566–569, 2002.

[5] K. Ogawara, S. Iba, H. Kimura, and K. Ikeuchi, “Recognition of
human task by attention point analysis,” in IEEE International Con-
ference on Intelligent Robot and Systems IROS’00, pp. 2121–2126,
2000.

[6] K. Ogawara, S. Iba, H. Kimura, and K. Ikeuchi, “Acquiring hand-
action models by attention point analysis,” in IEEE International
Conference on Robotics and Automation, pp. 465–470, 2001.

[7] M. C. Lopes and J. santos Victor, “Visual transformations in gesture
imitation: What you see is what you do,” in IEEE International
Conference on Robotics and Automation, ICRA04, pp. 2375– 2381,
2003.

[8] O. C. Jenkins and M. J. Mataric, “Performance-derived behavior vo-
cabularies: Data-driven acqusition of skills from motion,” International
Journal of Humanoid Robotics, vol. 1, pp. 237–288, Jun 2004.

[9] S. Ekvall and D. Kragic, “Grasp recognition for programming by
demonstration tasks,” in IEEE International Conference on Robotics
and Automation, ICRA’05, pp. 748 – 753, 2005.

[10] S. Calinon, A. Billard, and F. Guenter, “Discriminative and adapta-
tive imitation in uni-manual and bi-manual tasks,” in Robotics and
Autonomous Systems, vol. 54, 2005.

[11] M. Iacoboni, I. Molnar-Szakacs, V. Galles, G. Buccino, J. Mazziotta,
and G. Rizzolatti, “Grasping the intentions of others with one’s own
mirror neuron system,” PLOS Biology, vol. 3, no. 3, 2005.

[12] V. Ramachandran, “Mirror neurons and imitation learning as the
driving force behind the gerat leap forward in human evolution,” Edge,
vol. 69, 2000.

[13] L. Fadiga, L. Fogassi, V. Gallese, and G. Rizzolatti, “Visuomotor
neurons: Ambiguity of the discharge or ’motor perception’?, volume =
35, year = 2000,” International Journal of Psychophysiology, no. 2-3,
pp. 165–177.

[14] D. N. et al, “The objective basis of behavior unit,” Journal of
Personality and Social Pshychology, vol. 35, no. 12, pp. 847–862,
1977.

[15] C. Sminchiescu, A. Kanaujia, Z. Li, and D. Metaxas, “Conditional
models for contextual human motion recognition,” in International
Conference on Computer Vision, ICCV’05, pp. 1808–1815, 2005.

[16]
[17] J. Tenenbaum, V. de Silva, and J. Langford, “A global geometric

framework for nonlinear dimensionality reduction,” Science, vol. 290,
pp. 2319–2323, 2000.

[18] R. Duda, P. Hart, and D. Stork, Pattern classification. New York:
Wiley-Interscience, 2001.

[19] I. S. Vicente, Human action recognition based on linear
and nonlinear dimensionality reduction using PCA and
Isomap. KTH, Stockholm, Sweden: Master thesis, 2006,
http://cogvis.nada.kth.se/ danik/Isabel.pdf.

[20] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. Second Edition. MIT Press and McGraw-Hill, 2001.

[21] M. Cox and M. Cox, Multidimensional Scaling. Chapman and Hall,
2001.

[22] D. Shepard, “A two-dimensional interpolation function for irregularly-
spaced data,” in Proc. 23rd National Conference ACM, pp. 517–524,
1968.

