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1. Executive Summary

The core focus of WP5 is the generalization of the action representation developed in WP2, WP3 and
WP4 to cover communicative acts, and the formalization of syntax and semantics for communication and
interaction in natural language with situated purposeful agents, together with mechanisms for the acquisition
of grammar from sentence-meaning pairs. The deliverable and the attached paper are exclusively concerned
with the nature of the problem of language acquisition on the basis of paired presentations of sentences
of any human language and contextually supported meanings for those sentences. The paper shows that
a very simple statistical model can simulate the general course of acquisition, including certain patterns of
overgeneralization, without adherence to any subset principle, and without the use of parametric triggers and
attendant ordering principles that have been postulated in the recent literature. The associated deliverable
D5.1 shows how the LDEC action representation and the associated PKS planner developed under WP4
and described in D4.3.1 can both be induced from lower-level representations of states and state transitions,
and provide a basis for natural language semantics at the higher level of Combinatory Categorial Grammar,
providing the input to the system for either the child or the PACOPLUS agent. Both of these papers are
theoretical and look ahead to the next phase of the project, as was anticipated in the plan of work in the
annex, and the account of KRA 4 in the Annex (Section 6), since at this stage the low-level modules are
not delivering object-concepts at a level appropriate to the formulation of semantics. In particular linguistic
semantics grounded in robot sensory-motor schemata that will provide the basis for learning is yet to be
developed.

Combinatory Categorial Grammar (CCG, Steedman 2000) is a theory of grammar according to which all
language-specific grammatical information resides in the lexicon. A small universal set of strictly type-
driven, non-structure dependent, syntactic rules (based on Curry’s combinators B, S, and T) then “projects”
lexical items into sentence-meaning pairs and defines the mapping from one to the other.

Steedman (2002b,a) showed how the same set of combinatory operations were involved in human and
animal non-linguistic planning, and defined a Linear Dynamic version of the Event Calculus (LDEC) as a
notation for such a planner. Work by UEDIN under PACOPLUS support reported under deliverable D4.3.1,
implements LDEC as a high-level symbolic planner under the PKS framework of Petrick and Bacchus
(2002, 2004).

The present report analyzes the problem of connecting this planner to a mechanism for inducing a language-
specific CCG grammar from presentations of sentences and (probably ambiguous, possibly noisy) contextually-
supported meanings. CCG is being used as a basis for interaction with semantically grounded robots in a
number of other European and American projects, notably under EU FP6 IST IP CoSy (Kruijff and Brenner
2006) and in Leslie Kaelbling’s group at MIT (Zettlemoyer, Pasula and Kaelbling 2005). The present paper
offers a basis for a completely general and strikingly simple account of language acquisition in human and
artificial systems for any semantics, including semantics defined on the basis of the kind of dialog actions
considered in deliverable D5.1., Annex B. It is potentially applicable to all of these systems.

The document consists of a single paper describing this work, included in the present paper as Annex A.

A: The Computational Problem of Language Acquisition (to be submitted: presented at the Institute
of Research in Cognitive Science (IRCS) Colloquium, University of Pennsylvania, January 2007).
This paper outlines a complete model of language acquisition. It uses the framework of CCG but is
applicable to any lexicalized grammar formalism, such as Tree adjoining Grammar (TAG, Joshi and
Schabes 1992), Lexical-Functional Grammar (LFG, Bresnan 1982), Head driven Phrase-Structure
Grammar (HPSG, Pollard and Sag 1994), and Type-Logical Grammar (TLG, Morrill (1994)). To the
extent that Construction Grammar (ConstG, Goldberg (1995)) can be lexicalized (which appears to
be completely) it also applies to that.

The paper is an extension of work by Zettlemoyer and Collins 2005, who also use CCG as a frame-
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work. The present paper differs in doing language learning in the full space of universal grammar as
captured in CCG, and in using a generative statistical model, rather than the discriminative Maximum
Entropy model used by them. The advantage of a generative model of lexical acquisition is that, be-
cause it learns probabilities P(Syntax,Semantics|Word) of adult utterance, rather than discriminative
weights, the model can be inverted to yield predictions about the probabilities of errorful utterance by
the child P(Word,Syntax|Semantics) These probabilities can be used to make quantitative predictions
about the type of error that will be made by the child under conditions of forced elicitation of the kind
investigated by Crain and Thornton (1998), and about the learning curve of the target construction.

2. Role of Language Acquisition in PACOPLUS

The relation of prelinguistic semantics, grounded in sensory motor experience, to high level cognition in-
cluding language is a central concern of PACOPLUS. The solution presented here to the problem of language
acquisition is a very general one. The research has as much to gain from involvement with grounded agents
learning action representations as the agents have in terms of provision of spoken interfaces. That is why
we are not limiting the language interface to a fixed set of slot-and-filler sentence templates, hand tailored
to the PACOPLUS domain, an exercise that would be entirely without scientific interest.

3. Relation to Demonstrator 8.1

The capabilities of Demonstrator 8.1 are decidedly sensory-motor. It is likely that the scope for language
learning will be limited, though it will be explored as far as possible. The impact of this research is planned
according to the PACOPLUS Annex 1 (see section 6 KRA4) for a later phase, at which point a substantial
conceptual base of robot object-action complex (OAC) concepts will have been built up to act as a substrate
for a grounded linguistic semantics.

4. Principal Scientific Results

The paper in Annex A shows that the simplest possible generative model predicts the general shape of the
childs progress from an initial unstable state in which almost any alternative allowed by universal grammar
may be elicited, via a process of exponential reinforcement and extinction which may give the appearance
of parametric “switch-setting”, to stable adherence to a single form. This result resembles the somewhat
different statistical model of Yang (2002), but eschews the use of parameters entirely. It provides a good
model for language learning in robots, where problems of error in interpreting the situation and (if standard
speech-recognition technology is used) in identifying the string correctly demand a probabilistic approach.
There are interesting implications of these results for the purely syntactic, parameter-based approaches of
Wexler and Fodor, and for the notion of “syntactic bootstrapping” advanced by Gleitman.

5. Future Work

A number of questions remain open at the time of this report and constitute further work.

1. Children show a number of biases which may work to make this process easier. For example, verbs
are acquired later than comparably frequent nouns. It is not clear whether this is an intrinsic cognitive
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intellectual development, or whether it is an artefact of the way the data is presented to the child, and
is predicted by the model. Answering this question requires closer attention to corpora like CHILDES
than we have so far been able to afford.

2. The actual sensory-motor derived semantics that real children bring to bear on this task is almost
entirely opaque. One of the objectives of PACOPLUS is to say what such a semantics might look
like. The major effort in the remaining period for this work package is to define such a semantics
for the robot agents in its own right, in the hope of shedding light on the nature of the child’s own,
via exploration of language learning on the basis of such an artificial semantics grounded in sensory
motor interaction with the world.

6. Publications Associated with D5.1

1. M. Steedman and J. Hockenmaier, 2006: “The Computational Problem of Language Acquisition”
(to be submitted: presented at the Institute of Research in Cognitive Science (IRCS) Colloquium,
University of Pennsylvania, January 2007)
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Goldberg, Adèle. 1995. Constructions: A Construction Grammar Approach to Argument Structure.
Chicago, IL: Chicago University Press.

Joshi, Aravind, and Yves Schabes. 1992. “Tree-Adjoining Grammars and Lexicalized Grammars.” In
Maurice Nivat and Andreas Podelski, eds., Definability and Recognizability of Sets of Trees. Princeton,
NJ: Elsevier.

Kruijff, Geert-Jan, and Michael Brenner. 2006. “A Cross-modal Approach to Spatio-Temporal Comprehen-
sion in Situated Dialog for Human-Robot Interaction.” Deliverable D9.3, EU FP6-004250 CoSy.

Morrill, Glyn. 1994. Type-Logical Grammar. Dordrecht: Kluwer.

Petrick, Ronald P. A., and Fahiem Bacchus. 2002. “A Knowledge-Based Approach to Planning with In-
complete Information and Sensing.” In Malik Ghallab, Joachim Hertzberg, and Paolo Traverso, eds.,
Proceedings of the Sixth International Conference on Artificial Intelligence Planning and Scheduling
(AIPS-2002), 212–221. Menlo Park, CA: AAAI Press.

Petrick, Ronald P. A., and Fahiem Bacchus. 2004. “Extending the Knowledge-Based Approach to Planning
with Incomplete Information and Sensing.” In Shlomo Zilberstein, Jana Koehler, and Sven Koenig, eds.,
Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS-04), 2–11.
Menlo Park, CA: AAAI Press.

Pollard, Carl, and Ivan Sag. 1994. Head Driven Phrase Structure Grammar. Stanford, CA: CSLI Publica-
tions.

Steedman, Mark. 2000. The Syntactic Process. Cambridge, MA: MIT Press.



IST-FP6-IP-027657 / PACO-PLUS

Page 8 of 21

Public

Steedman, Mark. 2002a. “Formalizing Affordance.” In Proceedings of the 24th Annual Meeting of the
Cognitive Science Society, Fairfax VA, August, 834–839. Mahwah NJ: Lawrence Erlbaum.

Steedman, Mark. 2002b. “Plans, Affordances, and Combinatory Grammar.” Linguistics and Philosophy,
25, 723–753.

Yang, Charles. 2002. Knowledge and Learning in Natural Language. Oxford: Oxford University Press.

Zettlemoyer, Luke, and Michael Collins. 2005. “Learning to Map Sentences to Logical Form: Structured
Classification with Probabilistic Categorial Grammars.” In Proceedings of the Conference on Uncertainty
in Artificial Intelligence. Held in conjunction with IJCAI 2005, Edinburgh.

Zettlemoyer, Luke S., Hanna M. Pasula, and Leslie Pack Kaelbling. 2005. “Learning Planning Rules in
Noisy Stochastic Worlds.” In National Conference on Artificial Intelligence (AAAI),. AAAI.

7. Annexes

A. The Computational Problem of Language Acquisition

Mark Steedman and Julia Hockenmaier

CCG is a theory of grammar in which all language-specific grammatical information resides in the lexicon.
A small universal set of strictly type-driven, non-structure dependent, syntactic rules (based on Curry’s
combinators B, S, and T) then “projects” lexical items into sentence-meaning pairs. The task that faces the
child in the earliest stages of language acquisition can therefore be seen as learning a lexicon on the basis of
exposure to (probably ambiguous, possibly somewhat noisy) sentence-meaning pairs, given this universal
combinatory “projection principle”, and a mapping from semantic types to the set of all universally available
lexical syntactic types.

The paper argues that a very simple statistical model allows children to arrive at a target lexicon without nav-
igation of subset principles, or attention to any attendant notion of trigger other than the notion “reasonably
short sentence in a reasonably understandable situation drawn from a reasonably representative sample”.
The model explains the pattern of errors that have been found in elicitation experiments. The linguistic
notion of “parameter” appears to be redundant to this process.
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Abstract

CCG is a theory of grammar in which all
language-specific grammatical information
resides in the lexicon. A small universal
set of strictly type-driven, non-structure de-
pendent, syntactic rules (based on Curry’s
combinators B, S, and T) then “projects”
lexical items into sentence-meaning pairs.
The task that faces the child in the earli-
est stages of language acquisition can there-
fore be seen as learning a lexicon on the
basis of exposure to (probably ambiguous,
possibly somewhat noisy) sentence-meaning
pairs, given this universal combinatory “pro-
jection principle”, and a mapping from se-
mantic types to the set of all universally
available lexical syntactic types.

The paper argues that a very simple statisti-
cal model allows children to arrive at a target
lexicon without navigation of subset prin-
ciples, or attention to any attendant notion
of trigger other than the notion “reasonably
short sentence in a reasonably understand-
able situation drawn from a reasonably rep-
resentative sample”. The model explains the
pattern of errors that have been found in elic-
itation experiments. The linguistic notion of
“parameter” appears to be redundant to this
process.

1 Introduction

It seems highly likely that the child’s acquisition of
a first language is, in machine learning terms, an ex-

ample ofsupervisedlearning. That is not to say that
they are explicitly instructed by adults, but in com-
ing to know which words of the language are the
verbs and which the nouns, and in what linear spatio-
temporal order(s) the two may occur, children must
have access to something more than the mere strings
of words constituting a subset of the legal sentences
of the languages.

This agreement is based in part on observation
of the extreme rapidity with which language acqui-
sition proceeds, and the absence of negative data
While it is theoretically possible, using probabilis-
tic models and unsupervised machine learning, to
approximate grammars of any class to any desired
degree of accuracy, the computational costs of such
learning for realistic grammars are prohibitive. The
consensus also rests on the observation that no-one
has actually managed to make these techniques work
very well computationally for natural language.

The “something more” that the child brings to
language acquisition is sometimes referred to as
“Universal Grammar”, and as such is sometimes
talked about in exclusively syntactic terms, as in
the “parameter-setting” account of acquisition of
Hyams (1986) and much subsequent work, accord-
ing to which a homunculus “flips switches” cor-
responding to syntactic parameters such as head-
finality and pro-drop until the “universal grammar
engine” uniquely specifies the languagemoduloits
lexicon, in a process that has been likened to a game
of Twenty-Questions (Yang 2006:Ch.7).

Such accounts seem to raise as many questions
as they answer about the mechanism by which such
learning could proceed. In particular, the specific

Annex A



inventory of parameters that this universal machine
embodies, the way in which the very large search
spaces engendered by even quite small sets of binary
independent parameter can be effectively explored
(Clark & Roberts 1993), and the aspects of the data
that “trigger” their setting (Gibson & Wexler 1995)
remain rather unclear. One is uneasily reminded of
the warnings of Newell (1973) in a different context,
concerning the likely outcome of playing Twenty-
Questions with nature.

Nevertheless, there is something deeply right in
the idea that the process of language learning pro-
ceeds by entertaining all possible grammars, and
eliminating all alternatives but one, because that
is exactly what the child’s developmental behavior
looks like, once you know how to look at it. In par-
ticular, Crain & Thornton (1998) and their students
have shown (using ingeniously forced elicitations)
that learning is characterized by great initial varia-
tion in productions for any given construction, ap-
parently covering alternatives characteristic of many
other languages, followed by abrupt transitions to
stable adherence to the correct form for the target
language. Yang (2002) offers a probabilistic account
of this process in terms of classical Mathematical
Learning Theory. While Thornton & Tesan (2006)
argue that changes they observe are too abrupt and
switch-like to support that particular model, prob-
abilistic models in general are capable of approx-
imating catastrophic, switch-like behavior, so they
should not be ruled out.

The present paper uses a computational model
derived from work by Siskind (1996), Villavicen-
cio (2002), and Zettlemoyer & Collins (2005) to
argue that the notion of parameter setting is meta-
theoretical, and entirely redundant to the specifica-
tion of language learning of this kind. The only no-
tion of trigger that it requires is the notion “reason-
ably short sentence with an independently accessi-
ble meaning”. The only notion of language specific
grammar it needs is the lexicon for the language.
The only notion of universal grammar that it needs
is a universal mapping from each semantic type to
the possible lexical types, together with a univer-
sal machine for merging or projecting lexical types
and their meaning representations onto grammatical
derivations.

2 Semantically Grounded Grammar
Acquisition

The only remotely plausible source that has ever
been proposed for universal grammar is a univer-
salsemantics, in the form of structured meanings or
logical forms to which the child already has access
as language acquisition begins, to which syntactic
forms are rather directly attached, and which drasti-
cally limit the search space.

To say this much is not very helpful in psycho-
logical or linguistic terms, since (as Chomsky never
tires of pointing out) linguists don’t know that much
about how to articulate the semantics. However, the
child doesn’tneedto articulate it. They just need to
label it, so our theories need to represent it some-
how. As a temporary stopgap we’ll use terms of the
lambda calculus, and defer the problem of what the
semantics actually looks like till section 5.

This approach makes the child’s problem resem-
ble that of treebank grammar induction for wide cov-
erage parsing (Collins 1997; Charniak 2000; Hock-
enmaier & Steedman 2002), where sentences hand-
annotated with syntactic trees are used to derive a
grammar and a statistical parser-model. However,
the child’s task is a little harder. First, they have
to induce the grammar from strings paired withun-
ordered logical forms, rather than language-specific
ordered derivation trees. That is, they have to work
out which word(s) go with which element(s) of logi-
cal form, as well as the directionality of the syntac-
tic categories (which are otherwise universally deter-
mined by the semantic types of the latter). Second,
while they do not seem to have to deal with a greater
amount of error than is found in the Penn WSJ tree-
bank (McWhinnie 2005), they may need to deal with
situations which support a number of logical forms.
Third, they need to be able to recover from tempo-
rarywrong lexical assignments. Fourth, they need to
toleratelexical ambiguity.

3 Previous Work

Siskind (1995, 1996), Villavicencio (2002), and
Zettlemoyer & Collins (2005) offer computational
models of this process, the latter two explicitly us-
ing CCG.

Siskind and Villavicencio make strong assump-
tions about the association of words with elements



of logical form. Both make similarly strong as-
sumptions about universally available parametri-
cally specified rule- or category- types, the latter as-
suming a type hierarchy. Both deal with noise and
homonymy probabilistically.

Both do the learning in two stages, first associat-
ing logical forms with words, then inducing phrase
structure rules (Siskind) or directional CCG cate-
gories (Villavicencio).

However, there is no necessity to separate the
two processes of associating meaning and syntac-
tic type. Zettlemoyer and Collins (UAI 2005) com-
bine the two in a single pass CCG induction algo-
rithm. Crucially, their algorithm allowsany contigu-
ous substringof the sentence to be a lexical item,
so that for the given logical form, the learner has to
search the cross-product of the substring powerset
of the string with the set of pairs of legal categories
with substructure powerset of the logical form, as
in the example (9) below, for categories that yield
combinatory derivations that yield the correct logi-
cal form. Learning is via a log-linear model using
lexical entries as features and gradient descent on
their weights, iterating over successive sentences of
a corpus of sentence-logical form pairs.

The algorithm as presented in 2005 learns
only a very small rather unambiguous fragment
of English, hand-labeled with uniquely identified
database queries as logical forms, and an English
specific inventory of possible syntactic category
types in lieu of Universal Grammar. However,
Siskind’s and Villavicencio’s results already tell us
that the algorithm should work with multiple candi-
date logical forms. Similarly, their results show that
a universal set of category types can be used without
overwhelming the learner.

All of these models depend on availability to the
learner of short sentencespaired with logical forms,
since complexity is determined by a cross-product
of powersets both of which are exponential in sen-
tence length. A number of techniques are available
to make search efficient includingassociation of in-
crementally adjusted Bayesian priors with category-
types.

Because it allows multiword elements (MWE) to
be lexical entries, Zettlemeyer and Collins’ program
avoids the problem that two words which consis-
tently collocate, likewantandto fail to reveal which

of them meanswant′ and which meansto′. They can
be learned as a single itemwant to. So can idioms
and multi-word expressions like “buy the farm,” and
“take advantage of”

As with Siskind’s version, lexical items can have
complex meanings—corresponding for example to
causatives, whose availability may differ (swim
acrossvs. traverserà la nâge) across languages. No
notion of trigger distinct from that of “reasonably
simple string-meaning pair” is necessary.

It is possible to use the statistics of the lexicon
itself to implicitly represent “parameters” such as
verb-finality, via incrementally adjusted prior prob-
abilities on the members of the set of universally
available category types.

4 The Proposal

We will assume as a theory of grammar a version of
Combinatory Categorial Grammar (CCG, Steedman
2000b; Steedman & Baldridge 2006) in which all
language-specific information resides in the lexicon,
and a universal set of combinatory rules including
functional composition and lexicalized type-raising
as well as function application, projects strings of
lexical items onto meanings, and vice versa.

The task that faces the child is to learn the cat-
egorial lexicon on the basis of exposure to (proba-
bly ambiguous, possibly somewhat noisy) sentence-
meaning pairs, given this universal combinatory pro-
jection principle, and a mapping from semantic
types to the set of all universally available lexical
syntactic types.

For a corpus of sentencesSi , each with a number
of interpretationsI j , each of which has an number of
derivationsDk, the relative frequencyf of a lexical
entry φ,σ,µ for a word with phonologyφ, syntactic
categoryσ and meaningµ is given by:
(1)
f (〈φ,σ,µ〉)=∑

i
∑

j

P(I j |Si)∑
k

P(Dk|I j ,Si) ·nDk(〈φ,σ,µ〉)

By Bayes’ Rule,

P(D|I ,S) =
P(D, I ,S)

P(I ,S)

∝ P(D, I ,S)

(2)

We will assume thatP(D, I ,S) is a generative
model for an (exhaustive) parser, rather than the dis-
criminative model of Zettlemoyer & Collins. One



advantage of generative models besides their close-
ness to competence grammar is that we can invert
the parser model to define the probability of an ut-
terance given a meaning.

As the acquisition process begins, this generative
model corresponds to thePUG, the probability model
of Universal Grammar, which we will assume for
present purposes assigns uniform probabilities to ev-
erything. This model can be regarded as a log-linear
model in which all weightsλ j are unknown and all
counts f j are zero. As the child is exposed to more
language, it updates the counts in a language spe-
cific modelPG and adjusts a weightλ (0 ≤ λ ≤ 1)
representing their confidence inG:
(3)

P̃(D, I ,S) = λP̂G(D, I ,S)+ (1−λ) ·PUG(D, I ,S)

The probability of a lexical entry can be defined
in terms of (1) as:

(4) Plex(〈φ,σ,µ〉) =
f (〈φ,σ,µ〉)

∑i f (〈φ,σ,µ〉i)

The probability of a semantic intepretationµτ of type
τ and a syntactic categoryσ given a wordφ is given
by
(5)
P(σ,µτ|φ) = P(µτ|φ) ·P(σ|µτ,φ) ≈ P(µτ|φ) ·P(σ|τ)

where

(6) P(µτ|φ) = ∑
i

Plex(〈φ,σi ,µ〉)

and

P(σ|τ) =
P(σ,τ)
P(τ)

=
P(σ,τ)

∑i P(µτi )

=
P(σ,τ)

∑i ∑ j Plex(〈φ j ,σ j ,µτi 〉)

=
∑i, j Plex(〈φi ,σ,µτ j 〉)

∑i ∑ j Plex(〈φ j ,σ j ,µτi 〉)

(7)

Hence, crucially, we can obtain from the above
definitions the probability of uttering a wordφ, such
as “more” or “doggies”, given a logical formµτ,
such asmore′((e,t),e), by Bayes’ rule:

(8) P(φ|µ) =
P(µ|φ) ·P(φi)

∑i P(µ|φi) ·P(φi)
=

P(µ|φ)

∑i P(µ|φi)

The course of language acquisition can then be
accounted for as follows.

4.1 The First Few Words

Consider an adult-accompanied child at Piagetian
Stage VI who has yet to learn her first word of such
a grammar. She encounters a dog, and shows an in-
terest, but fails to grasp the word “doggie”. Later,
she encounters somemore dogs. The adult observes
the child’s evident delight, and says “MORE DOG-
GIES!.”

We can assume that the child has already learned
some phonological regularities of the language, and
in particular is in a position to consider the possibil-
ity that the utterance consists of more than one word
(Mattys et al. 1999; Mattys & Juszyk 2001).

What the child must do is consider the cross-
product of every non-empty substringφ of the utter-
ance “More doggies!” with every connected typed
subtermµτ of typeτ the logical formmore′doggies′,
together with all syntactic categoriesσi that univer-
sal grammar allows for the semantic typeτ of each
such subterm.

We might as a first oversimplification think of the
situation as follows:1

(9) a. The child thinks:(more′dogs′)e
b. The adult says: “MORE DOGGIES!”
c. All possible lexical candidates:

more:= NP/N : more′((e,t),e)

NP\N : more′((e,t),e)
N : dogs′(e,t)

doggies:= NP/N : more′((e,t),e)
NP\N : more′((e,t),e)
N : dogs′(e,t)

more doggies:=NP : (more′dogs′)e

All of these candidates are permitted by the uni-
versal lexical principles of UG. However, not all of
them are consistent with this utterance in this lan-
guage. For some of them, such as doggies:=NP/N :
more′((e,t),e), the universal syntactic projection prin-
ciple of UG fails to offer any derivation yielding
NP : (more′dogs′)e. Such candidates may be sup-
ported by other utterances, but the present utterance
does not give any information on them. They are
therefore dropped from further consideration in this
cycle, leaving the following reduced set of candi-

1The assumption that the child immediately considers the
hypothesis that more is a determiner is particularly far-fetched,
and will be reviewed later.



dates:

(10) The child’s lexical candidates:
more:= NP/N : more′((e,t),e)

N : dogs′(e,t)
doggies:= NP\N : more′((e,t),e)

N : dogs′(e,t)

more doggies:=NP : (more′dogs′)e

For each of these candidates, if there is not already
a corresponding entry in the lexicon, such an entry
is added, with a zero count. Then for each candi-
date, its count is incremented by 1. Since we are
assuming this is the first utterance the child has pro-
cessed, the lexicon now contains two entries for each
of the words “more” and “doggies”, each with one
count, and one entry for the holophrastic or multi-
word entity “more doggies”, all with one count. If
we assume that the various hypotheses afforded by
UG are equiprobable, then by (5) (or by inspection)
the conditional probabilitiesP(σ,µ|φ) for the former
categories are all12, while that for the latter is 1.

Since for the example so far,P(σ|µ) is always 1,
we have the following probabilistic lexicon:

(11) The Child’s First Lexicon:
φ σ,µ f P(σ,µ|φ) P(φ|µ)
more:= NP/N : more′((e,t),e) 1 0.5 0.5

N : dogs′(e,t) 1 0.5 0.5
doggies:= NP\N : more′((e,t),e) 1 0.5 0.5

N : dogs′(e,t) 1 0.5 0.5
more doggies:=NP : (more′dogs′)e 1 1.0 1.0

Since the word counts and conditional probabil-
ities for “more” and “doggies” with them meaning
more′((e,t),e) are all equal at this stage, the child may
well make errors of overgeneration, using some ap-
proximation to “doggies” to mean “more”.2

However, even on the basis of this very under-
specified lexicon, the child will not overgenerate
“*doggies more”. Moreover, further observations
involving utterances like “Bad doggies!” “More
cookies!”, and “Bad cookies!”, with further updates
to frequency counts, will rapidly lower the estimated
conditional probability of the spurious hypotheses
concerning categories and substrings in comparison
to the correct ones, indicated in bold type, as fol-
lows:

2The example is constructed, but was inspired by being told
of a case in real life when this particular error appears to have
occurred (C. Urwin, p.c.).

(12) The Corpus:

a. More doggies!
b. Bad doggies!
c. More cookies!
d. Bad cookies!

P(σ|µ) is still always 1, so the lexicon is now

(13) The Child’s Lexicon:
φ σ,µ f P(σ,µ|φ) P(φ|µ)
more:= NP/N : more′((e,t),e) 2 0.50 0.50

N : dogs′(e,t) 1 0.25 0.25
N : cookies′(e,t) 1 0.25 0.25

bad:= NP/N : bad′((e,t),e) 2 0.50 0.50
N : dogs′(e,t) 1 0.25 0.25
N : cookies′(e,t) 1 0.25 0.25

doggies:= NP\N : more′((e,t),e) 1 0.25 0.25
NP\N : bad′((e,t),e) 1 0.25 0.25
N : dogs′(e,t) 2 0.50 0.50

cookies:= NP\N : more′((e,t),e) 1 0.25 0.25
NP\N : bad′((e,t),e) 1 0.25 0.25
N : cookies′(e,t) 2 0.50 0.25

more doggies:=NP : (more′dogs′)e 1 1.0 1.0
bad doggies:= NP : (bad′dogs′)′e 1 1.0 1.0
more cookies:=NP : (more′cookies′)e 1 1.0 1.0
bad cookies:= NP : (bad′cookies′)e 1 1.0 1.0

At this point, the child is exponentially less likely to
generate “doggie” when she means “more”. By con-
templating the definition (8), the reader should be
able to satisfy themselves that this effect will be even
stronger for more realistic corpora in which the fre-
quency distribution of words is highly skewed, with
open class words like “doggie” being exponentially
rarer (hence with lower values forP(φ)) than closed
class words like “more”. Experimental sampling by
elicitation of child utterances during such exponen-
tial extinction may well give the appearance of all-
or-none setting of parameters like NEG-placement
andpro-drop claimed by Thornton & Tesan (2006).3

This lexicon includes non-standard holophrastic
lexical items such as “more doggies”. Such spuri-
ous lexical entries can later be pruned if necessary
on grounds of low relative frequency in the corpus as
a whole, along with the spurious entries. Neverthe-
less, holophrastic lexical items such as “All gone,”
may be sufficiently common as to be useful in their
own right, and persist in the developing lexicon in

3This effect is related to the “winner-take-all” effect ob-
served in Steels’ 2004 game-based account of the otherwise
rather different process of establishing a shared vocabulary
among agents who have no preexisting language.



parallel with their components.
It is of course possible that the adult will on oc-

casion mistake the proposition that the child has in
mind, or that the child will choose such a proposition
wrongly, leading to false lexical associations. How-
ever, provided the two get it right most of the time,
the same process of Bayesian re-estimation of con-
ditional probabilities of these lexical hypotheses for
each word will allow the latter to arrive at a correct
lexicon.

4.2 Transitives

Up till now, we have been able to ignore the influ-
ence of the childs estimate of the prior conditional
probability P(σ|τ) of a syntactic category given a
semantic type in calculatingP(σi ,µ|φ) in comput-
ing (5), the probability of a syntactic and semantic
category given a word, because the examples have
only admitted one syntactic category per semantic
type per word.

However, unlike intransitive predicates and the
determiner category considered in section 4.1, tran-
sitive verbs as presented in examples like the follow-
ing could in principle be assigned either of the two
syntactic categories in (15), both of which support a
derivation of the logical form:4

(14) I see you! :=S: see′you′i′

(15) a. see := (S\NP)/NP : λxλy.see′xy
b. see := *(S/NP)\NP : λyλx.see′xy

No SVO language/construction has ever been seri-
ously argued to have a surface syntax corresponding
to the second category. We can therefore safely as-
sume either that it is not included in the universal set
of possible syntactic categories for interpretations of
type (e,(e, t)) at all, or that it has an extremely low
prior probability.

Specifically, we will assume that the universally
permitted set of transitive categories is the follow-
ing, corresponding to the six basic constituent or-
ders, here listed in order of decreasing frequency of
attestation of the order in question.5

4We continue to assume for the sake of simple exposition
that there is only one logical form supported by the context.
In particular, we assume that the corresponding passive is not
salient, or that if it is it has a distinct logical form from the
active. We will abandon these restrictions later.

5We assume, following Baldridge (2002), that free word-

(16) a. SOV := (S\NP)\NP : λxλy.see′xy
b. SVO := (S\NP)/NP : λxλy.see′xy
c. VSO := (S/NP)/NP : λyλx.see′xy
d. VOS := (S/NP)/NP : λxλy.see′xy
e. OVS := (S/NP)\NP : λxλy.see′xy
f. OSV := (S\NP)\NP : λyλx.see′xy

The decreasing frequency of these orders appears to
reflect two independent defeasible constraints. One
favors linearization of subject before object. The
other favors keeping the syntactic command rela-
tions between subject and object as reflected in or-
der of combination the same as those in the logical
form.6

Since (15b) violates the second of these con-
straints, we are justified in assuming it has a lower
prior. Thus the child faced with the pair (14) effec-
tively has only one candidate category for the tran-
sitive verb. However, this does not exhaust the prob-
lem of learning transitive verbs, because a context
may support more than one category.

4.3 Contextual Ambiguity

Many languages, perhaps all, allow a number of lex-
ical alternations of transitives, as in the case of En-
glish “chase/flee” where the same physical situation
seems to support more than one logical form. How
do children faced with examples like the following
avoid the error of making an OVS lexical entry for
“flee” with the meaningchase′?

(17) Pussies flee doggies!

It is important that examples of the verb class of
which “flee” is the most common representative are
rare. In particular, in comparison to 162 occurences
of inflected forms of the verb “chase,” there is ex-
actly one occurrence of any form of “flee” in the en-
tire CHILDES corpus. We are therefore justified in
assuming that the child will have encountered plenty
of unambiguous transitive verbs in utterances like
(14) before encountering examples like (17).

This means that the probability of the cate-
gory type (S\NP)/NP : µ((e,(e,t)) will be substan-
tial at the time they eventually do encounter (17)—

order languages simply have more than one of these categories.
6Two of these categories, VSO and OSV, “wrap” their most

oblique argument O(object) around their least oblique argument
S(ubject). (These categories are forced under the account of ar-
gument cluster coordination and the restriction to the combina-
torsBTS in CCG—Steedman 2000b).



for the sake of illustration let’s conservatively as-
sume they have seen 1000 tokens—and adds one
count each for these two categories. In that
case, by (5), sinceP(µτ|φ) is the same for both,
and P((S\NP)/NP|”flee”) is .25·1000

1001 = .25, while
P((S/NP)\NP|”flee”) is .25·1

1001 = .00025, the lexical
probability for the two entries stand in a ratio of
1000:1.

Thus, provided the adult’s intended meaning is
available, even if with low prior probability, then the
child is in a position to assign the correct hypothesis
a high probability. (Even if it is not available, the
child will assign a low probability to the spurious
lexical entry forchase′.)

Gleitman 1990 has described the process by
which the child resolves contextual ambiguity as
“syntactic bootstrapping,” meaning that it is the
childs knowledge of the language-specific grammar,
as opposed to the semantics, that guides lexical ac-
quisition. However, in present terms such an influ-
ence on learning is simply emergent from the statis-
tical model used in semantic bootstrapping. We will
return to this point in the Discussion.

Like the related proposals of Siskind; Villavicen-
cio; Zettlemoyer & Collins and the somewhat dif-
ferent probabilistic approach of Yang 2002, this pro-
posal considerably simplifies the logical problem of
language acquisition. In particular, it allows us to
eliminate the Subset Principle of Berwick (1985),
and attendant requirements for ordered presentation
of unambiguous parametric triggers, both of which
appear to present serious problems for the language
learner (Angluin 1980; Becker 2005; Fodor & Sakas
2005). Nor does this move contradict widely-held
assumptions concerning the “poverty of the stimu-
lus”, and in particular the unavailability to the child
of negative evidence. The child’s progression from
the universal superset grammar to the language-
specific target grammar is entirely determined by
positive evidence raising the probability of correct
hypotheses at the expense of incorrect ones. The in-
correct hypotheses that are eliminated in this way
include any that are introduced by error and noise.
The only evidence that the child needs in order to
learn their language is a reasonable proportion of ut-
terances involving sentences which are sufficiently
short for them to deal with.

4.4 A More Realistic Lexicon

If children’s exposure to language were merely con-
fined to recitations of propositions they already had
in mind, it would be a dull affair. It is not even clear
why they would bother to learn language at all, as
Clark (2004) points out in defence of a PAC learn-
ing model.

However, the worked example above is delib-
erately simplified in respect of the child’s syn-
tax and semantics. We know from Fernald et al.
(1989) and Fernald (1993) that infants are sensi-
tive to interpersonal meanings of intonation from
a very early age. In English, intonation contour is
used to convey a complex system of information-
structural elements, including topic/comment mark-
ers and given/newness markers (Bolinger 1965; Hal-
liday 1967; Ladd 1996), and is exuberantly used in
speech by and to infants. It is this part of the mean-
ing that constitutes the whole point of the exercise
for the child, providing the motivation that Clark
questions.

For example, it is likely that the child’s repre-
sentation of the utterance “MORE DOGGIES! is
more like (18), which uses the notation of Steed-
man 2000a, 2006b, in which [S] represents speaker
modality (contributed by the LL% boundary tone),
ρ indicates a rheme or comment (contributed by
the H* pitch-accents), * marks emphasis or kontrast
(also contributed by the pitch-accents), and the cat-
egory NP is “type-raised”, indicated by the annota-
tion NP↑:7

(18) MORE DOGGIES !
H∗ H∗ LL%

NP↑+,ρ Xφ\⋆Xπ,η
: λp.p(*more′*dogs′) : λg.π[S]η g

<

NP↑φ : [S]ρλp.p(*more′*dogs′)
“Mummy makes the property afforded by more dogs
common ground.”

The set of type-raised NP categories licenced by
UG that is schematized in (18) asNP↑ denotes the
set of all order-preserving functions over functions-
over-NP onto the results of applying those functions
to the original NP. It includes categories of the fol-
lowing two forms, where T is a variable over all cat-

7The term kontrast, due to Vallduvı́ & Engdahl (1996)
means much the same as Halliday’s “new”, and is so spelled
to distinguish it from other notions of contrast, in particular any
distinct notion of “topic contrast”.



egory types::

(19) T/(T\NP) : λpλx.px
T\(T/NP) : λpλx.px

We also need the following related non-order-
preserving “extracting” categories, in whichSx in-
dicates a distinct type of clause:

(20) Sx\(S\NP) : λpλx.px
Sx/(S/NP) : λpλx.px

While, up until now, we have only seen one syn-
tactic type per semantic type in the child’s lexicon
for English, in general a single semantic type may
be realized by many syntactic types in a single lan-
guage, and this is the case for English NPs. Such
ambiguity is perfectly compatible with the learning
procedure defined earlier and exemplified at (13): it
just means that there will be several categories with
substantial conditional probability massP(σ|φ)

It may seem surprising that a language should al-
low so much ambiguity in such a basic linguistic cat-
egory type as NP. However, this is simply the same
proliferation of syntactic types that would be dis-
ambiguated in a language with overt morphological
case. English just happens to be a language which
has so-called structural case, implicit in linear or-
der. We shall see that the child will not find this a
problem. But first we need to consider the role of
intonation in the child’s grammar.

While intonation has been shown to be even more
markedly discrepant from traditional syntactic struc-
ture in child-directed and child-originated speech
(Fisher & Tokura 1996; Gerken et al. 1994; Gerken
1996) than in adult dialog, in CCG intonation struc-
ture is united with a freer notion of derivational
structure. Consider the child in a similar situation
faced with the following utterance, from Fisher &
Tokura (1996) as discussed in Steedman 1996:

(21) You LIKE the doggies!
H∗ L LL%

S/(S\NP) (S\NP)/NP Xφ\⋆Xπ,η Sφ\(Sφ/NPφ)
: λp.p you′ * like′ : λg.π[S]η g : [S]ηλq.q dogs′

>B
S/NP : λx.* like x you′

<
Sφ/NPφ : [S]ρλx.* like′x you′

<
Sφ : ([S]θλp.p dogs′)([S]ρλx.* like′x you′)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
S: like′dogs′you′

“Mummy supposes what property the dogs afford to be
common ground, Mummy makes it common ground it’s
me liking them.”

Fisher points out that the L intermediate phrase
boundary that she observed after the verb makes
the intonation structure inconsistent with standard
assumptions about surface constituency. However,
this intonation structure is isomorphic to the CCG
derivation above, which delivers the corresponding
theme/rheme information partition directly.

Thus, here too, the availability of the full semantic
interpretation, including information-structural in-
formation, directly reveals the target grammar. In
this case, since the derivation requires the use of
the forward composition rule, indexed>B, the child
gets information not only about the probability of
the verb, the nominative, and the accusative cate-
gories of English, but also about the probability of
applying the composition rule to the first two cat-
egories, the probability that the subject of “like”
will be headed by “you”, and its object be headed
by “doggies”. Thus, the child can build the parser
model in parallel with learning the grammar. (In-
deed, the grammar and parser model are essentially
one.)

4.5 Smoothing and Generalization

A standard assumption in wide-coverage parsing us-
ing treebank grammars is that the grammar must
be generalized and the statistical model must be
smoothed with respect to unseen words and word-
category pairs. Since all language-specific infor-
mation in CCG resides in the lexicon, this amounts
to predicting unseen word-category pairs and head-
dependencies.

Generalizing grammars is a tricky business:
Fodor & Sakas offer as an example the observation
that the child should assume on the basis of seen
topicalizations in English that all NPs can undergo
topicalization. However, they should not assume on
the basis of observations of negative placement with
repect to auxilliaries that the same process can apply
to all verbs.

This problem looks rather different from the
present perspective. Since we are learning a prob-
abilistic instance of universal grammar, the gram-
mar is already generalized, and predicts all pos-
sible word-category pairs. Since topicalization is
a lexically-specified contruction in CCG, when the
child hears the following as its first example of the
construction, it still has available all possible cate-



gories for “doggies”, including the preposing topi-
calized one that supports this derivation:

(22) DOGGIES you LIKE !
L +H∗ LH% H∗ LL%

< >B
Stopφ/(Sφ/NPφ) <

[H]θλp.p *dogs′ Sφ/NPφ
: [S]ρλx.* like′x you′

>
Sφ : ([H]θλp.p dogs′)([S]ρλx.* like′x you′)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

S: like′dogs′you′
“I suppose what property dogs (as opposed to something
else) afford to be common ground, Mummy makes it
common ground it’s me liking them.”

So the conditional probability of this category given
this typeP(Stopφ/(Sφ/NPφ)|((e, t), t) will grow and
become available to other words, supporting gener-
alization.

We must correspondingly assume that the non-
generalization of the negative category is based on
a semantically distinct type of verb.

5 Gavagai!

One might ask at this point how the child or ma-
chine comes to have access to the logical form
more′dogs′ (or whatever), and why she does not
entertain other candidates, such asmore′tails′. As
Quine (1960) pointed out, this is a different kind
of question, whose answer lies in the nature of the
child’s sensory-motor interactions with the world,
and depends as much on mammalian evolution as
on learning in the individual child.

Nevertheless, this observation carries a warning
that the semantics that emerges from that interac-
tion and those evolutionary processes may be very
unlike the semantics that naive logicist assumptions
suggest. For example, the logical form that the
child brings to (21) is likely be something more
like give′pleasure′you′dogs′, so that the lexical en-
try for “like” of type (e,(e, t)) is the following, ex-
hibiting the same “quirky” relation between (struc-
tural) nominative case and an underlying dative role
that Icelandic exhibits morphologically for the cor-
responding verb:

(23) like := (S\NP)/NP : λxλy.give′pleasure′ y x′

Similarly, it is quite possible that the childs initial
representation of the meaning of “more” is as a pred-
icateS/NP : more, and that it is the resulting prior
on the conditional probabilityP(S/NP|e→ t) that
is generalized to “allgone”, leading to transient non-

standard orders like “Allgone milk”. Or “all gone”
may be misanalysed as a proto-determiner like “no
more.” These questions are much harder to inves-
tigate. While one can annotate corpora such as
CHILDES with logical forms, as Villavicencio did,
one has very little idea of what relation such logical
forms bear to a psychologically real adult semantics,
let alone a child’s. This fact makes quantitative test-
ing of the present theory difficult.

One we way around this is to do linguistics, med-
itating on the huge collection of phenomena to do
with binding, case, classification, tense and aspect,
and so on, that seem to dimly reveal an underlying
system of meanings, in the hope of discerning the
real semantics. This is a very hard problem, and
progress seems slow.

Another alternative is to investigate the ques-
tion qualitatively, using simulated language learn-
ers. Since everyone believes that the semantics is
determined by the child’s sensory-motor experience
of acting in the physical world, this makes the use
of physically grounded robots particularly interest-
ing. Projects of this kind are under investigation by a
number of groups, including those led by Luc Steels,
Deb Roy, and Geert-Jan Kruijff. These groups are
looking at emergence of agreed vocabulary among
prelinguistic agents (Steels & Baillie 2003; Steels
2004), plans and plan-recognition as a basis for sit-
uated language understanding (Roy 2005; Gorniak
& Roy 2007), and context-dependent spatial mod-
els for natural language semantics (Kelleher et al.
2006). However, these projects so far rely on forms
of semantics that are designed top-down, using the
robot tasks as a forcing function, rather than on a se-
mantics developed bottom-up from action represen-
tations themselves. Delivering semantic representa-
tions that are grounded in the same sense that mech-
anisms developed over hundreds of millions of years
of evolution is much harder. Steedman (2002b,a) ar-
gues that the combinatorsB andT that do most of
the projective syntactic work in CCG are directly re-
lated to operations of seriation and affordance in the
planner. This suggests that mechanisms for state-
based reactive planning of the kind investigated by
Petrick & Bacchus (2002, 2004) may offer a way
towards a more distinctively action-based semantics
for natural language (cf. Steedman 2006a, Geib &
Steedman 2007).



6 Conclusion

This paper has argued that syntax is learned on
the basis of preexisting semantic interpretations af-
forded by the situation of adult utterance, using a
statistical model over a universal set of grammatical
possibilities. The existence of the model itself helps
the child to rapidly acquire a correct grammar even
in the face of competing ambiguous semantics.

The fact that the onset of syntactically produc-
tive language at the end of the Piagetian sensory-
motor develomental phase is accompanied by an ex-
plosion of advances in qualitatively different “opera-
tional” cognitive abilities suggests that the availabil-
ity of language has a feedback effect, facilitating ac-
cess to concepts that the child would not otherwise
have access. Early work by Oléron (1953) and Furth
(1961) on specific cognitive deficits concerning non-
perceptually evident concepts arising in deaf chil-
dren who had been linguistically deprived by being
denied access to sign supports this view.

This means that Gleitman’s (1990) influential
suggestion that it is the availability of syntax that
enables the child to “syntactically bootstrap” lexical
entries for verbs (such as “think”) that are not situa-
tionally evident is essentially correct. However, we
have seen from the case of learning the verb “flee”
in the face of competition from the meaningchase′

that it is the availability to the child ofa model of
the relation between language-specific syntax and
universal semanticsthat makes this possible. It fol-
lows that the effects observed by Oléron and Furth,
and Gleitman herself must have the character ofdi-
recting the child’s attentionto alternatives that are
available to them, but which they would otherwise
overlook, by sheer force of Bayesian priors on the
conditional probabilityP(σ|τ) of a syntactic cate-
gory given a semantic type. In that sense, we should
probably refer to this effect as “grammatical” boos-
trapping, since it is an effect that is both syntactic
and semantic.

The theory presented here resembles the proposal
of Fodor 1998 as developed in Sakas & Fodor (2001)
and Niyogi (2006) in that it treats the acquisition
of grammar as in some sense parsing with a uni-
versal “supergrammar”. As in that proposal, both
parameters and triggers are simply properties of
the language-specific grammar itself—in their case,

rules over independently learned parts of speech, in
present terms, lexical categories.

It differs in assuming that the unordered logical
form for the utterance is mostly available, with toler-
able degrees of error and ambiguity. This means that
the problem of syntactically ambiguous sentences to
which STL is heir does not arise.

It also differs in the algorithm by which it con-
verges on the target grammar. Rather than learning
rules in an all or none fashion on the basis of un-
ambiguous sentences that admit of only one analy-
sis, it adjusts probabilities in a model of all elements
of the grammar for which there is positive evidence
for all processable utterances. In this respect, it
more closely resembles the proposal of Yang (2002).
However it differs from both in eschewing the view
that grammar learning is parameter setting.

In equating language-specific grammar with a
statistical model for parsing with universal gram-
mar, the proposal bears an intriguing relation to the
Maximum Spanning Tree (MST) parser (McDonald
et al. 2005; McDonald & Pereira 2006b,a). This
parser searches for the maximum-valued spanning
tree-forming subgraph of a totally connected graph
over the words of the string, using a perceptron-like
maximum-margin discriminative model trained us-
ing pairs of strings and dependency trees. It has
been applied to parsing “non-projective” or long-
range dependencies, including crossing dependen-
cies. It works best when the features over which the
model is trained are grammar-like features such as
position with respect to the verb, or morphological
features. In particular, Çakıcı (2007) has shown that
using CCG categories as features in a dependency-
model of Turkish improves performance over the
baseline in McDonald & Pereira (2006b). MST
could therefore be seen as offering an alternative,
discriminative, version of the present approach, ac-
cording to which it could be used to learn weights
for a language-specific set of features or categories
drawn from a larger universal set.

If the parameters are implicit in the rules or cat-
egories themselves, and you can learn the rules or
categories directly, why should the child or the the-
ory bother with parameters at all? For the child, all-
or-none parameter-setting is counterproductive, as it
will make it hard to learn the many languages which
have inconsistent settings of parameters across lexi-



cal types and exceptional lexical items, as in German
and Dutch head finality, and English expressions like
the following:

(24) Doggies galore!

Therefore, the fact that languages show violable ten-
dencies to consistency for values of parameters like
headedness across categories for related semantic
types such as verbs and prepositions probably stems
from considerations of overall encoding efficiency
for the grammar as a whole, of the kind captured
in notions like Minimal Description Length (MDL).
Such considerations may be relevant to comparing
entire grammars for the purpose of explaining lan-
guage change, as in the work of Briscoe (2000).
Their presence will under the present theory make
the task of learning easier, by raising prior probabil-
ities in the model for rules and categories that actu-
ally do recur. But it is less clear that representing
them explicitly, rather than leaving them implicit in
th model, will help the individual child learning a
specific grammar, word-by-word.
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